Summary of my research activities

M. Katsuma

Nuclear reactions

Nuclear reaction theory Low-energy nuclear reaction relevant to astrophysics [1-4][9]

- Theoretical ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction rates are calculated.

Nuclear rainbow phenomena [6,7,17,22]

- Scrutinized the nuclear interaction potential between ¹⁶O-¹⁶O nuclei.
- Investigated molecular resonance for the ¹⁶O+¹⁶O system at low energies, in the consistent description with the nuclear rainbow.

Molecular resonances [10,18-20]

- Tried to describe the molecular resonance for the ¹⁶O+¹⁶O system, with microscopic coupled-channel method.

Spin polarization [8]

 Examined the possibility of the spin-orbit part of the microscopic folding model for ³He, and predicted the experimental results for spin-polarization.

<u>Nuclear data</u>

Reaction rates for astrophysics: NACRE (Brussels) [11-14]

- Worked for an update and extension project of nuclear reaction rate library (NACRE), was in charge of the development of a code package evaluating low-energy nuclear reactions relevant to nuclear astrophysics.
- Proposed the re-consideration of the contribution from the direct mechanism using the direct capture potential model and distorted wave Born approximation (DWBA).

Charged particle nuclear reactions: NRDF, EXFOR (Hokkaido Univ.) [5,15,16,21]

- Developed a web application of a calculator of elastic scattering cross section.
- Tried to establish an evaluation method for mass fragmentation of the high-energy proton induced reactions in the development of the accelerator driven nuclear reactors.
- Engaged in the assistance of the construction and design of nuclear reactors with accelerator-driven transmutation system for the next generation.