Plan for study

email address : y-sato (at) sci.osaka-cu.ac.jp

I would like to sutdy various perturbation problems for the nonlinear elliptic partial differential equations, for example, nonlinear Schrödinger equations and nonlinear Schrödinger systems. In what follows, I give some topics of my study.

1. The existence and non-existence of positive solutions of the nonlinear Schrödinger equations for one dimensional case

We consider the following nonlinear Schrödinger equations for one dimentional case

$$-u'' + V(x)u = f(u) \quad \text{in } \mathbf{R}, \quad u(x) \to 0 \text{ as } |x| \to \infty$$
(*)_V

Setting $V^{\lambda}(x) = \lambda U(\lambda x) + 1$ for a positive function U(x) > 0, $V^{\lambda}(x)$ converges to a dirac function $a\delta$ $(a = ||U||_{L^{1}(\mathbf{R})})$ in distribution sense. Thus, letting u_{λ} be a least energy solution for $(*)_{V^{\lambda}}$, u_{λ} approaches in $C^{1}_{loc}(\mathbf{R} \setminus \{0\})$ to the non-torivial solutions of the equation

$$-u'' + a\delta u = |u|^{p-1}u \quad \text{in } \mathbf{R}, \quad u(x) \to 0 \text{ as } |x| \to \infty.$$
(3)

Moreover we can observe the following facts:

(i) If $|a| \ge 2$, then (3) does not have non-torivial solutions.

(ii) If |a| < 2, then (3) has an unique positive solution.

From the these facts, noting $a = ||U||_{L^1(\mathbf{R})} = ||V^{\lambda}||_{L^1(\mathbf{R})}$, we expect the followings:

(iii) When $||U||_{L^1(\mathbf{R})} \ge 2$, $(*)_{V^{\lambda}}$ does not have non-torivial solutions for large λ .

(iv) When $||U||_{L^1(\mathbf{R})} < 2$, $(*)_{V^{\lambda}}$ has at least a positive solution for large λ .

The existence of positive solutions of $(*)_V$ depends on the amount of integration of V(x). In my plan, I would like to show (iii)–(iv) and I try to state the conditions for the existence and non-existence of positive solutions of $(*)_V$ by using the amount of integration of V(x).

2. Unsolved problems in [3]

In [3], we construct solutions joining with a least energy solution of $(L)_{\Omega_1}$ and a solution of $(L)_{\Omega_2}$ which has large energy. We would like to construct solutions joining with large energy solutions of $(L)_{\Omega_1}$ and $(L)_{\Omega_2}$. Where, large energy solutions correspond to critical values which defind by using symmetric mountain pass theory.

One of the difficities of this problem is a lack of the symmetries of the functional corresponding to $(*)_{\lambda}$. The functional corresponding to limiting equation has $\mathbf{Z}_2 \times \mathbf{Z}_2$ symmetry (i.e $I(u, v) = I(\pm u, \pm v)$ for all u, v). But the original problem $(*)_{\lambda}$ has only the \mathbf{Z}_2 symmetry (i.e I(u, v) = I(-u, -v) for all u, v). To overcome this difficulty, we consider the following nonlinear elliptic systems which has similar structure.

3. Multiplicities of solutions of the nonlinear Schrödinger systems

I consider the following nonlinear Schrödinger systems:

$$-\Delta u + u = u^3 + \epsilon F_u(u, v) \quad \text{in } \mathbf{R}^3, -\Delta v + v = v^3 + \epsilon F_v(u, v) \quad \text{in } \mathbf{R}^3.$$
(4)_{\epsilon}

Here typical example is $F(u, v) = u^2 v^2$ and $\epsilon \in \mathbf{R}$ is a parameter. When ϵ goes to 0, the solutions of $(4)_{\epsilon}$ approaches to a solutions of

$$-\Delta u + u = u^3 \quad \text{in } \mathbf{R}^3, \tag{5}$$

$$-\Delta v + v = v^3 \quad \text{in } \mathbf{R}^3. \tag{6}$$

By a standard symmetric mountain pass theory, (5) and (6) has infinite critical values, respectively. In my plan, I would like to show construct solutions correspond to pair of solutions for (5) and (6). Now regarding (5) and (6) as systems, corresponding functional has a $\mathbf{Z}_2 \times \mathbf{Z}_2$ symmetry. Thus this situations is similar to [3].