Study on the Load Sharing Mechanism of Main Girders in a Temporary Bridge with End-Plate Connections

Evaluation of Structural Details of End-Plate Connections on Load Capacity and Redistribution in Temporary Bridges

BACKGROUND

- The demand for temporary bridges with end-plate connections has been increasing due to disaster recovery and the replacement of aging bridge infrastructure. (Fig.1)
- While end-plate connections offer simplicity and reusability, the effect of bolt yield on load-bearing capacity and load redistribution mechanisms remains unclear.
- Understanding residual *load-bearing capacity* beyond the service limit state is crucial for safe design and maintenance.

Fig. 1 Diagram of Friction Joints and Tension Joints Fig. 2 Analysis Model and Mesh Division

METHOD		350kN×λ	450kN×λ	Ũ		
(1) Developed <u>a 3D finite element model</u> (FEM) of a temporary bridge with five girders connected via end-plate bolted		63	64	65		
[2] Applied crane load (1,350 kN +450kN) to the critical position, considering dead load and friction \triangle (Fig 3 Load Factor λ)	1: Fig. 2	1,750mm				
 ③ Simulated <u>different bolt yield conditions</u> (Case-Full, Case-2 × 2, 2 × 4, 2 × 6) based on known yield sequences.(Fig.4) ④ Conducted quasi-static analysis to <u>eval</u> 			Web	Flange		
uate load redistribution and residual load and residual load and residual load -bearing behavior by Rating Factor (RF). Full 2×2 2×4 2×6 Fig. 4 Analysis Case and Yield Bolt Position						

RESULTS

	G1	G2 G2 G	63 🧰 G4	G5	
1.7*Mcap					
2x6	29.94	23.32	20.94	12.52	13.28
2x4-	28.27	27.61	18.28	12.26	13.59
2x2	27.46	29.10	17.70	12.12	13.62
full	27.13	29.69	17.47	12.07	13.63
1.5*Mcap					
2x6	30.29	23.94	19.62	12.61	13.53
2x4	28.10	27.91	18.09	12.28	13.62
2x2	27.32	29.28	17.58	12.17	13.65
full	27.08	29.70	17.43	12.13	13.66
Мсар					
2x6	28.97	25.91	18.75	12.70	13.67
2x4	27.41	28.76	17.75	12.40	13.69
2x2	27.08	29.36	17.55	12.32	13.69
full	26.97	29.56	17.48	12.29	13.70
		30			
() 20	40	60	80	
		Load Sharing	Ratio (%)		

Fig. 5 Main Girder Load Sharing Ratio for Each Load

Deflection(mm) Deflection(mm) Fig. 6 Full Load - Deflection Relationship of Each Girder

Fig. 7 Mises Stress Contour Plot at 1.7*M_{can}

SUMMARY

Temporary bridges with end-plate connections possess inherent structural redundancy.

Fig.5 illustrated structural redundancy, showing that after partial bolt yielding, loads were redistributed from the G2 girder to the adjacent G1 and G3 girders.

Post-vielding, Fig.6 showed reduced stiffness and plastic deformation in the load-deflection response, indicating nonlinear behavior.

As Fig.7, plastic zones extended from G2 to neighboring girders through cross beams and deck slabs, highlighting structural cooperation.

Even under severe yield (Case- 2×6), RF evaluations confirmed sufficient residual capacity except in the most critical case, affirming the reliability of the design.(Formula.1, Table.1)

365 335	Table. 1 RF Calculation Result in Each Case					
304 274 243 213	Case	Condition Factor¢c	Ultimate Strength R(kN)	RF Value	Evaluation	
182 152	Full	1	5646	1.38	Safe	
91 61	2×2	0.95	5275	1.22	Safe	
30 0	2×4	0.9	5121	1.11	Nearly Safe	
	2×6	0.85	4756	0.96	Slightly Dangerou	

Rating Factor (RF) was calculated using the following. $RF = \frac{\phi_s \phi_c R - \gamma_D D}{\gamma_s L}$ Formula. 1

End-plate connected temporary bridges maintain load-bearing capacity even under bolt yield due to load redistribution mechanisms involving cross beams and deck slabs. Residual capacity evaluation using Rating Factor (RF) indicates sufficient safety margin except in severe yield cases (Case- 2×6).

-G1

-G2

-G3

G4