On the *D*-affinity of the flag variety in type B_2 *

Henning Haahr ANDERSEN Matematisk Institut, Aarhus Universitet DK 8000 Aarhus C e-mail: mathha@imf.au.dk and KANEDA Masaharu 558-8585 Osaka Sumiyoshi-ku Sugimoto Osaka City University, Graduate School of Science Department of Mathematics e-mail: kaneda@sci.osaka-cu.ac.jp

June 20, 2000

Abstract

The flag varieties in characteristic 0 are well-known to be D-affine. In positive characteristic, however, only those in type A_1 and A_2 have been proved to be so. In this paper we will show in type B_2 the cohomology vanishing of the first term in the *p*-filtration of the sheaf of differential operators on the flag variety. This is a necessary condition for the variety to be D-affine.

Let \mathfrak{X} be a smooth variety over an algebraically closed field k, and let $\mathcal{D}_{\mathfrak{X}}$ be the sheaf of differential operators on \mathfrak{X} . Then \mathfrak{X} is said to be *D*-affine iff the following two conditions hold: (i) for any $\mathcal{D}_{\mathfrak{X}}$ -module \mathcal{M} quasi-coherent over $\mathcal{O}_{\mathfrak{X}}$ the natural morphism $\mathcal{D}_{\mathfrak{X}} \otimes_{\mathcal{D}_{\mathfrak{X}}(\mathfrak{X})} \mathcal{M}(\mathfrak{X}) \to \mathcal{M}$ is epic, (ii) $\mathrm{H}^{i}(\mathfrak{X}, \mathcal{D}_{\mathfrak{X}}) = 0$ for i > 0.

In characteristic 0 the flag variety for a semisimple algebraic group is known to be D-affine [BB]. This is one of the the keys to the celebrated proofs by Brylinski and Kashiwara [BK] and Beilinson and Bernstein [BB] of the Kazhdan-Lusztig conjecture [KL] on the irreducible characters for finite dimensional semisimple k-Lie algebras.

In positive characteristic B. Haastert [H] has proved that the projective space \mathbb{P}_k^n is *D*-affine, and that when \mathfrak{X} is the flag variety G/B with G a simply connected simple algebraic group over k and B a Borel subgroup, any $\mathcal{D}_{\mathfrak{X}}$ -module quasi-coherent over $\mathcal{O}_{\mathfrak{X}}$ is generated by the global sections even over $\mathcal{O}_{\mathfrak{X}}$. He has also verified the condition (ii) for G of type A₂. If p is the positive characteristic, $\mathcal{D}_{\mathfrak{X}}$ admits a filtration (\mathcal{D}_r) , called the p-filtration. If G_r is the r-th Frobenius kernel of G and if $-\rho$ is half sum of the roots of B, Haastert identifies \mathcal{D}_r with the sheaf $\mathcal{L}(\operatorname{ind}_B^{G_rB}(2(p^r-1)\rho))$ induced by the B-module $\operatorname{ind}_B^{G_rB}(2(p^r-1)\rho)$. For type A_2 he checks that all the G_rB -composition

^{*}supported in part by a JSPS Grant in Aid for Scientific Research and the first author also by the TMR programme "Algebraic Lie Representations", EC Network Contract No. ERB FMRX-CT97/0100

factors of $\operatorname{ind}_B^{G_rB}(2(p^r-1)\rho)$ have dominant highest weights, hence (ii) follows in this case from Kempf's vanishing theorem. In type B₂, however, not all composition factors of $\operatorname{ind}_B^{G_rB}(2(p^r-1)\rho)$ have dominant highest weights. We will nevertheless show in this note for the first term \mathcal{D}_1 of the *p*-filtration

Theorem. If G is of type B_2 ,

 $\mathrm{H}^{i}(G/B, \mathcal{D}_{1}) = 0 \quad for \ i > 0.$

According to N. Lauritzen (private communication, see §1 below) for any variety \mathfrak{X} admitting a Frobenius splitting the condition (ii) is equivalent to the vanishing of all higher cohomologies of all \mathcal{D}_r , $r \in \mathbb{N}^+$. The flag variety is Frobenius split by [MR] (cf. also [K95]). Thus our result is a necessary condition for the flag variety in type B_2 to be D-affine.

The present work was partly inspired by the announcement of Xi [X] in [X99]. We are grateful to N. Lauritzen for allowing us to include his unpublished observation. The second author also thanks R. Bøgvad for a helpful discussion on Lauritzen's assertion. The first author would like to thank the Department of Mathematics, Osaka City University for a very pleasant stay there during the month of November 1999.

1° *p*-filtrations

(1.1) Let \mathfrak{X} be a smooth variety over an algebraically closed field of characteristic p > 0. If $\mathcal{O}_{\mathfrak{X}}^{(r)}$ is the sheaf on \mathfrak{X} defined by $\mathcal{O}_{\mathfrak{X}}^{(r)}(V) = \{a^{p^r} \mid a \in \mathcal{O}_{\mathfrak{X}}(V)\}$ for each open subset V of \mathfrak{X} and if $\mathcal{D}_r = \mathcal{D}_{\mathfrak{X},r} = \mathcal{H}om_{\mathcal{O}_{\mathfrak{X}}^{(r)}}(\mathcal{O}_{\mathfrak{X}}, \mathcal{O}_{\mathfrak{X}})$, then $(\mathcal{D}_r)_{r\in\mathbb{N}}$ defines a filtration of $\mathcal{D}_{\mathfrak{X}}$, called the *p*-filtration of $\mathcal{D}_{\mathfrak{X}}$. Recall that \mathfrak{X} is said to be Frobenius split iff $\mathcal{O}_{\mathfrak{X}}^{(1)}$ is a direct summand of $\mathcal{O}_{\mathfrak{X}}$ as $\mathcal{O}_{\mathfrak{X}}^{(1)}$ -module.

Lemma (N. Lauritzen). Assume \mathfrak{X} is Frobenius split. If r < s, then \mathcal{D}_r is a direct summand of \mathcal{D}_s as sheaf of abelian groups.

Proof: By the hypothesis $\mathcal{O}_{\mathfrak{X}}^{(s-r)}$ is a direct summand of $\mathcal{O}_{\mathfrak{X}}$ as $\mathcal{O}_{\mathfrak{X}}^{(s-r)}$ -modules, hence $\mathcal{H}om_{\mathcal{O}_{\mathfrak{X}}^{(s)}}(\mathcal{O}_{\mathfrak{X}}^{(s-r)}, \mathcal{O}_{\mathfrak{X}}^{(s-r)})$ is a direct summand of \mathcal{D}_s as $\mathcal{O}_{\mathfrak{X}}^{(s)}$ -modules. As the morphism $F^{s-r} : \mathcal{O}_{\mathfrak{X}} \to \mathcal{O}_{\mathfrak{X}}^{(s-r)}$ via $a \mapsto a^{p^{s-r}}$ is invertible, there is an isomorphism of sheaves of rings $\mathcal{D}_r \to \mathcal{H}om_{\mathcal{O}_{\mathfrak{X}}^{(s)}}(\mathcal{O}_{\mathfrak{X}}^{(s-r)}, \mathcal{O}_{\mathfrak{X}}^{(s-r)})$ via $\delta \mapsto F^{s-r} \circ \delta \circ F^{-(s-r)}$, hence the assertion.

(1.2) **Proposition.** Assume \mathfrak{X} is Frobenius split. Then for each $i \in \mathbb{N}$

$$\mathrm{H}^{i}(\mathfrak{X},\mathcal{D}_{\mathfrak{X}})=0 \quad iff \quad \mathrm{H}^{i}(\mathfrak{X},\mathcal{D}_{r})=0 \quad \forall r\in\mathbb{N}.$$

Proof: As \mathfrak{X} is noetherian, $\mathrm{H}^{i}(\mathfrak{X}, \mathcal{D}_{\mathfrak{X}}) \simeq \varinjlim_{r} \mathrm{H}^{i}(\mathfrak{X}, \mathcal{D}_{r})$, hence "if" is clear. Assume $\mathrm{H}^{i}(\mathfrak{X}, \mathcal{D}_{\mathfrak{X}}) = 0$. If $\mathrm{H}^{i}(\mathfrak{X}, \mathcal{D}_{r}) \neq 0$ for some r, any $\delta \in \mathrm{H}^{i}(\mathfrak{X}, \mathcal{D}_{r}) \setminus 0$ must vanish in some

 $\mathrm{H}^{i}(\mathfrak{X}, \mathcal{D}_{s}), s > r$. But that would contradict the above lemma that $\mathrm{H}^{i}(\mathfrak{X}, \mathcal{D}_{r})$ should be a direct summand of $\mathrm{H}^{i}(\mathfrak{X}, \mathcal{D}_{s})$.

2° **Type** B₂

From now on throughout the rest of the paper k will denote an algebraically closed field of positive characteristic p, and \mathfrak{X} the flag variety G/B with G a simply connected simple algebraic group over k of type B₂ and B a Borel subgroup of G. Let T be a maximal torus of B. We choose the roots of B to be negative, and denote the simple roots by α_1 , α_2 with α_1 short. Let ω_1 and ω_2 be the fundamental weights of T such that $\langle \omega_i, \alpha_i^{\vee} \rangle = \delta_{ij}$.

(2.1) Let G_1 (resp. B_1) be the Frobenius kernel of G (resp. B), and let $\hat{Z} = \operatorname{ind}_B^{G_1B}$ (resp. $\tilde{Z} = \operatorname{ind}_{B_1T}^{G_1T}$) be the induction functor from the category of B-modules (resp. B_1T -modules) to the category of G_1B -modules (resp. G_1T -modules). Composing with the forgetful functor, \hat{Z} coincides with \tilde{Z} [J, II.9.1]. Let $\mathrm{H}^0 = \operatorname{ind}_B^G$ (resp. $\mathrm{H}^0(\alpha_1, ?)$) be the induction functor from the category of B-modules to G-modules (resp. $P(\alpha_1)$ -modules, $P(\alpha_1)$ being the minimal parabolic subgroup of G containing B associated with α_1). We will abbreviate the right derived functors $\mathrm{R}^{\bullet}\mathrm{H}^0$ of H^0 as H^{\bullet} . By Haastert's identification [H, 4.3.3] we have to show

(1)
$$H^{i}(\hat{Z}(2(p-1)\rho)) = 0 \quad \forall i > 0.$$

We will denote the G_1T -socle series of $\tilde{Z}(2(p-1)\rho)$ by soc^j , $j \in \mathbb{N}^+$, and its j-th socle layer $\operatorname{soc}^j/\operatorname{soc}^{j-1}$ by soc_j . As G_1 is normal in G, the G_1T -socle series coincides with the G_1 -socle series [J, I.6.15, II.3.15], and hence each soc^j is G_1B -stable. Thus to see (1), it is enough to show $\operatorname{H}^i(\operatorname{soc}_j) = 0$ for all i > 0 and $j \in \mathbb{N}^+$.

Let X be the character group of T, and $\mathbb{Z}[X]$ be the group ring of X with the natural basis $e(\nu)$. By [J79, 5.3] the formal character of $\tilde{Z}(2(p-1)\rho)$ is given by

(2)
$$ch\tilde{Z}(2(p-1)\rho) = e(0) + e(2p\omega_1) + \chi(2\omega_1 + (p-3)\omega_2)e(2p\omega_1) + \chi((p-4)\omega_1)e(3p\omega_1) + \chi((p-4)\omega_1)e(p\omega_1) + \chi((p-2)\omega_1 + \omega_2)e(p\omega_1) + \chi((p-3)\omega_2)e(2p\omega_2) + \chi((p-3)\omega_2)e(p\omega_2) + \chi(2\omega_1 + (p-2)\omega_2)e(p\omega_2) + \chi((p-4)\omega_1 + \omega_2)e(p(-\omega_1 + 2\omega_2)) + \chi((p-4)\omega_1 + \omega_2)e(p\rho) + \chi((p-2)\rho)e(p\rho),$$

where $\chi = \sum_{i \ge 0} (-1)^i \operatorname{chH}^i$.

We will denote the simple G-module of highest weight λ by $L(\lambda)$. Recall that the simple G_1B (and G_1T) -modules have the form $L(\lambda) \otimes p\mu$ with $\lambda \in X_1$ and $\mu \in X$. Here X_1 denotes the set of restricted weights, i.e.

$$X_1 = \{ r_1 \omega_1 + r_2 \omega_2 | 0 \le r_1, r_2$$

(2.2) Assume first p = 2. In this case $\tilde{Z}(2\rho)$ is of dimension 8, yielding to direct computations. We first find the G_1T -socle layers of $\tilde{Z}(2\rho)$ to be

$$soc_1 = 2\rho, \qquad soc_2 = 4\omega_1 \oplus 2\omega_2, \\ soc_3 = L(\omega_2) \otimes 2\omega_2 \oplus 2\omega_1, \quad soc_4 = L(\omega_2) \otimes 2\omega_1 \oplus 2\omega_2, \\ soc_5 = 2\omega_1 \oplus 2(-\omega_1 + \omega_2), \quad soc_6 = k.$$

To work that out, it is convenient to identify $\tilde{Z}(2\rho)$ with $\operatorname{coind}_{B_1T}^{G_1T}(k) = \operatorname{Dist}(G_1) \otimes_{\operatorname{Dist}(B_1)} k$ [J, II.9.1], where $\operatorname{Dist}(G_1)$ (resp. $\operatorname{Dist}(B_1)$) is the algebra of distributions on G_1 (resp. B_1). If U_1^+ is the Frobenius kernel of U^+ and if $\operatorname{Dist}(U_1^+)$ is the algebra of disributions on U_1^+ , then $\operatorname{Dist}(G_1) \otimes_{\operatorname{Dist}(B_1)} k$ is isomorphic as k-linear spaces to $\operatorname{Dist}(U_1^+)$. Using the standard basis of $\operatorname{Dist}(G_1)$, one can explicitly compute the $\operatorname{Dist}(G_1)$ -module structure of $\operatorname{coind}_{B_1T}^{G_1T}(k)$ to obtain the G_1T -socle layers of $\tilde{Z}(2\rho)$.

Thus by the tensor identity and by Kempf's vanishing theorem the only problem is to show $H^i(soc_5) = 0$ for all i > 0. But there is an exact sequence of *B*-modules

$$0 \longrightarrow \operatorname{soc}_5 \longrightarrow \operatorname{H}^0(\alpha_1, 2\omega_1) \xrightarrow{\pi} \operatorname{H}^0(\alpha_1, \omega_2) \longrightarrow 0$$

As $\mathrm{H}^{i}(\mathrm{H}^{0}(\alpha_{1}, 2\omega_{1})) \simeq \mathrm{H}^{i}(2\omega_{1}) = 0 = \mathrm{H}^{i}(\mathrm{H}^{0}(\alpha_{1}, \omega_{2}))$ for all i > 0, we have only to show that $\mathrm{H}^{0}(\pi)$ is surjective.

Note first that $\operatorname{Hom}_G(\operatorname{H}^0(2\omega_1), \operatorname{H}^0(\omega_2)) = k$ [J, II.6.24] and that $\operatorname{H}^0(\pi) \neq 0$. The latter follows from the commutative diagram

where the restriction maps are both surjective [J, II.14.15] (cf. also [K95]).

Dually, consider the homomorphism of Weyl modules $\Delta(\omega_2) \to \Delta(2\omega_1)$. Let $\mathbf{G}_{\mathbf{a}}$ be the 1-dimensional unipotent group, u_1 and $u_2 : \mathbf{G}_{\mathbf{a}} \to G$ be the morphisms defining the root subgroups $U_{-\alpha_1}$ and $U_{-\alpha_2}$, respectively, and let $F_i = (\mathrm{d}u_i)(1)$, i = 1, 2. If v^+ is the highest weight vector of $\Delta(2\omega_1)$, we may assume that the image of a highest weight vector of $\Delta(\omega_2)$ in $\Delta(2\omega_1)$ is F_1v^+ . As the weight 0 appears in $\Delta(2\omega_1)$ with multiplicity 2 and as $F_2v^+ = 0$, we must have $F_1F_2F_1v^+ \neq 0$. On the other hand, the weight 0 appears in $\Delta(\omega_2)$ with multiplicity 1 and $\mathrm{soc}_G\Delta(\omega_2) = k$. It follows that the homomorphism $\Delta(\omega_2) \to \Delta(2\omega_1)$ is injective, and hence $\mathrm{H}^0(\pi)$ is surjective.

Remarks. (i) As an alternative to the above proof of the surjectivity of $H^0(\pi)$ one may use the idea employed in the generic case below. What is required in the case at hand is the vanishing of $H^2(s_1.2\omega_1)$, where $s_1.2\omega_1 = s_1(2\omega_1 + \rho) - \rho$. The p = 2 case is not covered in [A81] but the methods there easily gives this particular vanishing result.

(ii) The *B*-module $\hat{Z}(2\rho)$ does not admit an excellent filtration of Polo [P]. Otherwise van der Kallen's height-length filtration [vdK] would be one, forcing soc₅ above to

be isomorphic with $\mathrm{H}^{0}(\mathfrak{X}(w), 2\omega_{1})$ for some Schubert scheme $\mathfrak{X}(w), w \in W$, that is absurd.

(2.3) If p = 3, then (2.1.2) shows that all G_1T -composition factors of $\tilde{Z}(4\rho)$ have dominant highest weights. Hence

$$\mathrm{H}^{i}(Z(4\rho)) = 0 \quad \forall i > 0$$

by Kempf's vanishing theorem, as desired.

(2.4) Assume finally $p \ge 5$. In this case the Lusztig conjecture [L] on the irreducible characters for *G*-modules holds, and hence also the conjecture on the irreducible characters for G_1T -modules by direct computations using Jantzen's formula (2.1.2) or by [K89, 4.5 and 4.15]. Then we know from [AK] the G_1T -socle series of $\tilde{Z}(2(p-1)\rho)$:

$$\begin{aligned} \operatorname{soc}_{1} &= L((p-2)\rho) \otimes p\rho, \\ \operatorname{soc}_{2} &= L((p-4)\omega_{1}) \otimes p\omega_{1} \oplus L((p-4)\omega_{1}) \otimes p(\rho-\alpha_{1}) \\ &\oplus L((p-4)\omega_{1}) \otimes p\rho \oplus L((p-4)\omega_{1}) \otimes 3p\omega_{1} \\ &\oplus L((p-3)\omega_{2}) \otimes p\omega_{2} \oplus L((p-3)\omega_{2}) \otimes 2p\omega_{1} \\ &\oplus L((p-3)\omega_{2}) \otimes 2p\omega_{2} \oplus L((p-2)\omega_{1}+\omega_{2}) \otimes p\rho, \\ \operatorname{soc}_{3} &= L((p-4)\omega_{1}+\omega_{2}) \otimes p\rho \oplus L((p-4)\omega_{1}+\omega_{2}) \otimes p(\rho-\alpha_{1}) \\ &\oplus L((p-4)\omega_{1}+\omega_{2}) \otimes p\omega_{1} \oplus p\omega_{2} \oplus 2p\omega_{2} \oplus 2p\omega_{1} \\ &\oplus L(2\omega_{1}+(p-3)\omega_{2}) \otimes p\omega_{2} \oplus L(2\omega_{1}+(p-3)\omega_{2}) \otimes 2p\omega_{1}, \\ \operatorname{soc}_{4} &= L(2\omega_{1}+(p-2)\omega_{2}) \otimes p\omega_{2} \oplus L((p-2)\omega_{1}+\omega_{2}) \otimes p\omega_{1}, \\ \operatorname{soc}_{5} &= k. \end{aligned}$$

Note that soc_2 and soc_3 contain nondominant composition factors. We shall check that even so we still have $\operatorname{H}^i(\operatorname{soc}_j) = 0$ for i > 0 also for j = 2, 3.

Consider first soc_2 . We have an isomorphism of G_1B -modules

$$\operatorname{soc}_2 \simeq \prod_{\lambda \in X_1} L(\lambda) \otimes \operatorname{Hom}_{G_1}(L(\lambda), \operatorname{soc}_2).$$

Hence we have only to examine the $L((p-4)\omega_1)$ -isotypic component $L((p-4)\omega_1) \otimes$ Hom_{G₁} $(L((p-4)\omega_1), \operatorname{soc}_2)$. Let Q_1 be the G_1B -submodule of soc^2 containing soc^1 such that $Q_1/\operatorname{soc}^1 \simeq L((p-4)\omega_1) \otimes \operatorname{Hom}_{G_1}(L((p-4)\omega_1), \operatorname{soc}_2)$.

The weights of $\operatorname{Hom}_{G_1}(L((p-4)\omega_1), \operatorname{soc}_2)$ are $p\omega_1, p(\rho-\alpha_1), p\rho$, and $3p\omega_1$, all appearing multiplicity free. It follows that there are G_1B -submodules $Q_2 > Q_3 > \operatorname{soc}^1$ of Q_1 such that $Q_3/\operatorname{soc}^1 \simeq L((p-4)\omega_1) \otimes p\omega_1$ while that Q_2/Q_3 has the composition factors $L((p-4)\omega_1) \otimes p\rho$ and $L((p-4)\omega_1) \otimes p(\rho-\alpha_1)$. Thus $Q_2/Q_3 \simeq L((p-4)\omega_1) \otimes \operatorname{Hom}_{G_1}(L((p-4)\omega_1), Q_2/Q_3))$. If $Q_4 = \operatorname{Hom}_{G_1}(L((p-4)\omega_1), Q_2/Q_3)$, we are reduced to showing $\operatorname{H}^i(Q_4) = 0$ for all i > 0.

We claim that there is a nonsplit exact sequence of B-modules

(1)
$$0 \longrightarrow p\rho - \alpha_1 \longrightarrow Q_4 \longrightarrow p\rho \longrightarrow 0$$

Just suppose the sequence split. Then $L((p-4)\omega_1) \otimes p\rho$ would be a G_1B -submodule of Q_2/Q_3 . Consider the exact sequence of G-modules

$$\operatorname{ind}_{G_1B}^G(Q_2 \otimes -p\rho) \longrightarrow \operatorname{ind}_{G_1B}^G(Q_2/Q_3 \otimes -p\rho) \longrightarrow \operatorname{R}^1 \operatorname{ind}_{G_1B}^G(Q_3 \otimes -p\rho)$$

induced by the obvious short exact sequence of G_1B -modules. We have

$$\operatorname{ind}_{G_1B}^G(Q_2 \otimes -p\rho) \subset \operatorname{ind}_{G_1B}^G(\hat{Z}((p-2)\rho)) \simeq \operatorname{H}^0((p-2)\rho),$$

$$\operatorname{ind}_{G_1B}^G(Q_2/Q_3 \otimes -p\rho) \supset \operatorname{ind}_{G_1B}^G(L((p-4)\omega_1)) \simeq L((p-4)\omega_1),$$

while the *G*-composition factors of $\mathrm{R}^{1}\mathrm{ind}_{G_{1}B}^{G}(Q_{3}\otimes -p\rho)$ are among those of $\mathrm{R}^{1}\mathrm{ind}_{G_{1}B}^{G}(L((p-2)\rho)) = 0$ and of $\mathrm{R}^{1}\mathrm{ind}_{G_{1}B}^{G}(L((p-4)\omega_{1})\otimes -p\omega_{2}) \simeq L((p-4)\omega_{1}) \otimes \mathrm{H}^{1}(-\omega_{2})^{(1)} = 0$. But $L((p-4)\omega_{1})$ is not a composition factor of $\mathrm{H}^{0}((p-2)\rho)$ and we have a contradiction.

Hence (1) holds and this means that Q_4 fits into the exact sequence of B-modules

$$0 \longrightarrow Q_4 \longrightarrow \mathrm{H}^0(\alpha_1, p\rho) \stackrel{\pi}{\longrightarrow} \mathrm{H}^0(\alpha_1, p\rho - \alpha_1) \longrightarrow 0.$$

As in (2.2) we have to show $\mathrm{H}^{0}(\pi)$ is surjective. If $s_{1} \in W$ is the reflection associated to α_{1} , considerations as in [A80]/[J, II.6.12] yields an exact sequence of G-modules

$$0 \to \mathrm{H}^{0}(p\rho - \alpha_{1}) \to \mathrm{H}^{1}(s_{1}.p\rho) \to \mathrm{H}^{0}(p\rho) \xrightarrow{\mathrm{H}^{0}(\pi)} \mathrm{H}^{0}(p\rho - \alpha_{1}) \to \mathrm{H}^{2}(s_{1}.p\rho) \to 0.$$

But $H^{2}(s_{1}.p\rho) = 0$ by [A81, §4], as desired.

Finally, consider soc₃. In this case we have only to consider the $L((p-4)\omega_1 + \omega_2)$ isotypic component $L((p-4)\omega_1 + \omega_2) \otimes \operatorname{Hom}_{G_1}(L((p-4)\omega_1 + \omega_2), \operatorname{soc}_3)$. In analogy with (3.2) we let Q_5 be the G_1B -submodule of soc³ containing soc² such that $Q_5/\operatorname{soc}^2 \simeq$ $L((p-4)\omega_1 + \omega_2) \otimes \operatorname{Hom}_{G_1}(L((p-4)\omega_1 + \omega_2), \operatorname{soc}_3)$. Then there are G_1B -submodules $Q_6 \supset Q_7 \supset \operatorname{soc}^2$ of Q_5 such that $Q_7/\operatorname{soc}^2 \simeq L((p-4)\omega_1 + \omega_2) \otimes p\omega_1$ and that Q_6/Q_7 has the composition factors $L((p-4)\omega_1 + \omega_2) \otimes p\rho$ and $L((p-4)\omega_1 + \omega_2) \otimes p(\rho - \alpha_1)$. If $Q_8 = \operatorname{Hom}_{G_1}(L((p-4)\omega_1 + \omega_2), Q_6/Q_7)$, it is enough to check $\operatorname{H}^i(Q_8) = 0$ for all i > 0.

Again we find that the short exact sequence of B-modules

$$0 \longrightarrow p\rho - \alpha_1 \longrightarrow Q_8 \longrightarrow p\rho \longrightarrow 0$$

is nonsplit, and we finish the verification as for soc_2 .

References

- [A80] Andersen, H.H., The strong linkage principle, J. reine angew. Math. 315 (1980), 53-59
- [A81] Andersen, H.H., On the structure of the cohomology of line bundles on G/B, J. Alg. 71 (1981), 245–258
- [AK] Andersen, H.H. and Kaneda M., Loewy series of modules for the first Frobenius kernel in a reductive algebraic group, Proc. LMS 59(3) (1989), 74–98
- [BB] Beilinson, A. and Bernstein, J., Localisation de g-modules, C. R. Acad. Sci. Paris 292 (1981), 15–18

- [BK] Brylinski, J.L. and Kashiwara M., Kazhdan-Lusztig conjecture and holonomic systems, Inv. Math. 64 (1981), 378-410
- [H] Haastert, B., Uber Differentialoperatoren und D-Moduln in positiver Charakteristik, Manusc. Math. 58 (1987), 385-415
- [J79] Jantzen, J.C., Über Darstellungen höhere Frobenius-Kerne halbeinfacher algebraischer Gruppen, Math. Z. 164 (1979), 271–292
- [J] Jantzen, J.C., Representations of Algebraic Groups, Pure and Appl. Math. 131 1987 (Academic Press)
- [K89] Kaneda, M., Extensions of Modules for Infinitesimal Algebraic Groups, J. Alg. 122 (1989), 188–210
- [K95] Kaneda, M., The Frobenius Morphism of Schubert Schemes, J. Alg. 174 (1995), 473–488
- [KL] Kazhdan, D. and Lusztig, G., Representations of Coxeter groups and Hecke algebras, Inv. Math. 53 (1979), 165–184
- [L] Lusztig, G., Some problems in the representation theory of finite Chevalley groups, 313-317 in Proc. Symp. Pure Math. AMS 37 1980 (AMS)
- [MR] Mehta, V.B. and Ramanathan, A., Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. Math. **122** (1985), 27–40
- [P] Polo, P., Variétés de Schubert et excellentes filtrations, Astérisques 173–174 (1989), 281–311
- [vdK] van der Kallen, W., Lectures on Frobenius Splittings and B-Modules, TIFR Bombay 1993 (Springer-Verlag)
- [X99] Xi, N., Maximal and Primitive Elements in Weyl Modules for Type A₂, J. Alg. 215 (1999), 735–756
- [X] Xi, N., Maximal and Primitive Elements in Weyl Modules for Type B_2 , to appear