Summary of research

Shintaro Suzuki

Let $\beta > 1$. Let us denote by $[\beta]$ the greatest integer less than β . We call an expansion of a number $x \in [0, [\beta]/(\beta - 1)]$ of the form

$$x = \sum_{n=1}^{\infty} \frac{a_n}{\beta^n}$$

with $\{a_n\}_{n=1}^{\infty} \in \{0, 1, \dots, [\beta]\}^{\mathbb{N}}$ a β -expansion of x. As is well-known that in the case when β is an integer greater than or equal to 2 a number $x \in [0, [\beta]/(\beta-1)]$ has a unique β -expansion except countably many points in $[0, [\beta]/(\beta-1)]$. In the case when β is a non-integer, however, almost every x in $[0, [\beta]/(\beta-1)]$ (with respect to the Lebesgue measure) has uncountably many different β -expansions, whose statistical properties are of interest. The statistical properties of β -expansions closely relate to the ergodic properties of dynamical systems which generate β -expansions. In my previous work, I studied the ergodic properties of dynamical systems which generate β -expansions or a sort of β -expansions, and obtained some results about them. We shall state the results in the following.

1. Artin-Mazur zeta functions and lap-counting functions of generalized β -transformations (List of papers 1,2)

The β -transformation $\tau_{\beta} : [0,1] \rightarrow [0,1]$ is defined by $\tau_{\beta}(x) = \beta x \mod 1$ for $x \in [0,1]$. As well-known that this transformation generates the greedy β expansion of a number $x \in [0,1]$. In [3], Flatto et al. gave a functional equation for the Artin-Mazur zeta function of a β -transformation, which defined on some region in \mathbb{C} , by using the generating function ϕ_{β} for the coefficients sequence of the greedy β -expansion of 1. In general, for a piecewise linear expanding map each of whose branches has the same absolute value of the slope, it is known that the poles of its Artin-Mazur zeta function relate to the ergodic properties of the map. Therefore, it is important to investigate the analytic properties of the function. In my paper 1, I extended the result by Flatto et al. to the class of generalized β -transformations ,introduced by Góra in [4], each of which is obtained by replacing some of the branches of a β -transformation with branches of the constant negative slope. As an application, I investigated the relation between the analytic properties of the Artin-Mazur zeta function and the algebraic properties of β .

In [3], Flatto et al. also gave a functional equation for the lap-counting function of the β -transformation τ_{β} via the generating function ϕ_{β} . Furthermore, they showed that the poles of the Artin-Mazur zeta function of τ_{β} coincide with those of its lap-counting function, including their multiplicity. In my paper 2, I extended the functional equation to the class of generalized β -transformations and showed that the poles of the Artin-Mazur zeta function of a generalized β transformation coincide with those of its lap-counting function in special cases, which include the case where the map is a negative β -transformation.

2. Invariant density functions of random β -transformations (List of papers 3)

In [1], Dajani and Kraaikamp defined the greedy map $T_{\beta,1}$, which is a naturally extended map of the β -transformation τ_{β} to $J_{\beta} := [0, [\beta]/(\beta - 1)]$, and the lazy map $T_{\beta,0}$, which is given by $T_{\beta,0} = l_{\beta} \circ T_{\beta,1} \circ l_{\beta}^{-1}$, where l_{β} is the map: $l_{\beta}(x) = [\beta]/(\beta - 1) - x$ for $x \in J_{\beta}$. By using the maps $T_{\beta,1}$ and $T_{\beta,0}$, they introduced a sort of random β -transformation K_{β} on $\{0,1\}^{\mathbb{N}} \times J_{\beta}$. We can obtain a β -expansion of $x \in J_{\beta}$ for each $\omega \in \{0,1\}^{\mathbb{N}}$ via the map K_{β} , which is called a random β -expansion of x. Since all β -expansions of x are obtained as random β -expansions of x, we can investigate the statistical properties of β -expansions via the ergodic properties of the map K_{β} . In [2], Dajani and de Vries showed that there exists a unique K_{β} -invariant probability measure $\hat{\mu}_{\beta,p}$ absolutely continuous with respect to the product measure $m_p \otimes \lambda_\beta$, where m_p is the (1-p, p)-Bernoulli measure on $\{0, 1\}^{\mathbb{N}}$ with a parameter $p \in (0, 1)$ and λ_{β} is the normalized Lebesgue measure on J_{β} . By general theory, we have that the probability measure $\hat{\mu}_{\beta,p}$ is given by the product measure of the form $m_p \otimes \mu_{\beta,p}$ and the dynamical system $(K_{\beta}, m_p \otimes \mu_{\beta,p})$ is ergodic. In my paper 3, I showed that the dynamical system $(K_{\beta}, m_p \otimes \mu_{\beta,p})$ is exact. In addition, I gave an explicit formula for the density function $f_{\beta,p}$ of the probability measure $\mu_{\beta,p}$. This explicit formula enables us to evaluate the statistical quantities of random β -expansions. Furthermore, as its application, I showed that the function $p \to f_{\beta,p} \in L^1(\lambda)$ is analytic and the function $\beta \to f_{\beta,p} \in L^1(\lambda)$ is continuous everywhere except on some subset of algebraic integers, , where λ denotes the Lebesgue measure on \mathbb{R} .

References

- K. Dajani and C. Kraaikamp, Random β-expansions, Ergod.Th. & Dynam.Sys. 23 (2003) 461-479
- [2] K. Dajani and M. de Vries, Invariant densities for random β-expansions, J. Eur. Math. Soc. 9 (2007), 157–176.
- [3] L. Flatto, J. C. Lagarias and B. Poonen, The zeta function of the beta transformation, Ergod. Th. & Dynam. Sys, 14 (1994), 237–266
- [4] P.Góra, Invariant densities for generalized β-maps, Ergod. Th. & Dynam. Sys, 27 (2007) 1583–1598