Results of my research

Misa Ohashi

Let $\gamma: I \rightarrow \mathbf{R}^{n}$ be a regular curve in an n-dimensional Euclidian space \mathbf{R}^{n} with the canonical metric. The orientation preserving isometry group of \mathbf{R}^{n} is the semi-direct product $\mathbf{R}^{n} \rtimes S O(n)$. Two regular curves $\gamma, \tilde{\gamma}: I \rightarrow \mathbf{R}^{n}$ of \mathbf{R}^{n} are called (orientation preserving) $S O(n)$-congruent to each other if there exists $(a, g) \in \mathbf{R}^{n} \rtimes S O(n)$ with $\tilde{\gamma}=g \circ \gamma+a$. It is clear that if two regular curves are $S O(n)$-congruent to each other then their series of curvatures coincide, and its converse is also true (under the general condition).

In the case $n=8$, besides the geometry of curves on \mathbf{R}^{8} under the action of $S O(8)$ we can consider another geometry of them. A Euclidean 8 -space \mathbf{R}^{8} has a special algebraic structures, which is called the octonions \mathbf{O} (or the Cayley algebra). The automorphism group of the octonions is the exceptional simple Lie group G_{2} which is a Lie subgroup of $S O(7)$. There exists a faithful representation of G_{2} to $E n d_{\mathbf{R}}(\operatorname{Im} \mathbf{O})$, where $\operatorname{Im} \mathbf{O}$ denotes the set of purely imaginary octonions. We consider the G_{2} geometry $\left(\operatorname{Im} \mathbf{O}, \operatorname{Im} \mathbf{O} \rtimes G_{2}\right)$, which is a subgeometry of $\mathbf{R}^{7} \rtimes S O(7)$.

Two curves $\gamma, \tilde{\gamma}: I \rightarrow \operatorname{Im} \mathbf{O}$ with the same parameterizations and orientation are called G_{2}-congruent to each other if there exists $(a, h) \in \operatorname{Im} \mathbf{O} \rtimes G_{2}$ with

$$
\tilde{\gamma}=h \circ \gamma+a
$$

The purpose of our study is the following. For a helix γ_{0} in $\operatorname{Im} \mathbf{O}$, we consider the G_{2}-moduli space of helices

$$
\left\{h \circ \gamma_{0}: I \rightarrow \operatorname{Im} \mathbf{O} \mid h \in S O(7)\right\} / \sim_{G_{2}} .
$$

Let $V_{k}\left(\mathbf{R}^{7}\right)$ be a Stiefel manifold of orthonormal k-frames in \mathbf{R}^{7}. Let S^{6} and S^{5} be a 6dimensional unit sphere in $\operatorname{Im} \mathbf{O}$ and 5 -dimensional unit sphere in $\mathbf{R}^{6}=\{u \in \operatorname{Im} \mathbf{O} \mid\langle u, \varepsilon\rangle=$ $0\}$, respectively. It is well known that $S^{6} \cong G_{2} / S U(3), \quad S^{5} \cong S U(3) / S U(2)$. We see that $V_{2}(\operatorname{Im} \mathbf{O}) \cong G_{2} / S U(2)$.

Although, in general for any orthonormal 3 -frames $\left(e_{1}, e_{2}, e_{3}\right) \in V_{3}\left(\mathbf{R}^{7}\right), e_{1} \times e_{2}$ does not coincide with e_{3}. Therefore 3 manifolds $V_{3}\left(\mathbf{R}^{7}\right), V_{4}\left(\mathbf{R}^{7}\right), V_{5}\left(\mathbf{R}^{7}\right)$ can not be represented as orbits of G_{2}, we can observe that the curves in $3,4,5$-dimensional Euclidian spaces of $\operatorname{Im} \mathbf{O}$ are not G_{2}-congruent, even if they are $S O(7)$-congruent. Therefore we need the double coset decomposition of $V_{k}\left(\mathbf{R}^{7}\right)(k=3,4,5)$ under the action of G_{2}.

We can show that

Proposition 1

$$
\begin{aligned}
& \sim_{G_{2}} \backslash V_{3}\left(\boldsymbol{R}^{7}\right)=\sim_{G_{2}} \backslash(S O(7) / S O(4)) \cong[0, \pi]^{*}, \\
& \sim_{G_{2}} \backslash V_{4}\left(\boldsymbol{R}^{7}\right)=\sim_{G_{2}} \backslash(S O(7) / S O(3)) \cong\{0\} \sqcup\left((0, \pi) \times S^{3}\right) \sqcup\{\pi\}, \\
& \sim_{G_{2}} \backslash V_{5}\left(\boldsymbol{R}^{7}\right)=\sim_{G_{2}} \backslash(S O(7) / S O(2)) \cong\left(\{0\} \times S^{2}\right) \sqcup\left((0, \pi) \times S^{3} \times S^{2}\right) \sqcup\left(\{\pi\} \times S^{2}\right)
\end{aligned}
$$

By Proposition 1, we obtain the following. Let \mathbf{R}^{k} be k-dimensional subspace of $\operatorname{Im} \mathbf{O}$ and γ_{0} be a helix in \mathbf{R}^{k}. and assume that the $(k-1)$ th curvature of γ_{0} is not 0 . Let $\Gamma_{\gamma_{0}}^{k}=\left\{h \circ \gamma_{0}\right.$: $\left.I \rightarrow \mathbf{R}^{k} \mid h \in S O(7)\right\} / \sim_{G_{2}}$ be the G_{2}-moduli space of helices in \mathbf{R}^{k}. Then we have

$$
\begin{aligned}
& \Gamma_{\gamma_{0}}^{2} \cong\{1\} \\
& \Gamma_{\gamma_{0}}^{3} \cong\{\theta \mid \theta \in[0, \pi]\} \\
& \Gamma_{\gamma_{0}}^{4} \cong\left\{\left(\theta, \alpha, \sigma_{(\theta, \alpha)}(s)\right) \mid \theta \in[0, \pi], \alpha \in S^{3}, \sigma_{\theta}: I \rightarrow S^{1}\right\}
\end{aligned}
$$

