Research program

Hideo Takioka

The following researches are projected.

- Can the (p, q)-cable version of the Γ-polynomial distinguish a mutant knot pair?
For $p=1,2,3$, the (p, q)-cable version of the Γ-polynomial is invariant under mutation. Therefore, we study the (p, q)-cable version of the Γ-polynomial for mutant knots for $p \geq 4$. We have already shown that the (4,1)- and $(5,1)$-cable versions of the Γ polynomial cannot distinguish a mutant pair of Kinoshita-Terasaka knot and Conway knot.
- Can the Γ-polynomials of knots be characterized by using knots with clasp number at most two?
It is known that the Γ-polynomials of knots are characterized by using 2-bridge knots with unknotting number one. I consider whether the Γ-polynomials of knots can be characterized by using knots with clasp number at most two.

- Knots which bound clasp disks of type 0 are prime?

There exist two homeomorphic classes of clasp disks with two clasp singularities, which are called types 0 and 1 . It is known that $\operatorname{clasp}\left(K \# K^{\prime}\right)=2$ for knots K and K^{\prime} with $\operatorname{clasp}(K)=\operatorname{clasp}\left(K^{\prime}\right)=1$. We see easily that $K \# K^{\prime}$ bounds a clasp disk of type 1. I consider whether $K \# K^{\prime}$ bounds a clasp disk of type 0 .

- Any knot with the trivial $(2,1)$-cable version of the Γ-polynomial has the trivial Γ-polynomial and the trivial first coefficient HOMFLYPT polynomial? We have already shown that there exist infinitely many knots with the trivial $(2,1)$-cable version of the Γ-polynomial and the knots have the trivial Γ-polynomial and the trivial first coefficient HOMFLYPT polynomial. I consider whether any knot with the trivial (2,1)-cable version of the Γ-polynomial has the trivial Γ-polynomial and the trivial first coefficient HOMFLYPT polynomial.
- Kawauchi's conjecture

Let K, K^{\prime} be knots. If $\Gamma_{p / q}(K)=\Gamma_{p / q}\left(K^{\prime}\right)$ for any coprime integers $p(>0)$ and q, then $P(K)=P\left(K^{\prime}\right)$ and $F(K)=F\left(K^{\prime}\right)$, where $\Gamma_{p / q}$ is the (p, q)-cable version of the Γ-polynomial, P is the HOMFLYPT polynomial and F is the Kauffman polynomial.

- Every knot has a minimal grid diagram which presents a minimal closed braid diagram? (Joint work with Hwa Jeong Lee)
Every knot has minimal grid diagrams. We consider whether there always exists a minimal grid diagram which presents a minimal closed braid diagram.

