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Let γ : I → Rn be a regular curve in an n-dimensional Euclidian space Rn with the canonical

metric. The orientation preserving isometry group of Rn is the semi-direct product RnoSO(n).

Two regular curves γ, γ̃ : I → Rn of Rn are called (orientation preserving) SO(n)-congruent

to each other if there exists (a, g) ∈ Rn o SO(n) with γ̃ = g ◦ γ + a. It is clear that if two

regular curves are SO(n)-congruent to each other then their series of curvatures coincide, and

its converse is also true (under the general condition).

In the case n = 8, besides the geometry of curves on R8 under the action of SO(8) we can

consider another geometry of them. A Euclidean 8-space R8 has a special algebraic structures,

which is called the octonions O (or the Cayley algebra). The automorphism group of the

octonions is the exceptional simple Lie group G2 which is a Lie subgroup of SO(7). There

exists a faithful representation of G2 to EndR(ImO), where ImO denotes the set of purely

imaginary octonions. We consider the G2 geometry (ImO, ImOoG2), which is a subgeometry

of R7 o SO(7).

Two curves γ, γ̃ : I → ImO with the same parameterizations and orientation are called

G2-congruent to each other if there exists (a, h) ∈ ImOoG2 with

γ̃ = h ◦ γ + a.

The purpose of our study is the following. For a helix γ0 in ImO, we consider the G2-moduli

space of helices

{h ◦ γ0 : I → ImO | h ∈ SO(7)}/ G2∼ .

Let Vk(R
7) be a Stiefel manifold of orthonormal k-frames in R7. Let S6 and S5 be a 6-

dimensional unit sphere in ImO and 5-dimensional unit sphere in R6 = {u ∈ ImO | ⟨u, ε⟩ =
0}, respectively. It is well known that S6 ∼= G2/SU(3), S5 ∼= SU(3)/SU(2). We see that

V2(ImO) ∼= G2/SU(2).

Although, in general for any orthonormal 3-frames (e1, e2, e3) ∈ V3(R
7), e1 × e2 does not

coincide with e3. Therefore 3 manifolds V3(R
7), V4(R

7), V5(R
7) can not be represented as

orbits of G2, we can observe that the curves in 3, 4, 5-dimensional Euclidian spaces of ImO

are not G2-congruent, even if they are SO(7)-congruent. Therefore we need the double coset

decomposition of Vk(R
7) (k = 3, 4, 5) under the action of G2.

We can show that

Proposition 1

G2∼ \ V3(R
7) = G2∼ \ (SO(7)/SO(4)) ∼= [0, π]∗,

G2
∼ \ V4(R

7) = G2∼ \ (SO(7)/SO(3)) ∼= {0} ⊔
(
(0, π)× S3

)
⊔ {π},

G2
∼ \ V5(R

7) = G2∼ \ (SO(7)/SO(2)) ∼=
(
{0} × S2

)
⊔
(
(0, π)× S3 × S2

)
⊔
(
{π} × S2

)
By Proposition 1, we obtain the following. Let Rk be k-dimensional subspace of ImO and γ0

be a helix in Rk. and assume that the (k − 1)th curvature of γ0 is not 0. Let Γk
γ0 = {h ◦ γ0 :

I → Rk | h ∈ SO(7)}/ G2∼ be the G2-moduli space of helices in Rk. Then we have

Γ2
γ0

∼= {1},
Γ3
γ0

∼= {θ | θ ∈ [0, π]},
Γ4
γ0

∼= {(θ, α, σ(θ,α)(s)) | θ ∈ [0, π], α ∈ S3, σθ : I → S1}.


