Results of my research

Misa Ohashi

I study G_2 -invariant geometrical objects of oriented 6-dimensional hypersurfaces and curves in Im \mathfrak{C} .

Any orientable hypersurface of Im \mathfrak{C} has the special geometrical properties as follows. Let M^6 be an orientable (connected) 6-dimensional manifold and φ be an isometric immersion from M^6 to Im \mathfrak{C} . The octonions is considered as a pair of the quaternions $\mathbf{H} \oplus \mathbf{H}$. We define the oriented basis (the orientation) of Im \mathfrak{C} as

$$\operatorname{Im} \mathfrak{C} = \operatorname{span}_{\mathbf{R}}\{i, j, k, \varepsilon, i\varepsilon, j\varepsilon, k\varepsilon\},\$$

where $\{i, j, k\}$ is the basis of pure imaginary part of quaternions and $\varepsilon = (0, 1) \in \mathbf{H} \oplus \mathbf{H}$. Then M^6 admits the orientation which is compatible with the above orientation of Im \mathfrak{C} such that

$$\xi \wedge T_p(M^6) = \operatorname{Im} \mathfrak{C},$$

where ξ is a unit normal vector field whole on M^6 . We define the almost complex structure J_{φ} as

$$\varphi_*(J_\varphi X) = \varphi_*(X)\xi.$$

Then J_{φ} satisfies $J_{\varphi}^2 = -I$ and $g_{\varphi}(J_{\varphi}X, J_{\varphi}Y) = g_{\varphi}(X, Y)$ where g_{φ} denote the induced metric from the canonical metric of Im \mathfrak{C} and X, Y are vector fields on M^6 . Therefore any orientable hypersurface M^6 of Im \mathfrak{C} admits the almost Hermitian structure. Moreover, by taking account of the algebraic properties of the octonions, the structure group of the tangent bundle of hypersurface of Im \mathfrak{C} reduces to the special unitary group SU(3) of degree 3.

Let $\varphi : M^6 \to \operatorname{Im} \mathfrak{C}$ and $\varphi' : N^6 \to \operatorname{Im} \mathfrak{C}$ be two isometric immersions. We call φ and φ' are $G_2(\operatorname{resp.} SO(7))$ -congruent if there exist a $g \in G_2$ (resp. $\in SO(7)$) and an orientation preserving diffeomorphism $\psi : M^6 \to N^6$ satisfying

$$g \circ \varphi = \varphi' \circ \psi$$

up to a parallel displacement. We can easily see that, if φ and φ' are G_2 -congruent, then the two induced almost complex structures and the induced metrics coincide. Obviously, the G_2 -congruency is an equivalent relation. However, in general, even if φ and φ' are SO(7)-congruent, but the induced almost complex structures are different.

We will classify almost complex structures of $M^6 = S^k \times \mathbf{R}^{6-k}$ into 4-types.

(1) The case of $M^6 = \mathbf{R}^6$, $S^1 \times \mathbf{R}^5$, $S^5 \times \mathbf{R}^1$, S^6 , then the induced almost Hermitian structures are also unique under the action of SO(7), (up to the action of G_2) and it acts transitively on M^6 . The automorphism groups of the induced almost Hermitian

M^6	$Aut(M^6, J, g)$	$Iso^+(M^6)$
\mathbf{R}^{6}	$\mathbf{R}^6 \rtimes SU(3)$	$\mathbf{R}^6 \rtimes SO(6)$
$S^1 \times \mathbf{R}^5$	$U(2) \ltimes \mathbf{R}^5$	$SO(2) \times (SO(5) \ltimes \mathbf{R}^5)$
$S^5 \times \mathbf{R}^1$	$SU(3) \times \mathbf{R}^1$	$SO(6) imes \mathbf{R}^1$
S^6	G_2	SO(7)

structures and the isometry groups of M^6 are as followings

- (2) The case of $M^6 = \mathbf{R}^2 \times S^4$, then the induced almost Hermitian structure is also unique under the action of SO(7), (up to the action of G_2) and it does not act transitively on $\mathbf{R}^2 \times S^4$. The automorphism group of the induced almost Hermitian structure and the isometry group of $\mathbf{R}^2 \times S^4$ are $U(2) \ltimes \mathbf{R}^2 (\subset SO(5) \times (SO(2) \ltimes \mathbf{R}^2))$
- (3) The case of $M^6 = S^2 \times \mathbf{R}^4$, then the induced almost complex structures of $g \circ \varphi$ are different from the original that of φ . If the parameter of deformation $\alpha \in (0, \pi/3)$, then the automorphism group of the induced almost Hermitian structure coincide with $\mathbf{R}^4 \rtimes SU(2)$ and it acts transitively on $S^2 \times \mathbf{R}^4$. If $\alpha = 0$ or $\pi/3$, then the automorphism group of the induced almost Hermitian structure coincides with $\mathbf{R}^4 \rtimes SO(4)$ and it also acts transitively on $S^2 \times \mathbf{R}^4$.
- (4) The case of $M^6 = S^3 \times \mathbf{R}^3$, then the induced almost complex structures of $g \circ \varphi$ are different from the original that of φ . If $\alpha = 0$ or $\pi/2$, the induced almost complex structures are homogeneous. If $\alpha \in (0 < \alpha \leq \pi/2)$, the induced almost complex structures are not homogeneous.

As the theory of hypersurfaces of $\operatorname{Im} \mathfrak{C}$, we show that G_2 -congruence theorem for curves of $\operatorname{Im} \mathfrak{C}$.