

[2.2]パラシクロファン部を含む有機ホウ素錯体の顕著なピエゾフルオロクロミズム

大垣 拓也^{1,2}・入井 駿¹・小澤 芳樹³・阿部 正明³・佐藤 寛泰⁴・松井 康哲^{1,2}・池田 浩^{1,2} ¹大阪公立大学大学院工学研究科,²大阪公立大学 RIMED,³兵庫県立大学大学院理学研究科,⁴リガク takuya ogaki@omu.ac.jp; hiroshi ikeda@omu.ac.jp

ピエゾフルオロクロミズム (PFC) は、等方性圧力に応答して蛍光色が可逆的に変化する現象であ るが,有機結晶のPFCの圧力応答性の要因は複雑であり,未解明な点が多い.我々は最近,[2.2]パラ シクロファン部を導入した有機ホウ素錯体の結晶の蛍光波長が圧力に対して156 nmもの長波長化を起 こすPFCを示すことを見出し、その詳細な構造--物性相関について調査したので、本稿で紹介する. キーワード:有機ホウ素錯体・シクロファン・蛍光・ダイヤモンドアンビルセル・圧力効果

1 背景

等方性圧力(静水圧)に応答して蛍光色が可逆的に変化す る現象はピエゾフルオロクロミズム (PFC) と呼ばれ、セン サーなどへの応用が期待されている. その加圧にはダイヤモ ンドアンビルセル (DAC) がよく用いられ、無機材料の PFC については既にかなりの知見が得られている.一方,有機分 子の弱い分子間相互作用によって形成される有機結晶の, PFC の機構や構造-物性相関に関しては未解明な点が多く、今 も実験および理論的な見地からの研究が求められている.

我々はこれまでに、発光性有機ホウ素錯体であるジベンゾ イルメタナートボロンジフロリド (Ph-H, 図1) およびその 誘導体の結晶中の発光に関する研究を行なってきた¹³. その 中で、[2.2]パラシクロファン部を含む誘導体pCP-Hが、溶媒極 性に応答して蛍光色の変化(ソルバトフルオロクロミズム) を示すことを報告した⁴. 溶液中の励起状態の pCP-Hは, シク ロファン部の回転を伴う構造変化により分子内電荷移動型の 蛍光を示すが、その鍵となるのが電子アクセプターのホウ素 錯体部に対して、電子ドナーとしてはたらくシクロファン部 である. [2.2]パラシクロファンは、エチレン鎖架橋で向かい 合った2つのベンゼン環をもち、空間を通した強い分子内ππ 相互作用を発現する. また, この作用は結晶中, 高圧下で強 められることが既にわかっている5. これらの知見から、結晶 中の pCP-H のシクロファン部が励起状態の構造変化だけでな く, 圧力に応じて電子状態を大きく変化させる「感圧部」と して機能する可能性が示唆された. そこで本研究では、通常 の π 共役系分子の結晶中で発現する分子間 π-π 相互作用に加 え, 分子内 π-π 相互作用が競合する系として, シクロファン 部を含む新規有機ホウ素錯体 pCP-tBu を設計し、その結晶の PFC(図2a)における構造-物性相関を評価した.置換基と して Bu基を選んだ理由は、その嵩高さが分子間π-π相互作用 の寄与を軽減することを期待したためである.

図 1. 有機ホウ素錯体 Ph-H, pCP-H, および pCP-tBu の構造.

2 PFC 挙動

pCP-Bu結晶の蛍光特性の圧力依存性を調べるため、DACを 用いて等方性圧力を加えながら、蛍光スペクトルを測定した (図 2b).常圧下において 506 nm に極大蛍光波長(ARLMAX) をもつ pCP-tBu 結晶の蛍光(緑色)は段階的な加圧に伴って 徐々に長波長にシフトし, 7.8 GPa ではA_{ELMAX} が 662 nm (暗赤 色)になった. ALMAX のシフト幅 156 nm は, これまでに報告 されている有機結晶の PFC の中でも最大クラスである. さら に 7.8 GPa からの段階的な降圧過程でArLMAX と蛍光色は徐々に もとのものへと戻り、可逆的な PFC が確認された.

この PFC 挙動をより詳細に調べるため、圧力 P とALMAXの エネルギー値 ERLMAXの関係をプロットしてみると(図2c), 直線の傾きが異なる複数の段階に分かれていた. すなわち, 昇圧過程では約 1.1 GPa までの大きな傾きをもつ stage i と, 7.8 GPaまでの小さな傾きをもつ stageiiの2段階の圧力応答性を示 した. さらに降圧過程は、7.8から6.7GPaまでのEFLMAXが変化 しない stage iii, stage ii とほぼ同様の傾きをもつ stage iv, および 0.4 GPa から急激な変化を示す stage vの3 段階から構成されて いた. pCP-fBu結晶の PFC 挙動は本質的には可逆的ではあるも のの、厳密な微視的可逆性ではなく履歴現象(ヒステリシス) を示したことは興味深い.

図 2.(a) 常圧および各圧力下における pCP-tBu 結晶の蛍光の写 真.(b)昇圧および降圧過程のpCP-tBu結晶の蛍光スペクトル. (c) 各圧力 Pと蛍光極大波長のエネルギー $E_{FL,MAX}$ のプロット.

3 常圧および高圧下での X 線結晶構造解析

常圧下における X線結晶構造解析の結果, pCP-Buはシクロ ファン部の面不斉に由来する S_p体と R_p体のラセミ結晶を形成 していた.シクロファン部の 2 つのベンゼン環の面間距離 (<u>分子内</u>π積層距離, D_{NTRA}, 図3a)は299Åであり,シクロ ファン部のベンゼン環または 4*tert*-ブチルフェニル基とホウ素 錯体部との二面角は,それぞれ θ_1 = +21.2°および θ_2 = +15.4°で あった.また,結晶中では S_p体は隣接する R_p体との間で,ホ ウ素錯体部の重なりをもつ π積層二量体を形成していた(図 3b).その分子間の面間距離(分子間π積層距離, D_{NTRP}, 図 3c)は3.59Åであり,嵩高いBu基があるにも関わらず, pCP-Buの結晶中では依然として強い分子間 π-π相互作用がはたら いていることを示唆している.

図 3. 常圧下における結晶中での *p*CP-*t*Bu の (a) 分子構造, (b) π積層二量体の構造, および (c) パッキング構造.

次に、DACを用いた33GPaの高圧下X線結晶構造解析を行ったところ、結晶系や空間群の変化はなく、pCP-fBu 結晶の PFC は相転移が要因ではないことが示唆された.高圧下では シクロファン部の変形とともに、 D_{NTRA} が 2.85 Å まで減少して おり、<u>分子内</u> π - π 相互作用の増大が示唆される(図4a).同 時に、 D_{NTRR} も 3.26 Å まで減少しており、分子間 π - π 相互作用 の増大も推察される(図4b).

図 4.3.3GPa における *p*CP-*t*Buの (a) 分子構造および (b) π積層 二量体の構造 (薄い色は常圧下における構造).

常圧および高圧下での結晶構造の原子座標を用いた密度汎 関数理論計算の結果(図5)、π積層二量体の HOMO の分布 は単分子のそれらの単純な足し合わせに近く、 $D_{\rm NIRA}$ の減少か ら予想されるような HOMO 準位の上昇は、3.3 GPa でも見られ なかった.これは、 $D_{\rm NIRA}$ だけでなく、わずかではあるが θ_1 も 減少するためであると考えられる.すなわち、 $D_{\rm NIRA}$ の減少は HOMO 準位の上昇に寄与する一方、 θ_1 の減少は電子不足のホ ウ素錯体部とシクロファン部との共役に効果的にはたらき、 HOMO 準位の低下に寄与する.これら拮抗する因子により、 $D_{\rm NIRA}$ が減少しているにも関わらず、 π 積層二量体の HOMO 準 位は大きな変化を示さない.

対照的に、LUMO においては常圧下の π 積層二量体で軌道 の融合が見られ、その程度は 3.3 GPa ではより強められて著し い LUMO 準位の低下を引き起こしており、分子間 π - π 相互作 用が重要な役割を果たしていることがわかる. ちなみにシク ロファン部の 2 つのベンゼン環のうち、ホウ素錯体部と結合 していないベンゼン環には LUMO の分布がないことから、分 子内 π - π 相互作用は強くはない. したがって、*p*CP-*t*Bu 結晶に おいては、分子間 π - π 相互作用が主に影響して、大きな長波 長化を伴う PFC を発現していると考えられる.

図 5.常圧および 3.3GPa における結晶構造を用いた *p*CP-*t*Bu の π積層二量体の HOMO/LUMO の分布と準位 (ωB97XD/6-31G**).

4 おわりに

以上のように本研究では、[22]パラシクロファン部を含む 有機ホウ素錯体結晶 pCP-Buの 156nm もの λ_{LMAX} の長波長シフ トを伴う可逆的な PFC の概略を明らかにした.高圧下 X線結 晶構造解析と理論計算からは、pCP-Bu結晶の PFC の主な要因 が LUMO における分子間 π - π 相互作用であることが強く示唆 された.つまり、シクロファン部を「感圧部」として組み込 んだpCP-Buでさえも、加圧の補償はシクロファン部の面間距 離の変化ではなく、依然として分子間 π 積層距離の変化であ る.一方、この PFC 挙動は複数の段階からなり、昇圧過程と 降圧過程の間で見られる履歴現象などの不明な点も数多い. 我々はこれらの問題の解明に向けて、構造の関連する有機ホ ウ素錯体結晶の PFC に関する研究に現在、取り組んでいる.

参考文献

- A. Sakai, M. Tanaka, E. Ohta, Y. Yoshimoto, K. Mizuno, H. Ikeda, *Tetrahedron Lett.* 2012, 53, 4138–4141.
- M. Tanaka, E. Ohta, A. Sakai, Y. Yoshimoto, K. Mizuno, H. Ikeda, *Tetrahedron Lett.* 2013, 54, 4380–4384.
- A. Sakai, E. Ohta, Y. Yoshimoto, M. Tanaka, Y. Matsui, K. Mizuno, H. Ikeda, *Chem. Eur. J.* 2015, *21*, 18128–18137.
- M. Tanaka, S. Muraoka, Y. Matsui, E. Ohta, A. Sakai, T. Ogaki, Y. Yoshimoto, K. Mizuno, H. Ikeda, *ChemPhotoChem* 2017, *1*, 188–197.
- 5) W. Li, Z. Sui, H. Liu, Z. Zhang, H. Liu, J. Phys. Chem. C 2014, 118, 16028–16034.

原著論文

S. Irii, T. Ogaki, H. Miyashita, K. Nobori, Y. Ozawa, M. Abe, H. Sato, E. Ohta, Y. Matsui, H. Ikeda, *Tetrahedron Lett.* **2022**, *101*, 153913. DOI: 10.1016/j.tetlet.2022.153913

