Results of my research

Misa Ohashi

Let $\gamma: I \to \mathbf{R}^n$ be a regular curve in an *n*-dimensional Euclidian space \mathbf{R}^n with the canonical metric. The orientation preserving isometry group of \mathbf{R}^n is the semi-direct product $\mathbf{R}^n \rtimes SO(n)$. Two regular curves γ , $\tilde{\gamma}: I \to \mathbf{R}^n$ of \mathbf{R}^n are called (orientation preserving) SO(n)-congruent to each other if there exists $(a,g) \in \mathbf{R}^n \rtimes SO(n)$ with $\tilde{\gamma} = g \circ \gamma + a$. It is clear that if two regular curves are SO(n)-congruent to each other then their series of curvatures coincide, and its converse is also true (under the general condition).

In the case n = 8, besides the geometry of curves on \mathbb{R}^8 under the action of SO(8) we can consider another geometry of them. A Euclidean 8-space \mathbb{R}^8 has a special algebraic structures, which is called the octonions \mathbf{O} (or the Cayley algebra). The automorphism group of the octonions is the exceptional simple Lie group G_2 which is a Lie subgroup of SO(7). There exists a faithful representation of G_2 to $End_{\mathbb{R}}(\operatorname{Im} \mathbf{O})$, where $\operatorname{Im} \mathbf{O}$ denotes the set of purely imaginary octonions. We consider the G_2 geometry ($\operatorname{Im} \mathbf{O}$, $\operatorname{Im} \mathbf{O} \rtimes G_2$), which is a subgeometry of $\mathbb{R}^7 \rtimes SO(7)$.

Two curves γ , $\tilde{\gamma} : I \to \text{Im } \mathbf{O}$ with the same parameterizations and orientation are called G_2 -congruent to each other if there exists $(a, h) \in \text{Im } \mathbf{O} \rtimes G_2$ with

$$\tilde{\gamma} = h \circ \gamma + a.$$

The purpose of our study is the following. For a helix γ_0 in Im **O**, we consider the G_2 -moduli space of helices

$${h \circ \gamma_0 : I \to \operatorname{Im} \mathbf{O} \mid h \in SO(7)}/{\sim_{G_2}}.$$

Let $V_k(\mathbf{R}^7)$ be a Stiefel manifold of orthonormal k-frames in \mathbf{R}^7 . Let S^6 and S^5 be a 6dimensional unit sphere in Im **O** and 5-dimensional unit sphere in $\mathbf{R}^6 = \{u \in \text{Im } \mathbf{O} \mid \langle u, \varepsilon \rangle = 0\}$, respectively. It is well known that $S^6 \cong G_2/SU(3)$, $S^5 \cong SU(3)/SU(2)$. We see that $V_2(\text{Im } \mathbf{O}) \cong G_2/SU(2)$.

Although, in general for any orthonormal 3-frames $(e_1, e_2, e_3) \in V_3(\mathbf{R}^7)$, $e_1 \times e_2$ does not coincide with e_3 . Therefore 3 manifolds $V_3(\mathbf{R}^7)$, $V_4(\mathbf{R}^7)$, $V_5(\mathbf{R}^7)$ can not be represented as orbits of G_2 , we can observe that the curves in 3, 4, 5-dimensional Euclidian spaces of Im **O** are not G_2 -congruent, even if they are SO(7)-congruent. Therefore we need the double coset decomposition of $V_k(\mathbf{R}^7)$ (k = 3, 4, 5) under the action of G_2 .

We can show that

Proposition 1

$$\sim_{G_2} \setminus V_3(\mathbf{R}^7) = \sim_{G_2} \setminus (SO(7)/SO(4)) \cong [0, \ \pi]^*, \sim_{G_2} \setminus V_4(\mathbf{R}^7) = \sim_{G_2} \setminus (SO(7)/SO(3)) \cong \{0\} \sqcup ((0, \ \pi) \times S^3) \sqcup \{\pi\}, \sim_{G_2} \setminus V_5(\mathbf{R}^7) = \sim_{G_2} \setminus (SO(7)/SO(2)) \cong (\{0\} \times S^2) \sqcup ((0, \ \pi) \times S^3 \times S^2) \sqcup (\{\pi\} \times S^2)$$

By Proposition 1, we obtain the following. Let \mathbf{R}^k be k-dimensional subspace of Im **O** and γ_0 be a helix in \mathbf{R}^k . and assume that the (k-1)th curvature of γ_0 is not 0. Let $\Gamma_{\gamma_0}^k = \{h \circ \gamma_0 : I \to \mathbf{R}^k \mid h \in SO(7)\}/\sim_{G_2}$ be the G_2 -moduli space of helices in \mathbf{R}^k . Then we have

$$\begin{split} &\Gamma^2_{\gamma_0} \cong \{1\}, \\ &\Gamma^3_{\gamma_0} \cong \{\theta \mid \theta \in [0, \ \pi]\}, \\ &\Gamma^4_{\gamma_0} \cong \{(\theta, \ \alpha, \ \sigma_{(\theta, \alpha)}(s)) \mid \theta \in [0, \ \pi], \ \alpha \in S^3, \ \sigma_{\theta} : I \to S^1\}. \end{split}$$