Study proposal

Problem 1 (1) In [1], we have stated a conjecture : For each of the following transpose-dual pairs $(Z_{13}, J_{3,0})$, $(Z_{17}, Q_{2,0})$, (U_{16}, U_{16}) , $(W_{17}, S_{1,0})$, (W_{18}, W_{18}) , $(S_{17}, X_{2,0})$, there DOES not exist compactifications F, F' of defining polynomial and reflexive polytopes Δ and Δ' such that

 $(**) \qquad \Delta^* \simeq \Delta', \ \Delta_F \subset \Delta, \ \Delta_{F'} \subset \Delta', \quad and \quad \operatorname{rk} L_0(\Delta) = 0$

hold. Moreover, $\rho(\Delta) + \rho(\Delta') = 20$ NEVER happens.

The first problem is to determine wether or not this conjecture is true. Also, we would like to seek another duality of lattices : for instance, Rohsiepe's duality [2].

(2) As the second part of the first problem, we determine whither or not the following conjecture is true: For each of the dual pairs $(Z_{1,0}, Z_{1,0})$, $(U_{1,0}, U_{1,0})$, $(Q_{17}, Z_{2,0})$, $(W_{1,0}, W_{1,0})$, the pair of families $(\mathcal{F}_{\Delta}, \mathcal{F}'_{\Delta'})$ obtained in the paper [1] satisfies the relation

$$(\sharp) \qquad \operatorname{Pic}(\Delta)^{\perp}_{\Lambda_{K3}} \simeq U \oplus \operatorname{Pic}(\Delta').$$

Problem 2 As a generalisation of a construction of a K3 surface as a (minimal model of) the double covering of the projective plane \mathbb{P}^2 branching along a smooth sextic curve B, a K3 surface is constructed as a (minimal model of) the double covering of the weighted projective planes \mathbb{P} of weights (1, 1, 4), (1, 3, 8), and (1, 4, 5).

Our second problem is to characterize weighted double sextic K3 surfaces in terms with Weierstrass semi-groups of points of smooth curves on the K3surface. Conversely, determine what sort of Weierstrass points, branch curves of weighted double sextic K3 surfaces should have.

Problem 3 Study the moduli space of maps from a *K*3 surface to a Lie group.

As is well known, maps from a circle to a Lie group form a loop group, which is related differential equation. An elliptic K3 surface is a surface with generic fibres being elliptic curves over \mathbb{P}^1 . An elliptic curve is topologically a torus that is a product of two circles. So we are expecting that it is possible to consider a two-dimensional case, that is, maps from a K3 surface to a Lie group as a generalization of one-dimensional case, that is maps from a circle to a Lie group.

As to strategy, we have some ideas : 1) before elliptic K3 surfaces, we should first study *rational* elliptic surfaces, for which a lot of studies are done; 2) we should study actions of Lie groups (of infinite-dimensional) on K3 surfaces (if there exists).

References

- [1] MASE, M. Polytope duality for families of K3 surfaces associated to transpose duality. to appear in Commentalli Math. St. Pauli..
- [2] ROHSIEPE, F. Lattice polarized toric K3 surfaces. arXive:hep-th/0409290v1 (2004).