# ミストファンを使用し室内冷却するシステムの効果 EFFECTS OF AN INDOOR COOLING SYSTEM USING MIST FANS

#### **○アカデミック会員 ファーナム クレイグ<sup>\*1</sup>, 非会員 水野 毅男<sup>\*2</sup>**

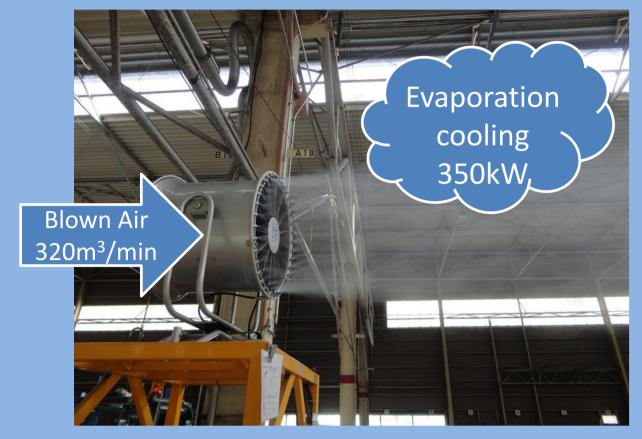
Craig FARNHAM<sup>\*1</sup>, Takeo Mizuno <sup>\*2</sup>

<sup>\*1</sup>大阪市立大学生活科学研究科 Dept. of Human Life Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585 Japan

\*<sup>2</sup> いけうち(株) H. Ikeuchi & Co. Ltd., Nishi-ku, Osaka, 550-0011 Japan



#### most). In Japan, wet bulb depression is about 7K in


### Droplet diameter (µm)

- In evaporative cooling, wet bulb temperature does not change, WBGT standard does not work.

Thermal sensation improved 3 steps on average among 141 surveyed people

Spray volume 19ℓ/h Blown air 80m<sup>3</sup>/min

## Misting fan specifications



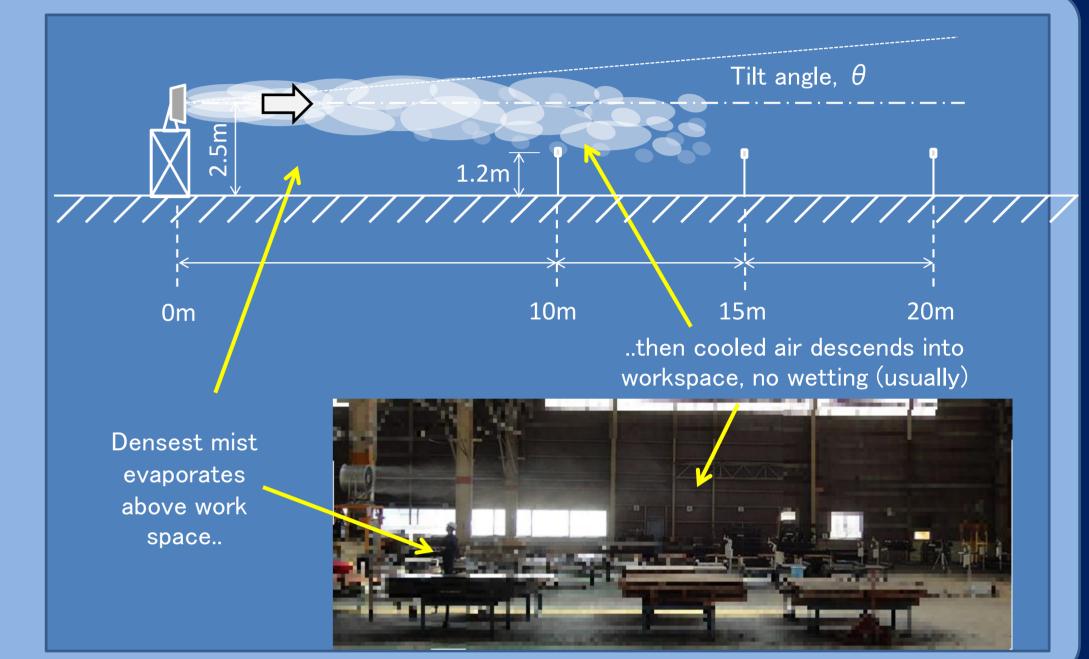
Droplet Sauter Mean Diameter  $d_{32} = 25 \mu m$ Area of cooling with oscillation : Approx. 4000m<sup>2</sup> Daily operating cost (6 fans, water + electric) : 3500yen



1 pump supplies 6 mist fans Pressure = 6MPaSpray volume = 510l/h Electric power = 750W

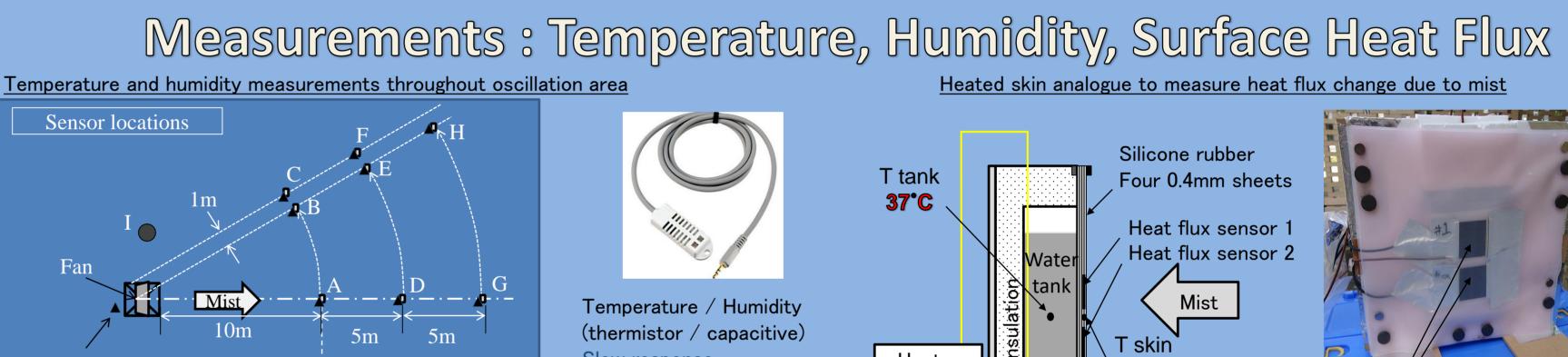
## **Experiment Conditions**

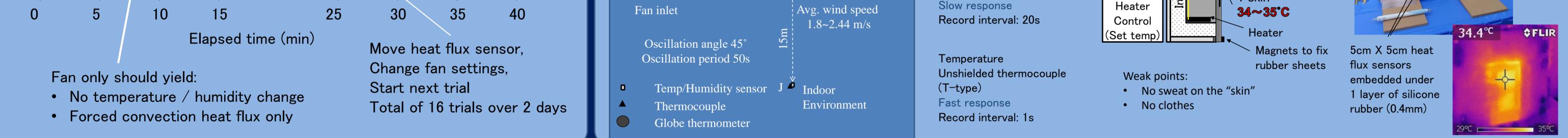
September 21-22, 2014 Factory warehouse in Mie Prefecture, Japan


#### Weather:

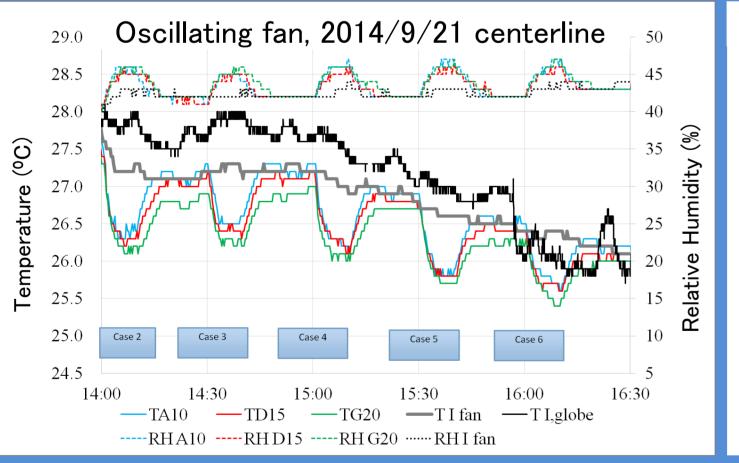
Sunny Air temperature 26~28°C Humidity 42-45%

#### Characteristics of the indoor space:


- 40,000m<sup>2</sup> floor space, 500,000m<sup>3</sup> air volume
- Natural ventilation
- Open vehicle doors, windows on all sides
- No dividing walls
- Low worker density, mostly dry storage space







## **Experiment Procedure**

No fan, no mist should yield: Fan and Mist should yield: • Natural convection baseline • Temperature decrease / humidity increase • Larger heat flux Stop Stop Fan and mist Stop Stop Fan only etc. ⊩an only (1) (2)



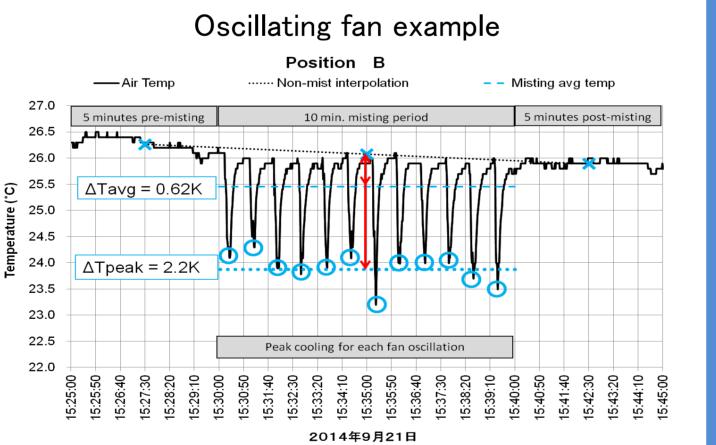


## **Results of Temperature and Humidity Measurements**



Slow response sensor temperature and humidity measurements

Fan only


Forced convection from fan only yields increased cooling

- Average temperature drops about 1.0~1.5K
- Average humidity increase about +5%

Conditions

temperature (34~35°C)

• Mist effect above the fan only effect



Fast response sensor temperature measurements example data • Time-averaged temperature drops are small due to

large periods with no mist during oscillation

Fan and Mist

effect

Fan effect

• Peak temperature drops (as mist hits sensors) are much larger

#### 1 through 6 11 through 16 Test runs Osc. Tilt = $-4^{\circ}$ Osc. Tilt = $0^{\circ}$ Conditions $\Delta T_{peak}$ $\Delta T_{avg}$ $\Delta T_{peak}$ Dist ΔT Sensor (K) (m) (K) (K) 0.5 10 0.5 1.9 3.0 Α Ctr В 10 2.2 0.5 2.5 Edge 0.6 1.0 0.2 1.8 10 Outer 0.0 1.2 D 15 0.2 1.6 Ctr 0.3 15 Edge 0.5 1.7 0.3 1.8 15 1.3 0.2 1.6 0.3 Outer G 20 0.2 1.2 0.4 Ctr 1.1 Н 20 Edge 1.5 1.5 0.4 0.5

- Average temperature drops about 0.5K due to large periods with no mist during oscillation
- Peak temperature drops (as mist hits sensors) about 1.0~2.2K

## **Results of Heat Flux Measurements**



#### Heat flux measurements example data

- Heat flux with no fan, no mist is about  $60^{80}$ W/m<sup>2</sup>
- Heat flux with fan increases, fluctuates as fan oscillates
- Heat flux with fan and mist is even higher

## Conclusions

| • | • | • | · · · · · · · · · · · · · · · · · · · |
|---|---|---|---------------------------------------|

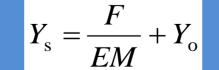
| 0 | Dist Align Tilt Osc                    |       | Osc/ | Heat flux (W/m <sup>2</sup> ) |        |     | Heat flux (W/m <sup>2</sup> ) |        |      | (W/m <sup>2</sup> ) |      | (W/m²) |       |       |
|---|----------------------------------------|-------|------|-------------------------------|--------|-----|-------------------------------|--------|------|---------------------|------|--------|-------|-------|
| ( | (m)                                    | Aligh | (°)  | Fixed                         | Before | Avg | Peak                          | Before | Avg  | Peak                | Avg  | Peak   | Avg   | Peak  |
|   | 10                                     | Ctr   | 0    | Osc                           | 67     | 93  | 112                           | 80     | 109  | 134                 | + 26 | + 45   | + 29  | + 54  |
|   | 10                                     | Edge  | 0    | Osc                           | 75     | 99  | 135                           | 76     | 110  | 166                 | + 24 | + 60   | + 34  | + 90  |
|   | 15                                     | Ctr   | 0    | Osc                           | 73     | 98  | 114                           | 72     | 105  | 126                 | + 25 | + 41   | + 33  | + 53  |
|   | 15                                     | Edge  | 0    | Osc                           | 67     | 90  | 120                           | 66     | 100  | 144                 | + 23 | + 53   | + 33  | + 77  |
|   | 20                                     | Ctr   | 0    | Osc                           | 73     | 96  | 106                           | 77     | 108  | 127                 | + 23 | + 33   | + 31  | + 49  |
|   | 20                                     | Edge  | 0    | Osc                           | 73     | 97  | 117                           | 75     | 105  | 138                 | + 23 | + 44   | + 30  | + 63  |
|   | 15                                     | Ctr   | 0    | Fixed                         | 89     | 161 | 176                           | 87     | 179  | 189                 | + 72 | + 87   | + 92  | + 102 |
|   | 20                                     | Ctr   | 0    | Fixed                         | 80     | 131 | 143                           | 75     | 144  | 155                 | + 51 | + 64   | + 68  | + 80  |
|   | 15                                     | Ctr   | -4   | Fixed                         | 73     | 144 | 153                           | 77     | 179  | 190                 | + 70 | + 80   | + 102 | + 113 |
|   | 10                                     | Ctr   | -4   | Fixed                         | 74     | 155 | 174                           | 73     | 237  | 262                 | + 81 | + 100  | + 164 | + 189 |
|   | 10                                     | Ctr   | -4   | Osc                           | 73     | 104 | 152                           | 65     | 108  | 171                 | + 31 | + 78   | + 43  | + 107 |
|   | 10                                     | Edge  | -4   | Osc                           | 59     | 92  | 144                           | 60     | 108  | 191                 | + 33 | + 85   | + 48  | + 131 |
|   | 15                                     | Ctr   | -4   | Osc                           | 65     | 95  | 120                           | 70     | 107  | 137                 | + 30 | + 55   | + 37  | + 67  |
|   | 15                                     | Edge  | -4   | Osc                           | 66     | 95  | 135                           | 68     | 109  | 169                 | + 29 | + 69   | + 41  | + 101 |
|   | 20                                     | Ctr   | -4   | Osc                           | 75     | 105 | 118                           | 76     | 114  | 133                 | + 30 | + 43   | + 39  | + 57  |
|   | 20                                     | Edge  | -4   | Osc                           | 81     | 105 | 133                           | 82     | 119  | 158                 | + 24 | + 52   | + 37  | + 76  |
|   | Avg. 73 110 134 74 128 162 + 37 + 62 + |       |      |                               |        |     |                               |        | + 54 | + 88                |      |        |       |       |
|   | Added mist effect (above fan only)     |       |      |                               |        |     |                               |        | +18  | +24                 |      |        |       |       |

Time-averaged +37W/m<sup>2</sup> Average of peaks in oscillation +62W/m<sup>2</sup> This is

fairly high due to the low air temperature (26~28°C) relative to the skin

Time-averaged +18W/m<sup>2</sup> Average of peaks in oscillation +24W/m<sup>2</sup>

Heat Flux by Fan only vs. Fan + Mist


Fan and Mist

 $M \frac{dT}{dr} = F + qY_{o} - qY$ 

Mass balance of water vapor as steady state is reached

constant air density

Mass balance of water vapor for ventilated room, assuming



M, room air mass (assumed constant) Y, water vapor mass fraction in air Y<sub>o</sub>, water vapor mass fraction of outdoor air Ys, water vapor mass fraction as steady state is reached F, mist spray flow q, ventilation air flow E, air exchanges (on a mass basis) E = q/M

Assuming natural ventilation is a relatively small air exchange rate,, the average water vapor mass fraction reaches maximum at the steady-state value Here, air mass M is this factory site 600,000kg, and spray rate is a 6 fan system 510kg/h

Would humidity rise be too high?

| Air exchanges | Initial air<br>conditions | Initial water<br>vapor<br>(g/kg) | Water vapor at<br>steady-state<br>(g/kg) | Rel. Humidity<br>at steady-<br>state |
|---------------|---------------------------|----------------------------------|------------------------------------------|--------------------------------------|
| 0.3           |                           | 10.5                             | 13.3                                     | 57%                                  |
| 1             | 28 <sup>°</sup> C,45%     | 10.5                             | 11.4                                     | 48%                                  |
| 2             |                           | 10.5                             | 10.9                                     | 47%                                  |
| 0.3           |                           | 13.9                             | 16.8                                     | 48%                                  |
| 1             | 35 <sup>°</sup> C,40%     | 13.9                             | 14.8                                     | 42%                                  |
| 2             |                           | 13.9                             | 14.4                                     | 41%                                  |

Even with very low air exchange, the humidity rise is on the order of  $+1^{+12\%}$ , with smaller rise as temperatures are higher.

- Mist cooling can be used in a very large indoor space without worry of air saturation. Humidity will not significantly increase if there is minimal natural ventilation at 0.3 air exchanges
- Air temperature drops time-average to about 0.5K, but peaks during oscillation are up to 2.2K
- Mist fan cooling yields about 20W/m<sup>2</sup> more heat flux than a fan alone on a heated surface
- (But this surface does not account for sweat or clothing)
- Many more factors remain to be examined, including:
- Clothing
- Sweat
- Human subjects

#### Corresponding author:

Craig FARNHAM,

E-mail:



farnham@life.osaka-cu.ac.jp