Experimental Study on the Slip Behavior of Joints in Deformed Flange H-Shaped Steel Beams Coated with Inorganic Zinc-Rich Paint

-M-1T-H

-M-2T-1-N-1

-M-2T-1-H-1

-M-2T-1-N-2

M-2T-1-H-2

Osaka Metropolitan University Graduate School of Engineering Bridge Engineering Lab Ren Kigaw

Clarification of the slip behavior at the joint of protruded H-beam with inorganic zinc-rich paint applied to the joint surface

BACKGROUND

In this study, Deformed Flange T-shapes with upper flange protrusions are used in composite slab bridges to improve bonding with concrete(Fig.1). Currently, their joint protrusions are machined for contact, but a nonmachined joint is preferred for easier construction (Fig. 2).Loading tests using zinc-rich painted Deformed Flange H-shapes were conducted to investigate slip behavior at these joints.

Fig.1 Composite slab bridges using Deformed Flange T-shapes Deformed Flange T-shapes

High-strength bolt 88 Main plate -Splice plate Fig.2 High Strength Bolted Frictional Joints with a One sidedprojection on the Base Plate

RESULTS

Consideration items 1

4, the relative $s_{\pm}^{\notin 0.6}$ From Fig. displacement at the N side of M-2T was larger than at the H side under the same load. As shown in Fig. 5, slip at the N side halted load transfer there and increased load transfer to the H side, inducing slip at the H side and reducing bending strength of M-2T by up to 21% compared to M-1T. No nonlinearity in behavior due to N-side slip was observed, as shown in Fig. 7. ◆ Consideration items 2

For the compression side, similarly to the tension side, slip at the N side occurred early in the case with protrusions, leading to а 32% reduction in bending strength. The larger reduction on the compression side is likely due to the increased axial force reduction during loading, as shown in Fig. 6 and Table 2. ◆ Consideration items 3

As shown in Fig. 5, a difference in transmitted load was observed between edge surface 1 (M-2T-1-1) and edge surface 2 (M-2-1-2).

SUMMARY

0 0.2 0.4 0.6 0.8 1 1.2

 P/P_{max}

force ratio relationship

---M-1T-N

Fig.6 Load-residual axial displacement relationship

Table2 Summary of Test Results

	Axial force reduction ratio under loading (%)	Flexural Strength (kN)	slip coefficient ※
M-1T	5.5	586	0.56
M-1C	-1.1	662	0.66
M-2T-1	6.6	462	0.43
M-2T-2	6.3	482	0.44
M-2C-1	4.9	470	0.44
M-2C-2	4.2	452	0.41
*Define the bending strength as the slip load and calculate it			

In cases with protrusions, slip occurred earlier on the protrusion side, reducing the

joint's bending strength compared to the no-protrusion case. However, no increase in local deflection or load reduction was observed.

0.8

0.4

0.2

- When protrusions were present on the compression side, the decrease in bolt axial force II. was greater than on the tension side, leading to a larger reduction.
 - Shape errors of the protrusions in the plate width direction caused different slip behavior.