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1. Randomness and Algorithmic Complexity

Arround 1968, I was interested in the problem asking what is randomness.
I approached this problem from both probability and mathematical logic
sides. Before Kolmogorov’s formulation of the notion of probability, von
Mises defined collective as the notion of probability. It is defined for individ-
ual sequences of symbols and more concrete than Kolmogorov’s formulation,
so that it fits better for discussing random numbers. The normal numbers
introduced by E. Borel in the begining of the 20th century are the infinite
sequences of symbols such that each block of symbols appears with the fre-
quencies excepted for the independent and identically distributed sequence
of random variables. I discussed in 1973 in [6] how close the normal numbers
to the collective. By the modified definition by Church, an infinite sequence
of symbols is called a collective if any subsequence chosen from it in a way
that whether to choose an occurrence of symbol is determined by the value
of a computable function at the sequence of symbols appeared before it as
the input has the same frequencies of symbols as the original one. In fact, I
consider all the infinite subsets of indices to be chosen for defining the sub-
sequence, independent of what symbols appeared before, and characterize
which subsets of indices preserve the frequncies of symbols for any normal
number. In fact, this holds if and only if the set of indices has 0 entropy
together with a positive density [6]. [7][8] are related papers. This result is
discussed even now to extend to various classes of random numbers.

Algorithmic complexity defined by Kolmogorov and Chaitin is an effec-
tive mean to catch the randomness from the point of view of algorithm. I
discussed it as a quantity of information in 1973 in [5], and proved that all
large natural numbers have certain amount of information with respect to
anything. This fact was called “oracle” and discussed later.

2. Ergodic Theory and Fractal

At the same time when I was intereseted in randomness, I was also interested
the opposite problem what is regularity and periodicity. To find the solution,
I started studying Ergodic Theory. The basic question asked in the 19th
century phisics whether the space average in the dynamical system is realized
as the time average or not hatched Ergodic Theory as a field of mathematics
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in the 20th century. The fundamental theorem in this field is the individual
ergodic theorem. I gave a completely new proof of it using Nonstandard
Analysis in [18] in 1982. It was shown there that any measure preserving
transformation can be realized as one step of the rotation in a hyper-finite
circle and the individual ergodic theorem is nothing but the associative law
of the addition, (a + b) + c = a + (b + c). This idea was used for to prove
different kinds of ergodic theorems without using Nonstandard Analysis.
[32] is one of them.

I started to be interested in Fractal functions from the late 1980’s. I refor-
mulated them as homogeneous cocycles on a compact metric space Ω with
a continuous additive action of R together with a continuous multiplicative
action of R+ satisfying the associative law λ(ω + t) = λω + λt (ω ∈ Ω, t ∈
R, λ ∈ R+). I further assumed that the additive action to Ω is minimal and
admits a unique invariant probability measure P . An additive cocycle on Ω is
a continuous function F : Ω×R → R satisfying that F (ω, t+s) = F (ω+t, s).
This F is called α-homogeneous, where 0 < α < 1, if F (λω, λt) = λαF (ω, t)
holds. It follows that a nontrivial α-homogeneous additive cocycle F (ω, t)
considered as a function of t, fixing ω ∈ Ω, is α-Hölder continuous, but not
(α + ε)-Hölder continuous. We also consider F (ω, t) as this as a stochas-
tic process on the probability space (Ω, P ). It turns out to be a process
with stationary and α-self similar increments. I constructed such compact
metric spaces Ω and homogeneous additive cocycles systematically on the
weighted substitutions, and studied the fractal properties, ergodic theoret-
ical properties and probability theoretical properties of them in the papers
[24][26][28][29][36][42][49][50]. In [37], I studied the stochastic processes as
this from the point view of prediction and proposed to apply it for predicting
stock markets. Furthermore, I discussed the relation between discreteness
of the spectrum of the additive action and the weighted substitution to be
of Pisot type in [54].

3. Number Theoretical Functions and Symbolic Dynamics

During my visit to France from 1976 to 1977, I was interested in the function
f(n) of n ∈ N defined through the digits of r-adic representation of n and
the symbolic dynamics associated to it. That is, the topological dynamics
of the lift Ω of f ∈ AN with respect to the shift, where Ω is the closure of
{Tnf ∈ AN; n ∈ N}. I specially interested in the spectral properties of it.
For an example, Thue-Morse sequence f(n) is defined through the 2-adic
representation of n ∈ N in the way that if the 2-adic representation contains
an odd number of 1, then f(n) = 1, otherwise f(n) = 0. This sequence
has been studied well from various point of views. From the spectral point
of view, it is known that the symbolic dynamics associated to it has a par-
tially continuous and singular spectrum. Also, in the case of Rudin-Shapiro
sequence, where f(n) is defined to be 1 if the number of the occurrence of
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the block 11 in the 2-adic representation of n is odd, otherwise 0. Rudin-
Shapiro sequence is well known in Fourier analysis, and the spectrum of the
symbolic dynamics associated to it is known to be partially Lebesgue. In the
papers [10][11], we developed the spectral analysis of the symbolic dynamics
associated to the functions f(n) defined through the digits of n with respect
to movable bases. Specially we succeeded in representing the continuous
part of the spectrum as an infinite product converging in the weak sence
of measure. I discussed the mutual singularity of the spectrals using these
infinite products [25]. Also, I proved in [12] that the mutual singularity of
the spectrals implies the disjointness of dynamical systems. Furthermore,
in [17], we proved that the formal power series of

∑
n f(n)x

n ∈ (Z/rZ)[[x]]
is algebraic and the real value

∑
n f(n)(1/r)

n is transcendental for these
function f(n) of digits with some mild condition.

4. Maximal Pattern Complexity and Pattern Recognition

Let A be a finite set with #A ≥ 2 and Σ be an infinite set. Denote by Fk(Σ)
the family of subsets S of Σ with #S = k, and denote F(Σ) = ∪kFk(Σ).
Given S ∈ F(Σ) and a nonempty subset Ω of AΣ. We denote pΩ(S) = #Ω|S ,
which will be called the complexity of Ω at S. That is, pΩ(S) is the number
of distinct mappings ω|S , the restriction of ω ∈ Ω to S. The maximal
pattern complexity of Ω is the function p∗Ω(k) of k = 1, 2, · · · defined as
p∗Ω(k) = supS∈Fk(Σ) pΩ(S).

The maximal pattern complexity is introduced in the papers [39][40] in
2002. At first, it was defined for an infinite sequence ω ∈ AN as ，

p∗ω(k) = sup
{s1<···<sk}⊂N

#{ω(n+ s1) · · ·ω(n+ sk) ∈ Ak; n ∈ N}.

If Ω is the closure of {Tnω; n ∈ N}, then this p∗ω(k) coincides with the
above p∗Ω(k). It was proved in [39] that p∗ω(k) is bounded in k if and only
if ω is eventually periodic, and furthermore, these properties are equivalent
to that p∗ω(k) < 2k holds for some k = 1, 2, · · · . Hence, ω ∈ AN such that
p∗ω(k) = 2k for any k = 1, 2, · · · is an aperiodic sequence having the smallest
complexity among aperiodic sequences. We studied such infinite sequences
in detail. We also proved that if the dynamical system (Ω, T ) havs a partially
continuous spectrum under some invariant probability measure, then p∗Ω(k)
increases exponentially in k.

After 2006, I studied the maximal pattern complexity of a nonempty set
Ω ⊂ AΣ, sometimes with a general indice set Σ other than N, collaborating
with Chinese mathematicians [41][43][45][47][48]. I developed this problem
to the problem of pattern recognition in [55][59][60]. That is, considering
A as the set of digital information possessed by each point in the space Σ,
ω ∈ AΣ can be considered as a picture drawn on the space Σ. Hence, Ω is
considered as a set of pictures. To distinguish the pictures in Ω, take a set
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S ∈ Fk(Σ) of sampling points and use the information ω|S for ω ∈ Ω. The
maximum number of pictures in Ω distinguished by the sets of of sampling
points of size k is p∗Ω(k). To know this number together with S ∈ Fk(Σ)
which attains this maximum is an important problem from the point view
of pattern recognition. We obtained the answer to this problem for some
mathematical settings of Ω. On the other hand, about the limit as k tends
to the infinity of the quantity of infomation per one sampling point, it is
known [59] that
“there exists h(Ω) := limk→∞ log p∗Ω(k)/k, called entropy of Ω, and it takes
only restricted values either log 1, log 2, · · · , or log#A.”

In general, a mapping ψ : Ω×Σ → A with infinite subsets Ω, Σ and a finite
set A is called a duality mapping between Ω and Σ. For example, for an
infinite set Ω ⊂ AΣ in the above, a duality mapping ψ(ω, σ) ∈ A is defined
as ψ(ω, σ) = ω(σ). In this case, we can define the complexity of Σ under
this duality mapping as well as the complexity of Ω in a way that pΣ(T ) =
#{ψ(·, σ)|T ; σ ∈ Σ}, where T ∈ F(Ω) and ψ(·, σ) implies the mapping
ω 7→ ψ(ω, σ), and hence, ψ(·, σ) ∈ AΩ. In this case, p∗Ω(k) = p∗Σ(k)does not
hold in general, but about the above entropy, we have h(Ω) = h(Σ) [60]．

5. Uniform Sets and Super-stationary Sets

A nonempty closed set Ω ⊂ AΣ is called a uniform set if the complexity pΩ(S)
of Ω at S ∈ F(Σ) depends only on #S, and in this case, the complexity
pΩ(k) = pΩ(S) considered as the function of #S = k is called the uniform
complexity of Ω. It is an ineresting problem to ask what function of k
becomes a uniform complexity, which is discussed in [59] in detail.

To study this problem, an important fact is that any uniform complexity
can be realized by a super-stationary set. Here, a nonempty closed set
Θ ⊂ AN is called a super-stationary set if for any infinite subset N =
{N0 < N1 < · · · } of N, we have Θ[N ] = Θ, where for ω ∈ AN, we define
ω[N ] ∈ AN as ω[N ](n) = ω(Nn) (∀n ∈ N) and Θ[N ] = {ω[N ]; ω ∈ Θ}.
In fact, for any Ω ⊂ AΣ, there exists an injection ϕ : N → Σ such that
Ω◦ϕ ⊂ AN is a super-stationary set [56]. On the other hand, we know some
characterizations of super-stationary sets. One of them is that it is written
as P(Ξ) with a finite set Ξ ⊂ A+ of prohibited words satisfying the condition
(#) [56]. Here, A+ = ∪∞

k=1Ak and ξ ∈ Ak is said to be prohibited in ω ∈ AN

if ω(s1) · · ·ω(sk) = ξ does not hold for any {s1 < · · · < sk} ⊂ N, and P(Ξ)
is the set of ω ∈ AN such that any word in ξ ∈ Ξ is prohibited. Using
this characterization, we can obtain an inductive formula for the uniform
complexity pΘ(k) of a super-stationary set Θ.

It is proved in [61] that any nonempty set Ω ⊂ AN, not necessarily a
uniform set, contains super-stationary sets in some sense, which is called
the super-stationary factors of Ω. If (Ω, T ) is a symbolic dynamics and the
shift T is considered as the unit time lapse, then the super-stationary factors
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represent properties of the system which is independent of time scaling.
These properties are interesting since they are completely oposit to what
have been interested in so far, that is, properties which are sensitive to time
scaling like entropy.
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