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Plan of the talk

(I) Introduction

Definition

Corlette-Simpson correspondence

Main issues in the study of tame and wild

harmonic bundles

Application to algebraic D-modules

(II) Overview of the study on wild harmonic bundles



Definition of harmonic bundle (1)

X : complex manifold

(E, ∂E, θ) : Higgs bundle on X

i.e., θ ∈ End(E)⊗ Ω1
X , θ ◦ θ = 0

h : hermitian metric of E

∂E and θ† are determined by

∂h(u, v) = h
(
∂Eu, v

)
+ h

(
u, ∂Ev

)

h(θu, v) = h(u, θ†v)

(
u, v ∈ C∞(X,E)

)

.

Definition

.

.

.

. ..

.

.

h is called pluri-harmonic, if the connection

D1 = ∂E + ∂E + θ + θ†

is flat. In that case, (E, ∂E, θ, h) is called harmonic bundle.
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Definition of harmonic bundle (2)

(V,∇) : flat bundle on X

h : hermitian metric of V

We have the decomposition ∇ = ∇u + Φ

∇u : unitary connection

Φ : self-adjoint section of End(V )⊗ Ω1

We have the decompositions into (1, 0)-part and (0, 1)-part.

∇u = ∂V + ∂V , Φ = θ + θ†

.

Definition

.

.

.

. ..

.

.

h is called pluri-harmonic, if (V, ∂V , θ) is a Higgs bundle. In this case,

(V,∇, h) is called harmonic bundle.
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Corlette-Simpson correspondence

Corlette and Simpson established the following correspondence on

any smooth projective variety:

harmonic bundle

¡µ
¡ª

@I
@R

flat bundle

(semisimple)

Higgs bundle(
polystable

Chern class=0

)

Corlette Simpson

The tangent spaces of the moduli (the rank 1 case):

H1
(
X,C

) ' H1(X,OX)⊕H0(X,Ω1)
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harmonic metric (Corlette)

X : Riemannian manifold,

(V,∇) : flat bundle

h : metric of V

X̃
Φh−−−→ {

hermitian metric
}

y
X

h harmonic
def⇐⇒ Φh harmonic

X: compact Kahler =⇒ h pluri-harmonic



Variation of polarized Hodge structure

X : complex manifold

(V,∇) : flat bundle on X (with real structure)

F : filtration by holomorphic subbundles F i ⊂ F i−1

S : flat pairing of V

Griffiths transversality ∇F i ⊂ F i−1 ⊗ Ω1

some conditions

We obtain a “Hodge bundle”
(
GrF (V ), θ

)

GrF (V ) =
⊕

i

Gri
F (V ), θ : Gri

F (V ) −→ Gri−1
F (V )⊗ Ω1

A typical example of a Hodge bundle

OX ⊕ΘX , θX : OX −→ ΘX ⊗ Ω1
X
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Deformation to VPHS

(
E, θ

)
Ã

(
E,α θ

)
(α ∈ C×) obvious deformation

⇓(
V,∇)

Ã
(
Vα,∇α

)
(α ∈ C×) non-trivial deformation

∃ lim
α→0

(Vα,∇α) underlies a variation of polarized Hodge structures



Deformation to VPHS

.

Proposition (Simpson)

.

.

.

. ..

.

.

SL(n,Z) (n ≥ 3) cannot be the fundamental group of a smooth

projective variety.

(V,∇) underlies a VPHS =⇒ The real Zariski closure of

π1(X)→ GL(n,C) is “of Hodge type”.

SL(n,Z) is rigid.

SL(n,R) is not of Hodge type.



Flat bundle with a non-trivial deformation

X : projective manifold

(V,∇) : flat bundle on X.

.

Theorem (Simpson)

.

.

.

. ..

.

.

Assume rankV = 2. If (V,∇) has a non-trivial deformation,

∃(V ′,∇′): a flat bundle on a projective curve C.

∃F : X −→ C

(V,∇) = F ∗(V ′,∇′).

.

Theorem (Reznikov)

.

.

.

. ..

.

.

ci(V ) = 0 (i > 1) in the Deligne cohomology group of X.



Tame and wild harmonic bundles

Let X be a complex manifold, and let D be a normal crossing

hypersurface of X. We would like to study a harmonic bundle

(E, ∂E, θ, h) on X −D.

We should impose some condition on the behaviour of (E, ∂E, θ, h)
around D (or more precisely the behaviour of θ).

harmonic bundle

wild

tame

⇐⇒
flat bundle

meromorphic

regular singular
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Tame and wild harmonic bundles

Let (E, ∂E, θ, h) be a harmonic bundle on a punctured disc ∆∗.

θ = f
dz

z

det(T id−f) =
rank E∑

j=0

aj(z) T j

.

Definition

.

.

.

. ..

.

.

(E, ∂E, θ, h) is tame, if aj(z) are holomorphic on ∆.

(E, ∂E, θ, h) is wild, if aj(z) are meromorphic on ∆.

.

Remark

.

.

.

. ..

.

.

In the higher dimensional case, we need more complicated condition for

wildness.
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Tame harmonic bundles

(A) Asymptotic behaviour of tame harmonic bundles

(A1) Prolongation

(A2) Reduction

(B) Kobayashi-Hitchin correspondence

(Generalization of Corlette-Simpson correspondence)

(C) Polarized (regular) pure twistor D-module

(C1) Hard Lefschetz theorem

(C2) Correspondence between tame harmonic bundles and

polarized pure twistor D-modules

(D) Application to algebraic D-modules

(Sabbah’s program)
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Wild harmonic bundle

(A) Asymptotic behaviour of wild harmonic bundles

(A1) Prolongation

(A2) Reduction

(B) Algebraic meromorphic flat bundles and Higgs bundles

(B1) Kobayashi-Hitchin correspondence

(B2) Characterization of semisimplicity

Resolution of turning points

(C) Polarized wild pure twistor D-modules

(C1) Hard Lefschetz Theorem

(C2) Correspondence between polarized wild pure twistor D-modules

and wild harmonic bundles

(D) Application to algebraic D-modules



(D) Application to algebraic D-modules

X,Y : smooth algebraic varieties

f : projective morphism X −→ Y

F : algebraic holonomic DX-module

We obtain the push-forward

f†F ∈ Dh(DY ) :=

(
the derived category of

holonomic DY -modules

)

and the holonomic DY -modules

fm
† F := the m-th cohomology of f†F
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(D) Application to algebraic D-modules

.

Theorem (Kashiwara’s conjecture)

.

.

.

. ..

.

.

If F is semisimple, (i.e., a direct sum of simple objects),

=⇒ f j
†F are also semisimple, and the decomposition theorem holds

f†F '
⊕

f j
†F [−j] in Dh(DY )

regular holonomic D-modules of geometric origin

Beilinson-Bernstein-Deligne-Gabber

de Cataldo-Migliorini

regular holonomic D-modules underlying polarized pure Hodge modules

Saito

semisimple regular holonomic D-modules

Drinfeld, Boeckle-Khare, Gaitsgory

Sabbah, M
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II. Overview of the study on wild harmonic bundles

(B2) Characterization of semisimplicity

Resolution of turning points

(C) Polarized wild pure twistor D-modules

(B)+(C) =⇒ Application to algebraic D-modules

(A) Asymptotic behaviour of wild harmonic bundles



II. Overview of the study on wild harmonic bundles

(B) Algebraic meromorphic flat bundles

Higgs bundles

λ-flat bundles

(B1) Kobayashi-Hitchin correspondence

(B2) Characterization of semisimplicity

Resolution of turning points



Characterization of semisimplicity

Let X be a complex smooth projective variety.

.

Proposition (Corlette)

.

.

.

. ..

.

.

For any flat bundle on X, the following two conditions are equivalent.

It is semisimple, i.e., a direct sum of irreducible ones.

It has a pluri-harmonic metric.

Such a pluri-harmonic metric is essentially unique.



Characterization of semisimplicity

Let D be a normal crossing divisor of X.

.

Proposition

.

.

.

. ..

.

.

Such a characterization was generalized for any meromorphic flat bundle

on (X,D) with regular singularity. (The pluri-harmonic metric h of

(E,∇)|X−D should satisfy some condition around D.)

dimX = 1 essentially due to Simpson with Sabbah’s observation

that semisimplicity is related to parabolic polystability.

dimX ≥ 2 two known methods

Jost-Zuo (with a minor complement by M)

Use Kobayashi-Hitchin correspondence (M)



Characterization of semisimplicity

.

Theorem (B2.1)

.

.

.

. ..

.

.

We can establish such a characterization even in the non-regular case.

wild harmonic bundle ←→ semisimple meromorphic flat bundle

dimX = 1 Sabbah (a related work due to Biquard-Boalch)

dimX ≥ 2 M.

We have a serious difficulty caused by the existence of turning

points in the higher dimensional case.



Hukuhara–Levelt–Turrittin

Let ∆ denote a one dimensional disc. Let (E,∇) be a meromorphic

flat bundle on (∆, O).

According to Hukuhara–Levelt–Turrittin

theorem, there is a ramified covering ϕ : (∆, O) −→ (∆, O) and a

formal decomposition

ϕ∗(E,∇)| bO =
⊕

a∈Irr(∇)

(Êa, ∇̂a)

Irr(∇) ⊂ O∆(∗O), finite subset. (It is well defined in

C((z))/C[[z]] ' z−1C[z−1].)

∇̂a − da has regular singularity for each a.
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(Êa, ∇̂a)

Irr(∇) ⊂ O∆(∗O), finite subset. (It is well defined in

C((z))/C[[z]] ' z−1C[z−1].)

∇̂a − da has regular singularity for each a.



Majima-Malgrange

Let (E,∇) be a meromorphic flat bundle on (∆, O)×∆n−1.

According to Majima and Malgrange, there exist

closed analytic subset Z ⊂ ∆n−1

ramified covering ϕ : (∆, O)×∆n−1 −→ (∆, O)×∆n−1

such that ϕ∗(E,∇)| bO×(∆n−1\Z) locally has such a nice

decomposition. (More strongly, Malgrange showed the existence of

Deligne-Malgrange lattice.)

However, ϕ∗(E,∇)| bO×∆n−1 may NOT!

.

Definition
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.

. ..

.

.

The points of Z are called turning points. (It can be defined appropriately

even in the case of normal crossing poles.)
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Example of turning points

Take a meromorphic flat bundle (E,∇) on P1 such that (i) 0 is the

only pole of (E,∇), (ii) it has non-trivial Stokes structure. For

example,

E = OP1(∗0) v1 ⊕OP1(∗0) v2

∇(v1, v2) = (v1, v2)

(
0 1
z−1 0

)
d
(1

z

)

Let F : C2 −→ P1 be a rational map given by F (x, y) = [x : y].
The pole of F ∗(E,∇) is

{
x = 0

}
, and it can be shown that (0, 0)

is a turning point.
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Difficulty caused by the existence of turning points

The existence of turning points prevents us from applying

Kobayashi-Hitchin correspondence to a characterization of

semisimplicity.



Difficulty caused by the existence of turning points

A general framework in global analysis:

(i) Take an appropriate metric of (E,∇)|X−D. (Some

finiteness condition on the curvature.)

(ii) Deform it along the heat flow.

(iii) The limit of the flow should be a Hermitian-Einstein

metric, and under some condition, it should be a

pluri-harmonic metric.

Simpson established the general theory for (ii) and (iii), once we

can take an appropriate initial metric in (i), for which we need to

know the local form of the meromorphic flat bundle.

.

Remark

.

.

.

. ..

.

.

Even if there are no turning points, we need some trick.



Difficulty caused by the existence of turning points

A general framework in global analysis:

(i) Take an appropriate metric of (E,∇)|X−D. (Some

finiteness condition on the curvature.)

(ii) Deform it along the heat flow.

(iii) The limit of the flow should be a Hermitian-Einstein

metric, and under some condition, it should be a

pluri-harmonic metric.

Simpson established the general theory for (ii) and (iii), once we

can take an appropriate initial metric in (i), for which we need to

know the local form of the meromorphic flat bundle.

.

Remark

.

.

.

. ..

.

.

Even if there are no turning points, we need some trick.



Difficulty caused by the existence of turning points

A general framework in global analysis:

(i) Take an appropriate metric of (E,∇)|X−D. (Some

finiteness condition on the curvature.)

(ii) Deform it along the heat flow.

(iii) The limit of the flow should be a Hermitian-Einstein

metric, and under some condition, it should be a

pluri-harmonic metric.

Simpson established the general theory for (ii) and (iii), once we

can take an appropriate initial metric in (i), for which we need to

know the local form of the meromorphic flat bundle.

.

Remark

.

.

.

. ..

.

.

Even if there are no turning points, we need some trick.



Difficulty caused by the existence of turning points

The existence of turning points is a serious difficulty for a general

theory of asymptotic analysis of meromorphic flat bundles studied

by Majima and Sabbah.

We have two steps to understand the structure of a meromorphic

flat bundle on a curve.

Step 1 Take the Hukuhara–Levelt–Turrittin decomposition

after ramified covering.

Step 2 Lift it to flat decompositions on small sectors.

(=⇒ Stokes structure)

Briefly speaking, they established the higher dimensional version of

Step 2.
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Sabbah established it in the case dimX = 2, rank(E,∇) ≤ 5.
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Resolution of turning points

.

Theorem (B2.2)

.

.

.

. ..

.

.

Let X be a smooth proper algebraic variety, and let D be a normal

crossing hypersurface. Let (E,∇) be a meromorphic flat bundle on

(X,D).

Then, there exists a projective birational morphism

ϕ : (X′, D′) −→ (X,D) such that ϕ∗(E,∇) has no turning points.

It seems of foundational importance in the study of algebraic

meromorphic flat bundles or algebraic holonomic D-modules, and it

might be compared with the existence of a resolution of

singularities for algebraic varieties.

.

Remark

.

.

.

. ..

.

.

Kedlaya established the existence of resolution of turning points for any

meromorphic flat bundle on any general complex surface!
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Brief sketch of the proof

.

Theorem (B2.1)

.

.

.

. ..

.

.

Characterization of semisimplicity of algebraic meromorphic flat bundles by

the existence of nice pluri-harmonic metrics.

.

Theorem (B2.2)

.

.

.

. ..

.

.

Existence of resolution of turning points for algebraic meromorphic flat

bundles.



Brief sketch of the proof

Thm B2.2 dimX = 2 mod p-reduction and p-curvatures

(We may also apply Kedlaya’s result.)

⇓
Thm B2.1 dimX = 2 Kobayashi-Hitchin correspondence

⇓
Thm B2.1 dimX ≥ 3 Mehta-Ramanathan type theorem

⇓
Thm B2.2 dimX ≥ 3 Reduced to the case (E,∇) is simple

=⇒ the associated Higgs field θ

turning points for (E,∇)
= “turning points for θ”

We can use classical techniques

in complex geometry.
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Brief sketch of the proof

We use the theory of polarized wild pure twistor D-modules for

non-projective case.

Take a birational morphism ϕ : X′ −→ X such that X′ is

projective.

Take a nice pluri-harmonic metric for ϕ∗(E,∇).

Use the Hard Lefschetz theorem to obtain a nice pluri-harmonic

metric for (E,∇).



II. Overview of the study on wild harmonic bundles

(C) Polarized wild pure twistor D-modules

(C1) Hard Lefschetz Theorem

(C2) Correspondence between polarized wild

pure twistor D-modules and wild harmonic

bundles



What is a polarized wild pure twistor D-module?

Briefly and imprecisely,

Polarized wild

pure twistor D-module
+ D-module with

pluri-harmonic metric

How to define “pluri-harmonic metric” for D-modules?

A very important hint was given by Simpson!
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harmonic bundle.

The isomorphism between the de Rham cohomology and the

Dolbeault cohomology (the cohomology group associated to

the Higgs bundle).
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Mixed twistor structure

To establish this similarity in the level of definitions, Simpson

introduced the notion of mixed twistor structure.

Naive Hope:

Statement, Proof

for Hodge structure

⇓ Replace “Hodge”

with “Twistor”

Statement, Proof

for Twistor structure
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Mixed twistor structure

twistor structure ⇐⇒ algebraic vector bundle on P1

pure of weight n ⇐⇒ isomorphic to a direct sum of OP1(n)

mixed twistor structure ⇐⇒ twistor structure V with an

increasing exhaustive filtration W indexed by Z, such that

GrW
n (V ) are pure of weight n.

It is regarded as a structure on the vector space V|1 (1 ∈ P1),
and it is a generalization of Hodge structure.

(Rees construction.)

“polarization” can be defined appropriately.

harmonic bundle = variation of polarized pure twistor structure

We can formulate “harmonic bundle version” or “twistor version” of

most objects in the theory of variation of Hodge structure.
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Polarized wild pure twistor D-modules

Polarized wild

pure twistor D-module
+ holonomic D-module

with pluri-harmonic

Morihiko Saito

polarized pure Hodge module + D-module + PHS

Sabbah introduced wild polarized pure twistor D-module as a

twistor version. It was still a hard work, and he made various

innovations and observations such as sesqui-linear pairings, their

specialization by using Mellin transforms, the nearby cycle functor

with ramification and exponential twist for R-triples, and so on.
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Hard Lefschetz Theorem

The following theorem is essentially due to Saito and Sabbah.

.

Theorem (Hard Lefschetz Theorem)

.

.

.

. ..

.

.

Polarizable wild pure twistor D-modules have nice functorial property for

push-forward via projective morphisms.

Let f : X −→ Y be a projective morphism.

polarizable wild pure

twistor DX-modules
=⇒ polarizable wild pure

twistor DY -modules

⇓ ⇓
DX-modules =⇒ DY -modules

Moreover, for a line bundle L on X, ample relative to f , the

following induced morphisms are isomorphisms

c1(L)j : f−j
† T

'−−−→ f j
†T ⊗ TS(j)
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On a complex manifold X, we have the following correspondence

Wild harmonic bundle ⇐⇒ Polarized wild pure twistor D-module

Let Z be an irreducible closed analytic subset of X, and let U

be a smooth open subset of Z which is the complement of a

closed analytic subset of Z. Then, any wild harmonic bundle on

U is extended to polarized wild pure twistor D-module on Z.

In other words, wild harmonic bundles have minimal extension

in the category of polarized wild pure twistor D-modules.

Any polarized wild pure twistor D-module is the direct sum of

minimal extensions.
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II. Overview of the study on wild harmonic bundles

(B)+(C) =⇒ Application to algebraic D-modules
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On a smooth projective variety X, we have the following correspondence

through wild harmonic bundles

semisimple

holonomic D-modules
⇐⇒ polarizable wild

pure twistor D-module

=⇒ We obtain HLT for algebraic semisimple holonomic D-modules

from HLT for polarizable wild pure twistor D-modules.
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II. Overview of the study on wild harmonic bundles

(A) Asymptotic behaviour of wild harmonic bundles

(A1) Prolongation

(A2) Reduction



Underlying λ-flat bundles

harmonic bundle =⇒





Higgs bundle

(λ = 0)

flat bundle

(λ = 1)

λ-flat bundle (λ ∈ C)
family of λ-flat bundles

(E, ∂E, θ, h): a harmonic bundle on X

We obtain λ-flat bundle (Eλ,Dλ):

holomorphic vector bundle Eλ := (E, ∂E + λθ†)

flat λ-connection Dλ := ∂E + λθ† + λ∂E + θ

(Leibniz rule) Dλ(f · s) = (∂D + λ∂X)f · s+ f · Dλs

(flatness) Dλ ◦ Dλ = 0
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Prolongation

Let X be a complex manifold, and let D be a normal crossing

hypersurface of X. From (E, ∂E, θ, h) on X −D, we obtain λ-flat

bundle (Eλ,Dλ) on X −D:

Eλ =
(
E, ∂E + λθ†), Dλ = ∂E + λθ† + λ∂E + θ

First goal We would like to prolong it to a meromorphic λ-flat

bundle on (X,D) with good lattices.

harmonic bundle

wild

tame

⇐⇒
λ-flat bundle

meromorphic

regular singular
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Prolongation

Let X := ∆n, D =
⋃`

i=1{zi = 0}. Let (E, ∂E, θ, h) be a good

wild harmonic bundle on X −D. We have the associated λ-flat

bundle (Eλ,Dλ) on X −D.

For any U ⊂ X, we set

PEλ(U) :=
{
f ∈ Eλ(U \D)

∣∣∣ |f |h = O
(∏̀

i=1

|zi|−N
)
∃N > 0

}

P0Eλ(U) :=
{
f ∈ Eλ(U \D)

∣∣∣ |f |h = O
(∏̀

i=1

|zi|−ε
)
∀ε > 0

}

By taking the sheafification, we obtain the OX(∗D)-module PEλ

and the OX-module P0Eλ.

.

Theorem

.

.

.

. ..

.

.

(PEλ,Dλ) is a good meromorphic λ-flat bundle.

P0Eλ is locally free, and “good lattice”.
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Outline of a part of the proof

Some steps to show that P0Eλ is locally free.

The estimate for the Higgs field θ (the wild version of
Simpson’s main estimate).

Asymptotic orthogonality of “generalized eigen decomposition”

Boundedness of the “nilpotent parts”

We can show that (Eλ, h) is acceptable, i.e., the curvature of

(Eλ, h) is bounded with respect to h and the Poincaré metric

of X −D.

We have developed a general theory of acceptable bundles, i.e.,

any acceptable bundles are naturally extended to locally free

sheaves by the above procedure. Hence, P0Eλ is locally free.
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PEλ is a good meromorphic λ-flat bundle.

P0Eλ is locally free, and “good lattice”.

We need and have something more.

Second Goal We should consider the prolongation of the family of

λ-flat bundles. Because
{PEλ |λ ∈ C}

cannot be a

nice meromorphic object, we have to think the

deformation of meromorphic λ-flat bundles caused by

the variation of irregular values.
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Prolongation: Stokes filtration in the curve case

Let (E,∇) be a meromorphic flat connection on (∆, O), which is

unramified. The formal decomposition

(E,∇)| bO =
⊕

a∈Irr(∇)

(Êa, ∇̂a)

can be lifted to a flat decomposition on each small sector S of ∆∗:

(E,∇)|S =
⊕

(Ea,S,∇a,S)

The filtration (Stokes filtration, or Deligne-Malgrange filtration)

FS
a =

⊕

b≤Sa

Eb,S b ≤S a⇐⇒ −Re(b) ≤ −Re(a) on S

is canonically determined (some compatibility condition). We can

recover (E,∇) from (E,∇)|X−D and
{FS |S ⊂ ∆∗}

(Deligne,

Malgrange inspired by the work of Sibuya).
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Prolongation: Deformation

For any T > 0, we set Irr(∇(T )) :=
{
Ta

∣∣ a ∈ Irr(∇)
}
, and

F(T ) S
T a := FS

a

Then,
{F(T ) S

∣∣S ⊂ ∆∗}
also satisfy the compatibility condition.

Thus, we obtain the deformation

(E(T ),∇(T )
)

Applying similar procedure to (PEλ,Dλ) with T = (1 + |λ|2)−1, we

obtain (QEλ,Dλ).

.

Theorem

.

.

.

. ..

.

.

The family
{
(QEλ,Dλ)

∣∣λ ∈ C}
gives a nice meromorphic object.
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Prolongation

We need and have something more (the parabolic structure,

the eigenvalues of the residues, the irregular decomposition).

Kobayashi-Hitchin correspondence.

Characterization of semisimplicity.

Resolution of turning points



Reductions

We would like to understand more detailed property.

It is achieved

by establishing the following sequence of reductions.

wild

⇓ Gr w.r.t. Stokes structure

tame

⇓ Gr w.r.t. KMS structure

polarized mixed

twistor structure

⇓ Gr w.r.t. weight filtration

polarized mixed

twistor structure

of split type
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Reductions of meromorphic flat bundle on curve

It can be compared

with the following very

simple reductions

for meromorphic flat

bundles on a curve

satisfying unramifiedness

condition.

meromorphic

(irregular)

⇓
meromorphic

(regular)

⇓
vector space +

nilpotent endomorphism

⇓
vector space +

nilpotent endomorphism

(graded)
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Reductions of meromorphic flat bundle on curve

The first reduction is taking a direct summand in the

Hukuhara–Levelt–Turrittin decomposition

(E,∇)| bO =
⊕

(Êa, ∇̂a) =⇒ (Êa, ∇̂a − da),

or we prefer to regard it as Gr with respect to Stokes structure.

The second reduction is taking the nearby cycle functor

(E,∇) =⇒ ψα(E,∇)

on which we have naturally induced nilpotent map. The

nilpotent map induces the weight filtration.

The third reduction is Gr with respect to the weight filtration.
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Reductions

Relations among the weight filtrations.

Norm estimate, i.e., a wild pluri-harmonic metric is determined

by the residues and the parabolic structures, up to

boundedness.

Correspondence between wild harmonic bundles and polarized

wild pure twistor D-modules.

Vanishing of characteristic numbers (Kobayashi-Hitchin

correspondence).
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