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The aim of confoliation theory is to unify topology of foliation and contact

topology in dimension three. However, it has many difficulties even on its main

subject called Thurston-Bennequin inequality. In contact topology the inequality

characterizes tightness, namely, the absence of Lutz tubes. If a tight structure

deforms to a foliation F , the inequality also holds for F . However the converse does

not hold. On the other hand if a foliation does not contain a Reeb component, it

satisfies the inequality. However the converse does not hold. (Indeed I constructed

a foliation with Reeb component by deforming a given tight structure.)

Perhaps the difficulties are fatal in confoliation theory which is essentially a

phenomenology. Similar difficulties appear as the difference between tightness and

symplectic fillability. Although a weak fillable contact 3-manifold is tight, there

are many tight contact manifold (e.g. one containing non-separating tori) which

is not weakly fillable. On the other hand, Wand proved that a contact surgery by

attaching a Weinstein 2-handle to the sub-level set of the symplectization preserves

not only weak symplectic fillability but also tightness !

I would like to investigate the result of Wand and generalize it to high dimension.

To this aim I introduced the following generalization of symplectic structure. We

say that a 1-form α on an oriented (2n+1)-manifold is a twisted contact structure

with respect to a 2-form τ if α ∧ (dα + τ)n > 0. If α is also a twisted contact

structure with respect to ετ for any ε ∈ (0, 1], we call it an ετ -confoliation. Then

we have α∧ (dα)n ≥ 0（Altschuler-Wu confoliation）. Since a codimension-1 leaf-

wise almost symplectic foliation is an example of ετ -confoliation, it is natural to

deform a contact structure to a Poisson structure through ετ -confoliations. Indeed

I obtained Mitsumatsu’s Poisson structure from the standard contact structure on

S5 via ετ -confoliations. We generalize symplectic structure by a similar twisting

formulation. Then the natural filling condition of confoliation becomes a general-

ization of recently established weak symplectic fillability in high dimension. Using

it I am trying to fill the gap between fillability and tightness.

I expect that my generalization of symplectic structure becomes the true even

dimensional variation of contact structure and foliation. Even if it fails, I want to

contribute another new object to topology from the above point of view.


