Results of my research

email address : y-sato (at) sci.osaka-cu.ac.jp

I have studied the following nonlinear Schrödinger equations:

$$-\epsilon^2 \Delta u + V(x)u = f(u) \quad \text{in } \mathbf{R}^N \tag{(*)}_{\epsilon}$$

In particular, I mainly studied perturbation problem for $(*)_{\epsilon}$, that is, I resarched the multiplicites of solutions of $(*)_{\epsilon}$ and shapes of the those solutions when $\epsilon \to 0$. It is well-known that $(*)_{\epsilon}$ has positive solutions which has local muximum points around one (or some) critical points of non-negative function V(x) and closed to 0 on the other points. In what follows, we call solution which has only one (more than 2) maximum points single-peak (multi-peak) solutions, respectively.

These peak solutions have the following properties:

1. The locations of maximum point of peak solution must close to critical point of V(x).

2. The multi-peak solutions has similar shapes to single-peak solutions around each critical points of V(x).

Thus it is a fundamental question that whether we can construct a solution which has peaks around prescribed one or some critical points of V(x). In other ward, it is that whether we can construct a solution joining prescribed single-peak solutions.

One of the feature of our researches is that we dealt with a solution joining different type of singlepeak solutions each other. In what follows, we state about my papers ([1] \sim [5]) briefly.

• Research in [1]. Byeon-Wang showed that the shapes of single-peak solutions are drastically different whether a local minimum value of V(x) is positive or 0. In fact, for the single-peak solutions which has maximum point around x_0 (x_0 is a local minimum point of V(x) with $V(x_0) = 0$.), they observed that the shapes of such solutions depend on the way of the degeneration of V(x) at $x = x_0$.

In [1], we assumed that $f(u) = |u|^{p-1}u$ and constructed multi-peak solutions which has peaks around descrived local minimum points of V(x).

• Research in [2]. Whang observed that, when V(x) > 0, $(*)_{\epsilon}$ does not have positive multi-peak solutions whose peaks constructed around one same local minimum point of V(x). On the other hand, Alves–Soares showed that, when V(x) > 0, $(*)_{\epsilon}$ has two-peak solutions whose one peak is positive and another peak is negative and both peaks constructed around one same local minimum point of V(x). In [2], we constructed sign-changing two-peak solutions around x_0 where x_0 is a local minimum point of V(x) with $V(x_0) = 0$. Moreover, our proof covers gap of arguments in papar of Alves–Soares.

• Research in [3]. This is a joint work with Professor K. Tanaka. In this papar, we consider the following type of nonlinear Schrödinger equations:

$$-\Delta u + (\lambda^2 a(x) + 1)u = |u|^{p-1}u \quad \text{in } \mathbf{R}^N, \quad u \in H^1(\mathbf{R}^N).$$
(*)_{\lambda}

In [3], we assume that the bottom of $V(x) = \lambda^2 a(x) + 1$ consists two connected components, that is, $\Omega_1 \cup \Omega_2 = \{x \in \mathbf{R}^N; a(x) = 0\}$ ($\Omega_1 \cap \Omega_2 = \emptyset$). In our situation, letting u_λ be a family of solutions whose H^1 -norm bounded, after extracting a subsequence, u_{λ_j} approaches to 0 outside of $\Omega_1 \cup \Omega_2$ and converges to a solution of Dirichelt problems $(L)_{\Omega_i} - \Delta u + u = |u|^{p-1}u$ in Ω_i (i = 1, 2). On the other hand, it is well-known that $(L)_{\Omega_i}$ has infinitly many solutions from the symmetric mountain pass theory.

Thus, in [3], we consider the problems that whether we can construct multi-peak solutions of $(*)_{\lambda}$ joining a prescribed pair of solutions of $(L)_{\Omega_i}$ (i = 1, 2). And we got partial answer of this question. That is, we showed that there exists solutions of $(*)_{\lambda}$ joining a least energy solution of $(L)_{\Omega_1}$ and a solution of $(L)_{\Omega_2}$ corresponding to critical values defiend by a symmetric mountain pass theory. Moreover, the number of such solutions goes to infinity as $\lambda \to \infty$.