Plan of Research

Shin'ya Okazaki

I calculate the bridge number and the braid number of a lens space $L(p, q)$. Let $\left[a_{1}, a_{2}, \cdots, a_{n}\right]$ be a continued fraction of $\frac{p}{q}$. I have the following results. If $n=1$ then

$$
g_{\text {bridge }}(L(p, q))=g_{\text {braid }}(L(p, q))=3 .
$$

If $n=2$ then

$$
g_{\text {bridge }}(L(p, q))=g_{\text {braid }}(L(p, q))=4 .
$$

It seem to $g_{\text {bridge }}(L(p, q))=g_{\text {braid }}(L(p, q))=n+2$.
Next, we interest in the case of $n=3$. I want to calculate $g_{\text {bridge }}(L(8,3))$ and $g_{\text {braid }}(L(8,3))$. I hope for $g_{\text {bridge }}(L(p, q))=g_{\text {braid }}(L(p, q))=5$. We have $4 \leq g_{\text {bridge }}(L(8,3))=g_{\text {braid }}(L(8,3)) \leq 5$. I want to prove $g_{\text {bridge }}(L(p, q))=$ $g_{\text {braid }}(L(p, q))=5$ by using the Rohlin invariant.

It is well known that every closed connected orientable 3-manifold M is obtained by the 0 -surgery of S^{3} along a link. We can show that every M is obtained by the 0 -surgery of S^{3} along a link L such that each component of link is unknot. The minimal of component numbers of L is a new invariant of M. I will consider this invariant.

I interest in the handlebody knot theory. A simple closed curve on the boundary of a handlebody which embedded in S^{3} is a knot. In general, there exist infinite many simple closed curve on the boundary of a handlebody. By picking up the essential curve in these curves and using knot invariants, I want to classify handlebody knots.

