Achievement

I study the construction of Einstein structures and Ricci soliton structures on a given C^{∞} -differentiable manifold M^n of dimension n.

Let g_0 be a pseudo-Riemannian metric on M^n . If g_0 satisfies

$$2\operatorname{Ric}[g_0] + L_X g_0 + \alpha g_0 = 0,$$

where X is some vector field and α is some constant, then (M^n, g_0, X, α) is called a Ricci soliton structure and g_0 a Ricci soliton. Ricci solitons are special solutions of the Ricci flow.

I have two theme. The first is the following. From the result of Lauret(2003), the 3-dimensional Heisenberg group H_3 admit only one left-invariant Riemannian metric up to isometry and scaling. From the result of Baird and Danielo(2007) and Lott(2007), the left-invariant Riemannian metric on H_3 is a non-gradient expanding Ricci soliton. On the other hand, N.Rahmani and S.Rahmani (2006) proved that any left-invariant Lorentzian metric on H_3 is classified into three types g_1 , g_2 and g_3 , up to isometry and scaling. They showed that g_2 has negative constant curvature, g_3 is flat and g_1 is not Einstein. Under such the background, I characterize the left-invariant Lorentzian metric g_1 as a Lorentzian Ricci soliton. Moreover, I treated the group E(2) of rigid motions of Euclidean 2-space and the group E(1, 1) of rigid motions of the Minkowski 2-space. In particularly, I proved that E(2) has a non-flat Lorentzian Ricci soliton.

Next, the second is the following. Many researchers studied what kind of condition a cohomogeneity one metrics with respect to a G-action becomes Einstein metric and the Ricci soliton. I studied an extension of 3-dimensional unimodular Lie groups with a Ricci soliton structure, and when the evolution in the extra 1dimension moves like the Ricci flow, then this has a Ricci-flat metric (an Einstein metric with zero Ricci tensor).

There exists a left-invariant coframe $\{\theta^i\}_{i=1}^3$ on three-dimensional unimodular Lie group G satisfying $d\theta^i = 2\theta^j \wedge \theta^k$, where (i, j, k) are cyclic permutation of $\{1, 2, 3\}$. Then cohomogeneity one metrics with respect to G is described as

$$g = dt^{2} + a(t)^{2}(\theta^{1})^{2} + b(t)^{2}(\theta^{2})^{2} + c(t)^{2}(\theta^{3})^{2}.$$
 (1)

For which $\{a(t), b(t), c(t)\}$ the resulting cohomogeneity one metrics are several metrics, for example, constant curvature metrics and product metrics. When the triple of functions $\{a(t), b(t), c(t)\}$ satisfies the Ricci flow equation, I examined whether the resulting cohomogeneity one metric is a Ricci-flat metric. Moreover I proved that these metrics have the Hyper-kähler structure.