Abstract of present research

Our study is polynomial approximation theory as an application of potential theory. On \mathbb{R} , every polynomial P(x) blows up as $|x| \to \infty$, we must multiply a weight function w(x). Then, for $1 \le p \le \infty$ and $fw \in L^p(\mathbb{R})$, is there exist a sequence of polynomials $\{P_n\}$ such that

$$\lim_{n \to \infty} \|(f - P_n)w\|_{L^p(\mathbb{R})} = 0 \tag{A}$$

holds? We assume that an exponential weight w belongs to relevant class $\mathcal{F}(C^2+)$. Let w be $w(x) = \exp(-Q(x))$. We consider a function T(x) := xQ'(x)/Q(x), $(x \neq 0)$. If T is bounded, then w is called a Freud-type weight, and otherwise, w is called an Erdős-type weight. In this study, we consider Erdős-type weights.

1. Convergence of the de la Vallée Poussin mean: The de la Vallée Poussin mean $v_n(f)$ of f is defined by $v_n(f)(x) := \frac{1}{n} \sum_{j=n+1}^{2n} s_j(f)(x)$, where $s_m(f)(x)$ is the partial sum of Fourier series of f for orthogonal polynomials with respect to w. The degree of approximation for f defined by $E_{p,n}(w;f) := \inf_{P \in \mathcal{P}_n} \|(f-P)w\|_{L^p(\mathbb{R})}$. Here, \mathcal{P}_n is the set of all polynomials of degree at most n. We assume that $w \in \mathcal{F}(C^2+)$ and suppose that $T(a_n) \leq c (n/a_n)^{2/3}$ for some c > 0. Here, the notation a_n is called MRS number. Then there exists a constant $C \geq 1$ such that for every $n \in \mathbb{N}$ and when $fw \in L^p(\mathbb{R})$,

$$\|(f - v_n(f))w\|_{L^p(\mathbb{R})} \le CT^{1/4}(a_n)E_{p,n}(w;f).$$
 (B)

We show the following two conditions such that the right side of (B) converge to 0 as $n \to \infty$. First, if w belongs to smooth subclass $\mathcal{F}_{\lambda}(C^3+)$ and $T^{1/4}fw \in L^p(\mathbb{R})$, second, if f be an absolutely continuous function with $f'w \in L^p(\mathbb{R})$. Then the de la Vallée Poussin mean $v_n(f)$ for a function f gives one of the concrete example of (A). Moreover, if f is more smoother function, $v_n(f)$ is not only a good approximation polynomial for f, but also its derivatives give an approximation for f'.

2. Uniform convergence of the Fourier partial sum: By the way, we show the condition uniformly convergence of $s_n(f)$ for a weight in a class $\mathcal{F}_{\lambda}(C^3+)$: Let $w \in \mathcal{F}_{\lambda}(C^3+)$ with $0 < \lambda < 3/2$. Suppose that f is continuous and has a bounded variation on any compact interval of \mathbb{R} . If f satisfies $\int_{\mathbb{R}} w(x)|df(x)| < \infty$, then

$$\lim_{n\to\infty} \left\| (f - s_n(f)) \frac{w}{T^{1/4}} \right\|_{L^{\infty}(\mathbb{R})} = 0.$$

3. Lagrange interpolation polynomials: Let w_{ρ} be $w_{\rho}(x) := |x|^{\rho}w(x)$ for $\rho > 0$. For $f \in C(\mathbb{R})$, we write the Lagrange interpolation polynomial $L_n(f)(t)$ with nodes $\{t_{j,n,\rho}\}_{j=1}^n$, where $\{t_{j,n,\rho}\}_{j=1}^n$ are the zeros of n-th orthogonal polynomial with respect to w_{ρ} . We show the condition such that $L_n(f)(t)$ converges to f with w_{ρ} in L^2 -norm: Let $f \in C(\mathbb{R})$ and $\beta > 1/2$. If $|(1+|x|)^{\rho+\beta}w(x)f(x)| \to 0$ as $|x| \to \infty$, then we have

$$\lim_{n\to\infty} \|(L_n(f)-f)w_\rho\|_{L^2(\mathbb{R})} = 0.$$