\Rightarrow

Particle Science and Technology Group

Creation of innovative environmental biotechnology that is useful for society

Research on microorganisms (bacteria, yeasts) as "living fine particles" for utilization to new environmental technologies

Our research topics

- Development of attractive and ecofriendly technologies capable of separating and recovering rare and precious metals indispensable for manufacturing industries such as electronics and automobiles from urban mines by new biotechnology
- Collaboration with industrial sectors for developing new biotechnology that can recycle rare and precious metals
- Development of new technology to prepare platinum type industrial catalysts using microorganisms
- Elucidation of adhesion phenomenon of microorganisms and development of engineering technology using the microbial function
- Evaluation on the effect of nanoparticles on living body
- Synthesis of carrier particles suitable for drug delivery

Toshiyuki Nomura

tsnomura@omu.ac.j

Takuya Yamamoto
Associate Professor

takuya.yamamoto@omu.ac.jp

Process Systems Engineering Group

Innovation in Powder Handling

Production of smart particulate products with high functionality and development of novel powder handling processes

Our research topics

- Synthesis of smart particulate products with high functionality
- Application to pharmaceutical, cosmetics, next-generation batteries, etc.
- Development of innovative powder handling processes (granulation, coating, mixing, drying, etc.)
- Computational modeling of powder handling processe
- Analysis and control of nanoparticle translocation across cell
- Synthesis of functional particles of metal-organic framework

Satoru Watano

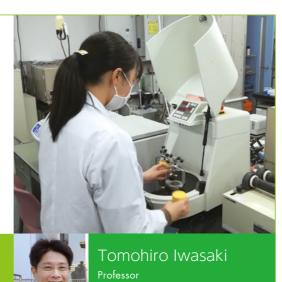
Hideya Nakamura

Associate Professor

.

Shuji Ohsaki Associate Professor

shuji.ohsaki@omu.ac.jp


2 Resource Engineering Group

Effective utilization of underused resources using nanotechnologies

Research on new energy-efficient technologies for synthesizing valuable nanomaterials from abundant resources

Our research topics

- Development of environmentally friendly processes for synthesizing high-functional nanomaterials with high performances using wastes as starting raw materials
- Synthesis of advanced materials for environmental restoration by adsorption removal of toxic ions and organic compounds in water environments
- Synthesis of magnetic nanoparticles for cancer therapy using hyperthermia treatments and nanocatalysts with high catalytic activity under moderate conditions
- Development of organic-inorganic hybrid materials as fillers in plastics and electrode materials in batteries
- Design and optimization of chemical processes for effective utilization of resources based on data science

4 Chemical Reaction Engineering Group

Advanced Biotechnology and Bioengineering

Development of high performance biocatalysts and environment-friendly bioprocesses

Our research topics

- Development of organic solvent-tolerant enzymes by genetic, protein, and molecular-evolutional engineering
- Development of high functional microbial cells by cell, metabolic, and genomic engineering
- Molecular design of high active and stable biocatalysts synthesizing fine chemicals such as pharmaceuticals, functional food materials, and cosmetic materials
- Production of renewable clean energy and bioproducts
- Molecular simulation and modeling for understanding life phenomena
- Development of advanced green chemical processes and innovative bioprocesses based on chemical reaction and biochemical engineering

Hiroyasu Ogino Professor

ogino@omu.ac.j

ryamada@omu.ac.jp

Takuya Matsumoto
Assistant Professor

_matsumoto@omu.ac.jp

3

Separation Science and Engineering Group

Fundamental research of separation process and development of practical separation technology

Creation smart material, device and process for separation process and energy storage

Our research topics

 \Rightarrow

- Fundamental research of synthesis and separation technology for micro chemical process
- Understanding of mass transfer in a porous material; pore structure and pore surface effect
- Development of device and process of practical compact chemical processes
- Application of smart carbon material to electric double layer capacitor (EDLC) and lithium ion capacitor and battery

Akinori Muto
Professor

Our research topics

resources and energy

Clarification of absorption mechanism of NOx and SOx in water

7 Environment and Energy

Effective utilization of valuable

Development of conversion technique of resources and energy and construction of

environmentally harmonious process

Process Engineering Group

- Effective utilization of monomers and energy in suspension polymerization process
- Development of exhaust gas purification technology aimed at recycling nitrogen oxides, development of concentration and purification technology of useful components
- Establishment of separation and purification technology of carbon dioxide gas and effective utilization technology
- Construction of environmentally harmonious reaction process and processing technology
- Resource recycling of unused valuables and waste

m-yasuda@omu.ac

norie@omu.ac.

eokita@omu ac in

6 Materials Process Engineering Group

Synthesis of innovative materials for state-of-the-art electronic devices

Studying various elementary processes involving functional materials thin films and nanoparticles preparation

Our research topics

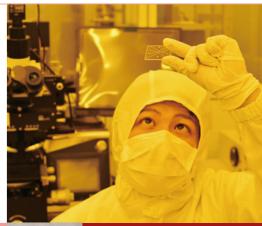
- Preparation of the novel and reliable electrode materials for rare-metal free next generation (Na, Mg, multivalent etc.) ion secondary batteries
- Development of electrochemical technique to realize large area synthesis of next generation high efficiency solar cell materials over silicon through nanostructure control
- Development of fast and low cost chemical vapor deposition process to form hard materials such as diamond, carbide, nitride, boride and their compound
- Theoretical optimization of functional materials for energy conservation and energy creation and establishment of fabrication processes
- Findings of novel device functions through innovative integration of functional materials $% \left(1\right) =\left(1\right) \left(1\right$
- Process analysis of molecules, ions, and colloids formation steps during functional materials prepration in chemical reactors to contol and improve material synthesis

Takeyasu Saito Professor

tsaito@omu.ac.j

Naoki Okamoto
Associate Professor

w21056l@omu.ac.jp


8 Nano Chemical Systems Engineering Group

Pioneering new chemical engineering on tiny nanofluidic devices

Development of nano chemical systems to realize a healthy longevity society and to solve challenging issues in environmental and energy fields

Our research topics

- Research in our group is directed toward the integration of "Nano", "Bio", and "Chem" at femtoliter (10⁻¹⁵ liter), attoliter (10⁻¹⁶ liter), and single molecule scales through nanofluidics.
- We continue to involve the study and development of nove nanofluidic methods and devices for single cell omics, singl molecule chemistry, biomaterials, nanomedicine, energy, an process engineering.
- Our developed nanofluidic devices and methods are contributing to the fields as diverse as single molecule dynamics, ultimate chemical synthesis/materials fabrication, ultra-early diagnosis of cancers and infection diseases, super-precision high-throughput drug discovery, personal medicine, precision medicine, smart implantable sensors/actuators, nano energy devices, and information sciences.

Yan Xu
Associate Professor

5 6