Abstract of results

1. Study of a birational relation of members in families of K3 surfaces.

Define the Picard lattice $\operatorname{Pic}(\mathcal{F}_a)$ of the family \mathcal{F}_a of weighted K3 surfaces in a projective space $\mathbf{P}(a)$ to be the Picard lattice of generic members in \mathcal{F}_a .

Theorem 1 [Kobayashi-Mase] If the lattices $\operatorname{Pic}(\mathcal{F}_a)$ and $\operatorname{Pic}(\mathcal{F}_b)$ are isometric, then, there exists a common subfamily \mathcal{F} of $\mathcal{F}_a, \mathcal{F}_b$ that induces a birational correspondence between the general members in the family \mathcal{F}_a and those in \mathcal{F}_b . The correspondence is given by an explicit map of monomials in the projective spaces $\mathbf{P}(a)$ and $\mathbf{P}(b)$. The Picard lattice $\operatorname{Pic}(\mathcal{F})$ of \mathcal{F} is isometric to the Picard lattices $\operatorname{Pic}(\mathcal{F}_a), \operatorname{Pic}(\mathcal{F}_b)$.

By Theorem 1, it is induced that there are essentially 75 families of weighted K3 surfaces in the sense that there are birational correspondences of general members among families.

Theorem 2 [Mase] The Picard lattices of families of K3 surfaces in smooth toric Fano 3-folds are mutually distinct.

By Theorem 2, it is induced that there does not exist a birational correspondence among the families of K3 surfaces in smooth toric Fano 3-folds.

Let l and C be a line and a smooth plane cubic on the same plane in \mathbb{P}^3 ; X' (resp. X) be a smooth Fano 3-fold obtained by a blow-up of \mathbb{P}^3 along l (resp. C); and \mathcal{F}' (resp. \mathcal{F}) be the family of K3 surfaces in X' (resp. X).

Theorem 3 [Mase] There exists an explicit birational correspondence between the general members in \mathcal{F}' and those in \mathcal{F} induced by a projective transformation.

It is expected by Theorem 3 that the Gromov-Witten invariant of K3 surfaces in the smooth non-toric Fano 3-fold X can be computed, by using the fact that there are protocols to compute the Gromov-Witten invariant of toric Calabi-Yau manifolds.

2. Study of automorphisms of K3 surfaces.

Let X be a smooth toric Fano 3-fold with the polar dual polytope Δ and S be a K3 surface in X defined by a polynomial $m_0 + m_1 + \ldots + m_r$, where m_0 is a monomial corresponding to the only lattice point in the interior of Δ , and m_i 's $(i = 1, \ldots, r)$ to the vertices of Δ .

Theorem 4 [Mase-Taki] Denote by $\operatorname{Aut}_{T}(S)$ the group of automorphisms of S that are restricted from automorphisms of X. The group $\operatorname{Aut}_{T}(S)$ is determined.

Theorem 4 proposes a way of computing a (sub)group of automorphisms of toric hypersurfaces by observing the polytope.