A knot is the image of an embedding of circle in the 3-sphere S^3 , denoted by K. A link is the image of an embedding of circles $S^1 \cup S^1 \cup \cdots \cup S^1$ in the 3-sphere S^3 . Let $L = K_1 \cup K_2 \cup \cdots \cup K_n$ be an n-component link in S^3 , and N(L) a tubular neighborhood of L, and E(L) the exterior of L. Let $\chi(L,0)$ be the 3-manifold obtained from E(L) by attaching n solid tori V_1, V_2, \ldots, V_n to $\partial E(L)$ such that the meridian of ∂V_i is mapped to the longitude of K_i ($i = 1, 2, \ldots, n$). We call $\chi(L,0)$ the 3-manifold obtained by the 0-surgery of S^3 along L. It is well known that every closed connected orientable 3-manifold is obtained by the 0-surgery of S^3 along a link.

Let M be a closed connected orientable 3-manifold. For any M, there exist handlebodies H_1 and H_2 of same genus and a homeomorphism $f: \partial H_1 \to \partial H_2$ such that $M = H_1 \cup_f H_2$. We call the triple $(H_1, H_2; f)$ a Heegaard splitting of M and we call $f(\partial H_1) = \partial H_2$ the Heegaard surface. The Heegaard genus of M is the minimal genus of Heegaard surfaces, denoted by $g_H(M)$.

Let bridge(L) (resp. braid(L)) be the bridge index (resp. the braid index) (cf. [5]). The bridge genus $g_{bridge}(M)$ (resp. the braid genus $g_{braid}(M)$) of M is the minimal number of bridge(L) (resp. braid(L)) for any L such that M is obtained by the 0-surgery of S^3 along L. The bridge genus and the braid genus are introduced by A.Kawauchi [6].

I show the following results and my paper On Heegaard genus, bridge genus and braid genus for a 3-manifold is published in Journal of Knot Theory and Its Ramifications.

$$g_{\mathrm{H}}(M) \leq g_{\mathrm{bridge}}(M) \leq g_{\mathrm{braid}}(M).$$

Next, I calculate the bridge genus and the braid genus for lens space L(p,q) as follows. For every even integer n,

$$g_{\mathrm{bridge}}(L(n,1)) = g_{\mathrm{braid}}(L(n,1)) = 3.$$

For every odd integers n, m,

$$g_{\mathrm{bridge}}(L(nm-1,m)) = g_{\mathrm{braid}}(L(nm-1,m)) = 4.$$

For lens space L(8,3),

$$4 \le g_{\text{bridge}}(L(8,3)) = g_{\text{braid}}(L(8,3)) \le 5.$$