On Delay-Doppler Plane Orthogonal Pulse

Hai Lin^{*} and Jinhong Yuan^{**}

* Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan

** The University of New South Wales, Sydney, NSW, 2052, Australia

IEEE GLOBECOM 2022, 7 December 2022, Rio de Janeiro, Brazil

TF plane

Multicarrier (MC) Modulation

Pulse is a fundamental element of any modulation

- defines the shape of signal in both time and frequency domains
- determines how energy spread over the time and frequency
- affects signal characteristics significantly (efficiency, localization, orthogonality, etc.)

This paper \succ

Design orthogonal pulses w.r.t delay-Doppler resolutions

Pulse Design Principles

> One pulse for one symbol

> MN symbols \Rightarrow MN pulses orthogonal with each other

time resolution (symbol interval)	frequency resolution (subcarrier spacing)
$q_{m,n}(t) = q(t)$	$-m\mathcal{T})e^{j2\pi n\mathcal{F}(t-m\mathcal{T})}$
$0 \le m \le M$	$I-1, 0 \le n \le N-1$

Joint TF resolution (JTFR): $\mathcal{R} = \mathcal{TF}$

Symbol period :
$$\mathfrak{T}=rac{1}{\mathcal{F}}$$

> Core of MC modulation: g(t) given $(\mathcal{T}, \mathcal{F})$

Pulse Design Principles

> Core of MC modulation: prototype pulse/filter g(t) given $(\mathcal{T}, \mathcal{F})$

> Traditionally, $g_{m,n}(t)$'s are treated as Weyl-Heisenberg (WH) or Gabor function set

> Design an MC modulation

 $\Rightarrow \text{ Find (bi)orthogonal WH/Gabor sets} \qquad \Rightarrow \text{ Find } g(t) \text{ given } (\mathcal{T}, \mathcal{F})$

- > Most of orthogonal MC modulation schemes are designed with $\mathcal{R} = \mathcal{TF} \geq 1$
- > OFDM: Rectangular pulse for $\mathcal{R} = \mathcal{TF} = 1$, namely time resolution = symbol period
- > G. Matz, H. Bolcskei, and F. Hlawatsch, "Time-frequency foundations of communications: Concepts and tools," IEEE Signal Process. Mag., 2013.
- A. Sahin, I. Guvenc, and H. Arslan, "A survey on multicarrier communications: Prototype filters, lattice structures, and implementation aspects," IEEE Commun. Surveys Tuts., 2014.

(Bi)Orthogonal WH/Gabor Sets

- > Fundamental tool of time-frequency analysis (TFA) for signals/functions
- Gabor (Weyl-Heisenberg, Short-time/Windowed Fourier) expansion
- > For signals lie in space $L^2(\mathbb{R})$

$$x(t) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} c_{m,n} g_{m,n}(t), \quad g_{m,n}(t) = g(t - m\mathcal{T}) e^{j2\pi n\mathcal{F}(t - m\mathcal{T})}$$

$$\hat{c}_{m,n} = \langle x, \gamma_{m,n} \rangle = \int x(t) \gamma_{m,n}^*(t) dt$$
$$\gamma_{m,n}(t) = \gamma(t - m\mathcal{T}) e^{j2\pi n\mathcal{F}(t - m\mathcal{T})}$$

$$\succ \text{ WH sets: } (g, \mathcal{T}, \mathcal{F}) = \{g_{m,n}(t)\}_{m,n\in\mathbb{Z}}, \ (\gamma, \mathcal{T}, \mathcal{F}) = \{\gamma_{m,n}(t)\}_{m,n\in\mathbb{Z}}$$

> WH frames: Complete or overcomplete WH sets with guaranteed numerical stability of reconstruction

JTFR	Sampling	Completeness	Frame for $(g, \frac{1}{\mathcal{F}}, \frac{1}{\mathcal{T}}), (\gamma, \frac{1}{\mathcal{F}}, \frac{1}{\mathcal{T}})$	(Bi)orthogonal WH sets exist?
$\mathcal{R}=\mathcal{TF}>1$	Undercritical	Incomplete	✓ dual/tight	Yes
$\mathcal{R} = \mathcal{TF} = 1$	Critical	Complete	✓ dual/tight	Yes
$\mathcal{R}=\mathcal{TF}<1$	Overcritical	Overcomplete	× dual/tight	No

Mobile Channel Models

- > Doubly-selective channel with both time and frequency dispersion
- Deterministic model: delay-Doppler spread function, namely spreading function

> Path based model :
$$h(\tau,\nu) = \sum_{p=1}^{P} h_p \delta(\tau-\tau_p) \delta(\nu-\nu_p)$$

$$au_p = l_p rac{1}{W_0}, \
u_p = k_p rac{1}{T_0}, \ l_p, k_p \in \mathbb{Z}$$

Sampling rate : W_0 Duration : T_0

Orthogonal Delay-Doppler Division Multiplexing (ODDM) Modulation

- > Time resolution: $\mathcal{T} = \frac{1}{W_0}$, Frequency resolution: $\mathcal{F} = \frac{1}{T_0}$
- > In ODDM, we have $W_0 = \frac{M}{T}$ and $T_0 = NT$, therefore $\mathcal{R} = \frac{1}{MN} \ll 1$.
- > ODDM waveform

$$x(t) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} X(m,n) u(t-m\frac{T}{M}) e^{j2\pi \frac{n}{NT}(t-m\frac{T}{M})}$$

DD Plane Orthogonal Pulse (DDOP)

$$u(t) = \sum_{\dot{n}=0}^{N-1} a(t - \dot{n}T)$$

> Ambiguity function of u(t)

$$A_{u,u}\left(m\frac{T}{M}, n\frac{1}{NT}\right) = \delta(m)\delta(n), \forall |m| \le M - 1, |n| \le N - 1$$

Local (Bi)Orthogonality for WH Subsets

$$\succ \text{ WH sets: } (g, \mathcal{T}, \mathcal{F}) = \{g_{m,n}(t)\}_{m,n\in\mathbb{Z}}, \ (\gamma, \mathcal{T}, \mathcal{F}) = \{\gamma_{m,n}(t)\}_{m,n\in\mathbb{Z}}$$

$$\succ \text{ WH subset:} \quad \begin{array}{l} (g, \mathcal{T}, \mathcal{F}, M, N) = \{g_{m,n}(t)\}_{0 \le m \le M-1, 0 \le n \le N-1} \\ (\gamma, \mathcal{T}, \mathcal{F}, M, N) = \{\gamma_{m,n}(t)\}_{0 \le m \le M-1, 0 \le n \le N-1} \end{array}$$

> (Bi)Orthogonality among WH sets:

 $\succ m, n \in \mathbb{Z} \Rightarrow$ Global (bi)orthogonality governed by the WH frame theory

> (Bi)Orthogonality among WH subsets:

 $\geq 0 \leq m \leq M - 1, 0 \leq n \leq N - 1 \Rightarrow$ Local (bi)orthogonality

- > Local (bi)orthogonality is not necessarily governed by the WH frame theory
- > Local (bi)orthogonality is enough for a modulation in the TF region of interest.

Orthogonality w.r.t Frequency Resolution

When |n| ≤ N − 1, g(t) can be any periodic
 function with a period of X/N within the duration
 of X = 1/F. (Lemma 1)

Orthogonality w.r.t Time Resolution

▶ When $m \in \mathbb{Z}$, g(t) can be any function with duration $T_g \leq T$, which is independent of M.

➤ When $|m| \le M - 1$, g(t) consists of N > 1 subpulses, each subpulse are temporally spaced by MT and each subpulse has a duration not longer than T.

- $\succ m \in \mathbb{Z}$: SRN pulse for \mathcal{T} , whose duration is longer than \mathcal{T}
- ≻ $|m| \le M 1$: g(t) consists of $\dot{N} > 1$ SRN subpulses, each subpulse are temporally spaced by MT

and SRN subpulses can have any duration

General DDOP Design

- > Combine the aforementioned results , we obtain the DDOP
- > In the original DDOP design, T_a , the duration of SRN pulse need to be $T_a \ll T_a$.

> The constraint of T_a can be relaxed by adding cyclic prefix and cyclic suffix, leading to a general DDOP (Lemma 2)

Frequency Domain Representation of DDOP

 $U(f) = \frac{e^{-j2\pi f\tilde{T}}}{T} A(f) \sum_{n=-\infty}^{\infty} e^{j2\pi \frac{n(N-1)}{2}} \operatorname{Sinc}(fNT - nN)$

 Phase terms are ignored for the purpose of display

TF Signal Localization Comparison

DDOP's Ambiguity Function

$$A_{u_c,u}\left(m\frac{T}{M}, n\frac{1}{NT}\right) = \delta(m)\delta(n), \forall |m| \le M - 1, |n| \le N - 1$$

 $M = 32, N = 8, \rho = 0.1$

Conclusion

- Justify the existence of DDOP
 - > without violating the WH frame theory
 - local (bi)orthogonality
- > Sufficient conditions for locally orthogonal pulses
- > General DDOP design
- Frequency domain representation of DDOP
- \succ TF signal localization comparison

- H. Lin and J. Yuan, "Multicarrier Modulation on Delay-Doppler Plane: Achieving Orthogonality with Fine Resolutions," IEEE ICC 2022.
- H. Lin and J. Yuan, "Orthogonal Delay-Doppler Division Multiplexing Modulation," IEEE Trans. Wireless Commun., Early access.

