
（英訳文）
This reserch is a continuation of [Result 8]. As seen in Result (3), at least in the case when the manifold

X is toric Fano, we can construct the optimal destabilizer from the asymptotic data of MA−1-flow. We

want to extend this to arbitrary Fano manifolds. For this, we need to study the singularity formation

along the flow. In this reserch, we will study some cases that are relatively easy to handle:

(A) Optimal destabilizers obtained by jumping of complex structures

(B) Optimal destabilizers obtained by the MA−1-flow on Calabi ansatz

Reserch (A) Optimal destabilizers obtained by jumping of complex structures

Like the Mukai-Umemura 3-fold*3, there are some examples of no KE manifolds which admit KE

metrics just by replacing with other complex structure J∞ (just as the differentiable structure of X was).

In this case, the optimal destabilizer of X should have “mild singularities” in that sense. We try to replace

the MA−1-flow with another (but equivalent) flow on the moduli space of complex structures, and study

the convergence property: now we fix a Kähler form ω̂ ∈ HL, and take the pullback of any Kähler forms

in H via the diffeomorphisms obtaind by Moser’s theorem. In particular, using the diffeomorphisms

determined by the MA−1-flow {ωt}, the complex structure on X is pulled back to a flow {Jt} on J ,

where J denotes the moduli space of ω̂-compatible complex structures on X. Although {ωt} and {Jt} are

equivalent to each other, they have own advantage and disadvantage. Thus we prove the convergence of

the flow {Jt} by combining their advantages (compensating for disadvantages) and construct the optimal

destabilizer.

Strategy on Reserch (A)

First, see the advantage/disadvantage of the two flows displayed in Table 2. Since the flow {Jt} is

flow Advantage Disadvantage

{ωt} strongly parabolic can not converge if there are no KE metrics in HL

{Jt} can converge even if there are no KE metrics in HL weakly parabolic

Table 2 Advantage and disadvantage of the two flows

invariant under the action of the Gage group Symp(X, ω̂), it is not strongly parabolic and even the

short-time existence does not follow from general theory of parabolic equations. Nevertheless, we know

that the flow {Jt} can be solved for all time thanks to the existence of the long-time solution to the

MA−1-flow. On the other hand, it is impossible for the flow {ωt} to converge if there are no KE metrics

on HL, but we can expect that the flow {Jt} converges to some complex structure J∞ ∈ J (in this case,

all Jt except for t = ∞ can be transformed to each other via diffeomorphisms, but the flow {Jt} jumps

to a non-trivial structure J∞ at infinity). A direct computation shows that {Jt} is a gradient flow of the

Calabi type functional

R(J) :=

∫
X

(1− eρ(J))2ω̂n, J ∈ J

and J∞ is one of the critical points of it. Here we associate each J ∈ J to a function ρ(J) ∈ C∞(X,R)
uniquely determined by the formula

Ric(ω̂)− ω̂ =
√
−1∂J ∂̄Jρ(J),

∫
X

eρ(J)ω̂n =

∫
X

ω̂n.

*3 A typical example of no KE manifolds obtained by a compactification of SL(2,C)/Γ, where Γ is a subgroup of SL(2,C)
of order 60.
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In general, for real analytic functionals on Banach spaces, we can control its gradient flow near the critical

points by using Simon-Lojasiewictz type inequality [Sim83]. We apply this method to the functional R

to show the convergence of the flow Jt → J∞ with an initial data J0 which is sufficiently close to J∞.

Reserch (B) Optimal destabilizers obtained by the MA−1-flow on Calabi ansatz

From [Result 8], (except for the case whenX admits solitons), it is known that one of the easiest example

for the MA−1 flow forming singularities is the 3-dimensional Calabi ansatz X := P(O ⊕ OP2(2)) → P2.

Using the symmetry of X, one can reduce the MA−1-flow/soliton equation to a parabolic PDE/ODE on

a closed interval via the fiberwise moment map of the standard U(1)-action. Then by using the explicit

expression of the PDE/ODE, we study the algebraicity, codimension of singular sets on the limit spaces,

and geometric convergence properties of the flow.

Strategy on Reserch (B)

We reduce the soliton equation for the MA−1-flow to a ODE on a closed interval, and denote it by f∞.
Then the positivity of f∞ corresponds to the positivity of Kähler metrics. Since we assume that X does
not admit solitons, the metric corresponding to f∞ violates the positivity condition. In other words, the
function f∞ has the “positive part” as well as the “negative part”, which give a decomposition of X into
moment sublevel sets X = Xs ∪Xu.s via the fiberwise moment map. Since the volume is preserved under
the flow, the unstable locus Xu.s defined by the euqation f∞ ≤ 0 must be lost in the limit, and crease
to the stable locus Xs defined by f∞ > 0, and the flow should converge in the local C∞-topology on Xs.
Then, the stable locus Xs should admit a singular metric with non-trivial Lelong numbers as an evidence
of collapsed Xu.s. In order to prove this, we study the singularity of the metric corresponding to f∞ along
the level set (conical, cusp, etc.), and depending on the situations, we try to solve this degenerate Monge-
Ampère equation by adding some auxiliary terms. For instance, Guenancia-Paun [GP16] established a
general theory of Monge-Ampère equations with conical singularities, that will be helpful to our reserch.

singularity

Fig.2 Deformation of Calabi ansatz X along the MA−1-flow.
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