RESEARCH TO DATE

KAZUKI MORIMOTO

0.1. Tensor product L-functions for quaternion unitary groups and GL₂. In [5], I gave an integral representation for tensor product L-functions for GL(2) and a quaternion unitary group G_D . Here we note that $G_D \simeq \text{GSp}(4)$ when $D = M_2(\mathbb{Q})$. Then using this integral representation, I proved the following theorem.

Theorem 1 (Morimoto [5]). Suppose that $D \otimes_{\mathbb{Q}} \mathbb{R} \simeq M_2(\mathbb{R})$. Let (Π, V_{Π}) be an irreducible unitary cuspidal automorphic representation of $G_D(\mathbb{A}_{\mathbb{Q}})$ such that Π_{∞} is the discrete series representation with the Harish-Chandra parameter $(\ell-1, \ell-2)$ for $\ell > 6$. Let (σ, V_{σ}) be an irreducible cuspidal automorphic representation of $\operatorname{GL}(2, \mathbb{A}_{\mathbb{Q}})$ such that $\sigma_{\infty} \otimes |\cdot|^{-\frac{u}{2}}$ is the holomorphic discrete series of weight ℓ . Let $G(\nu_0)$ be the Gauss sum for $(\omega_{\sigma} \cdot \omega_{\Pi})^{-1}/|\omega_{\sigma} \cdot \omega_{\Pi}|^{-1}$. For $\Phi \in V_{\Pi}$ and $\Psi \in V_{\sigma}$ which are arithmetic over $\overline{\mathbb{Q}}$ in the sense of Harris [4] and each integer m such that $2 + \frac{u}{2} < m \leq \frac{\ell+u}{2} - 1$, we define

(0.1)
$$A(m,\Pi,\sigma,\Phi,\Psi) := \frac{L(m,\Pi\times\tilde{\sigma})}{\left(\sqrt{-1}\right)^{\ell} \pi^{4m-2u} G\left(\nu_0\right)^2 \langle \Psi,\Psi\rangle \langle \Phi,\Phi\rangle}$$

where Π and $\tilde{\sigma}$ denote the contragredients of Π and σ respectively.

Then $A(m,\Pi,\sigma,\Phi,\Psi) \in \overline{\mathbb{Q}}$ and $A(m,\Pi,\sigma,\Phi,\Psi)^{\tau} = A(m,\Pi^{\tau},\sigma^{\tau},\Phi^{\tau},\Psi^{\tau})$ for any $\tau \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

As a corollary of this theorem, I proved a relation between Petersson inner products on GSp_4 and G_D assuming the existence of Jacquet-Langlands correspondence of these groups, which is expected to be proved as a consequence of Arthur's book project.

0.2. Tensor product *L*-functions for SO(*V*) and GL₂. In a joint work with Furusawa [3], we considered special values of *L*-functions for SO(*V*) × GL₂ where *V* is an orthogonal space over \mathbb{Q} which is anisotropic over \mathbb{R} .

Theorem 2 (Furusawa-Morimoto [3]). Let σ be an irreducible cuspidal automorphic representation of $SO(V, \mathbb{A}_{\mathbb{Q}})$ such that the archimedean component σ_{∞} is the trivial representation. Let f be a holomorphic newform of weight k, and τ the irreducible cuspidal automorphic representation of $GL_2(\mathbb{A}_{\mathbb{Q}})$ associated to f. Suppose that k > 2n where $n = \dim_{\mathbb{Q}} V$. Then there exists a finite set S of places of containing the real place such that the partial L-function $L^S(s, \sigma \otimes \tau)$ satisfies

$$\frac{L^{S}(\frac{k-n+1}{2},\sigma\otimes\tau)}{\pi^{[\frac{n}{2}]\cdot(2k-n)}\langle f,f\rangle^{[\frac{n}{2}]}}\in\overline{\mathbb{Q}}.$$

When $\dim_{\mathbb{Q}} V = 4$, by the accidental isomorphism, any irreducible automorphic representation of $SO(V, \mathbb{A}_{\mathbb{Q}})$ may be regarded of the form $\sigma_1 \otimes \sigma_2$ where σ_i is an irreducible automorphic representation of $D^{\times}(\mathbb{A}_{\mathbb{Q}})$ such that $\omega_{\sigma_1}\omega_{\sigma_2} = 1$, where D is a definite quaternion algebra. Thus the above theorem yields a result on algebraicity of special values of Rankin triple *L*-functions for GL₂. This theorem falls within the "unbalanced" case, i.e. $k_1 > k_2 + k_3$, and conforms with the explication by Blasius [1] of Deligne's conjecture.

0.3. Shalika periods on GU(2,2). In a joint work with Furusawa [2], we gave an integral representation of twisted exterior square L-functions for irreducible cuspidal generic automorphic representation π of GU(2,2) and proved the following theorem.

Theorem 3 (Furusawa-Morimoto [2]). For an irreducible cuspidal unitary automorphic representation π of $\mathrm{GU}(2,2)(\mathbb{A}_F)$ whose central character ω_{π} satisfies $\omega_{\pi}|_{\mathbb{A}_F^{\times}} = \xi^{-2}$, the following two conditions are equivalent:

- (1) The Shalika period with respect to ξ does not vanish on the space of π .
- (2) π is globally generic and the partial twisted exterior square L-function $L^{S}(s, \pi, \wedge_{t}^{2} \otimes \xi)$ has a simple pole at s = 1.

References

- D. Blasius: Critical values of certain tensor product L-functions. Appendix to T. Orloff, Special values and mixed weight triple products. Invent. Math. 90, 181–188 (1987).
- [2] M. Furusawa and K. Morimoto: Shalika periods on GU(2,2). Accepted for publication in Proc. Amer. Math. Soc.
- [3] M. Furusawa and K. Morimoto: On special values of certain L-functions. Submitted.
- [4] M. Harris: Arithmetic vector bundles and automorphic forms on Shimura varieties. I. Invent. Math. 82, 151-189 (1985).
- [5] K. Morimoto: On L-functions for quaternion unitary groups of degree 2 and GL(2) (with an Appendix by M. Furusawa and A. Ichino). Accepted for publication in *Int. Math. Res. Not. IMRN.*