Research Plan

Toshihiro Nogi

1. On a boundary of the Bers fiber space

Let G be a torsion free finitely generated Fucshian group of the first kind acting on the upper half plane U. Assume that U/G is a Riemann surface of genus g with n punctures.

The Teichmüller space T(G) of G is embedded into the complex vector space $B_2(L,G)$ of holomorphic automorphic forms of weight -4 on the lower half plane L with respect to G. We identify the image of T(G) under the embedding with T(G), then the boundary $\partial T(G)$ of T(G) is naturally defined.

The fiber space F(G) over T(G) whose fiber is a quasidisk is defined. By the embedding as above, we see that F(G) becomes a domain in $B_2(L,G) \times \mathbb{C}$. Now let \dot{G} be another Fuchsian group and $U/\dot{G} \to U/G - \{a \text{ point}\}$ be a conformal bijection. Then Bers showed there exists an isomorphism of $F(\dot{G})$ onto T(G). I shall study an action of the isomorphism to a boundary of $F(\dot{G})$.

2. On holomorphic families of Riemann surfaces

Let B be a hyperbolic Riemann surface and suppose a holomorphic family of Riemann surfaces of type (g, n) over B is given, where g is the number of genus of a fiber and n is the number of punctures of the fiber.

Then we have a holomorphic map from Δ (the universal covering surface of B) to the Teichmüller space of type (g, n).

If the first research in **1** develops, then I expect to have a correspondence of $\partial \Delta$ and $\partial T_{(q,k)}$. From this, we see a detailed information about holomorphic families.

3. On holomorphic motions

Let E be a closed subset of \mathbb{C} . I will try to extend the Mitra's results of holomorphic motions on the Teichmüller space T(E) of E to results of holomorphic motions on T(R) of a Riemann surface R.