results of research

Shin'ya Okazaki

A knot is the image of an embedding of circle in the 3-sphere S^3 , denoted by K. A link is the image of an embedding of circles $S^1 \cup S^1 \cup \cdots \cup S^1$ in the 3-sphere S^3 . Let $L = K_1 \cup K_2 \cup \cdots \cup K_n$ be an *n*-component link in S^3 , and N(L) a tubular neighborhood of L, and E(L) the exterior of L. Let $\chi(L,0)$ be the 3-manifold obtained from E(L) by attaching *n* solid tori V_1, V_2, \ldots, V_n to $\partial E(L)$ such that the meridian of ∂V_i is mapped to the longitude of K_i $(i = 1, 2, \ldots, n)$. We call $\chi(L, 0)$ the 3-manifold obtained by the 0-surgery of S^3 along L. It is well known that every closed connected orientable 3-manifold is obtained by the 0-surgery of S^3 along a link.

Let M be a closed connected orientable 3-manifold. For any M, there exist handlebodies H_1 and H_2 of same genus and a homeomorphism f: $\partial H_1 \rightarrow \partial H_2$ such that $M = H_1 \cup_f H_2$. We call the triple $(H_1, H_2; f)$ a *Heegaard splitting* of M and we call $f(\partial H_1) = \partial H_2$ the *Heegaard surface*. The *Heegaard genus* of M is the minimal genus of Heegaard surfaces, denoted by $g_{\rm H}(M)$.

Let $\operatorname{bridge}(L)$ (resp. $\operatorname{braid}(L)$) be the bridge index (resp. the braid index) (cf. [5]). The *bridge genus* $g_{\operatorname{bridge}}(M)$ (resp. the *braid genus* $g_{\operatorname{braid}}(M)$) of Mis the minimal number of $\operatorname{bridge}(L)$ (resp. $\operatorname{braid}(L)$) for any L such that Mis obtained by the 0-surgery of S^3 along L. The bridge genus and the braid genus are introduced by A.Kawauchi [6].

I show the following results and my paper On Heegaard genus, bridge genus and braid genus for a 3-manifold is published in Journal of Knot Theory and Its Ramifications.

$$g_{\rm H}(M) \le g_{\rm bridge}(M) \le g_{\rm braid}(M).$$

There exist 3-manifolds which satisfy each one of the inequalities.

$$g_{\rm H}(M) = g_{\rm bridge}(M) = g_{\rm braid}(M),\tag{1}$$

$$g_{\rm H}(M) < g_{\rm bridge}(M) = g_{\rm braid}(M),$$
 (2)

$$g_{\rm H}(M) = g_{\rm bridge}(M) < g_{\rm braid}(M), \tag{3}$$

$$g_{\rm H}(M) < g_{\rm bridge}(M) < g_{\rm braid}(M). \tag{4}$$

If there exist complex numbers a, b and c which satisfy $ag_{\rm H}(M) + bg_{\rm bridge}(M) + cg_{\rm braid}(M) = 0$ for all 3-manifolds M, then a = b = c = 0. Thus, the invariants $g_{\rm H}, g_{\rm bridge}$ and $g_{\rm braid}$ are linearly independent.