Research program

Hideo Takioka

The following researches are projected.

• Cabling for the Γ and Jones polynomials

I will study the problem "Which is strong, cabling of the Γ -polynomial or cabling of the Jones polynomial?"

• The (p,q)-cabling of the Γ -polynomial for sufficiently large p

Considering the (p,q)-cabling of the Γ -polynomial for sufficiently large p, I will study whether we can obtain geometric information of knots like the volume conjecture.

• Kawauchi's conjecture

Let K, K' be knots. If $\Gamma_{p/q}(K) = \Gamma_{p/q}(K')$ for any coprime integers p(>0) and q, then P(K) = P(K') and F(K) = F(K'), where $\Gamma_{p/q}$ is the (p,q)-cabling of the Γ -polynomial, P is the HOMFLYPT polynomial and F is the Kauffman polynomial.

• Cabling of the first coefficient HOMFLYPT polynomial for mutant knots

It was shown that cabling of the zeroth coefficient HOMFLYPT polynomial, that is, the Γ -polynomial is invariant under mutation by Tetsuya Ito. Our interest is the case of cabling of the first coefficient HOMFLYPT polynomial.

• Relation between the Γ -polynomial, its (2,1)-cabling, HOMFLYPT and Kauffman polynomials

We have already shown that there exist infinitely many knots with the trivial (2, 1)-cabling of the Γ -polynomial and the knots have the trivial Γ -polynomial and the trivial first coefficient HOMFLYPT and Kauffman polynomials. I consider whether any knot with the trivial (2, 1)-cabling of the Γ -polynomial has the trivial Γ -polynomial and the trivial first coefficient HOMFLYPT and Kauffman polynomials.

\bullet Characterization of the Γ -polynomials of knots by using knots with clasp number at most two

It is known that the Γ -polynomials of knots are characterized by using 2-bridge knots with unknotting number one. I consider whether the Γ -polynomials of knots can be characterized by using knots with clasp number at most two.

• Clasp-pass moves of type X and the Γ -polynomial for knots

It is known that the Γ -polynomial is invariant under clasp-pass moves of type X. I consider whether $\Gamma(K) = \Gamma(K') \Rightarrow K \sim_{CPX} K'$.

• Minimal grid diagrams and minimal closed braid diagrams

(Joint work with Hwa Jeong Lee)

Every knot has minimal grid diagrams. We consider whether there always exists a minimal grid diagram which presents a minimal closed braid diagram.

• 4-move for cable knots

(Joint work with Hwa Jeong Lee)

Our purpose is to deform the (2,1)-cable knots of knots up to ten crossings into the unknot by 4-moves.