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Dedicated to Professor Shin'ichi Suzuki on his 60th birthday

Abstract. We introduce some tangle surgeries on the double of a tangle. If the tangle

satis�es certain conditions, then the resulting link has the same polynomial invariant as the

original one. We give some pairs of links sharing the same polynomial invariants making use

of our tangle surgeries, which also show that our results are the best possible.

1. Introduction

There are several methods for producing di�erent knots or links with the same polynomial

invariant such as the Alexander, Jones, HOMFLY, or Kau�man polynomials. Conway's mu-

tation [4] and its generalizations, satellites of mutants, rotants and the theory of spectral pa-

rameter tangles of Jones provide such examples [1, 7, 8, 10, 11, 12, 13, 18, 20, 23, 24, 26, 27, 30].

They are performed by removing a tangle from somewhere in the diagram and then sewing

that same tangle back in di�erently by rotating it or ipping it over. In this paper, we intro-

duce other three types of tangle surgeries that do not alter some polynomial invariants. The

�rst one is as follows: Given a tangle T containing a tangle R, we construct the double of T .

Then it contains R and its mirror image. Instead of rotating a tangle 180�, we rotate these

two tangles 90� simultaneously and take mirror images. If the tangle T satis�es certain condi-

tions, then the resulting link has the same Kau�man bracket polynomial (Theorem 2.1(i)) or

the HOMFLY polynomial (Theorem 2.2(i)) as the original one. This tangle surgery provides
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a pair of links of more than one component having the same Kau�man bracket or HOM-

FLY polynomials. The second and third tangle surgeries are done similarly. The second one

provides a pair of links of more than one component having the same Kau�man bracket or

HOMFLY polynomials and also the Q polynomial. The third one can provide a pair of knots

having the same Kau�man bracket or HOMFLY polynomials.

This paper is organized as follows: In Sect. 2, we introduce our tangle surgeries and state

the main theorems (Theorems 2.1{2.3). In Sect. 3, we give the de�nitions of the polynomial

invariants such as the Kau�man bracket, Jones, �, Kau�man, Q, HOMFLY, and Conway

polynomials. In Sect. 4, we prove the main theorems. We use a linear skein theory essentially

due to Conway [4]. In Sect. 5, we give some pairs of links sharing the same polynomial

invariants making use of Theorems 2.1{2.3, which also show that our theorems are the best

possible. We also give another tangle surgery that does not alter the � polynomial, and hence

the Kau�man's F polynomial (Theorem 5.1).

In his master thesis, Hirofusa Saito [28] classi�ed 2-string tangles of 6 crossings or less up to

freely equivalence (see Sect. 4), where he uses that the double of a tangle is an invariant link,

and thus its polynomial invariant is an invariant for a tangle; see Lemma 4.1. Furthermore,

he and Satoh [29] found several pairs of tangles that cannot be classi�ed by the polynomial

invariants of their doubles. In this paper, the author generalized their examples.

Acknowledgements. We use the computer program of Professor Mitsuyuki Ochiai of Nara

Women's University to calculate polynomial invariants of links.

2. Tangle Surgeries

A tangle is a pair (B3; �), where � is a 1-manifold properly embedded in a 3-ball B3 with 4

boundary components. We express a tangle T by a diagram as in Fig. 1(a), where we use the

projection (x; y; z) 7! (x; y). Two tangles are equivalent if there is an isotopy of the 3-ball that

takes one tangle to the other while �xing each point of the boundary, that is, their diagrams

are related by a �nite sequence of Reidemeister moves (Fig. 2) inside the circle de�ning the

tangle while the endpoints of the strings remain �xed; cf. [4, p. 331].
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T T *T

(a) (b)

Figure 1. (a) A tangle T . (b) The double of T , DT .

C+ C C
�

I II III

Figure 2. Reidemeister moves.

We de�ne the double of T , DT , by the link diagram or the link given by Fig. 1(b), where

T � denotes the image of T under the reection with regard to the yz-plane; T � = �yzT with

�yz(x; y; z) = (�x; y; z). If T is an oriented tangle, then its double DT is oriented so that the

strings of T keep the original orientation and that the strings of T � reverse the orientation

that is induced from that of T .

Suppose that a tangle T contains a tangle R in its interior. We denote by T (R0) the new

tangle obtained from T by replacing R with another tangle R0. Thus, in particular, T = T (R).

Then the double DT contains the two tangles R and R�. We denote by D(T ;R1; R2) the new

link obtained from DT by replacing R and R� with other tangles R1 and R2, respectively.

Thus, in particular, DT = D(T ;R;R�).

Two tangles T = (B3; �) and T 0 = (B3; � 0) are freely equivalent if there is an isotopy of

B3 taking � to � 0 (without the restriction that the endpoints stay �xed). When we consider

oriented tangles, we require the isotopy should preserve the orientation of the strings.

We de�ne the integral tangle or n tangle, n 2 Z, and the 1 tangle as in Fig. 3, where

n > 0. Further, we de�ne the 1=m tangle, m 2 Z n f0g, as in Fig. 4, where m > 0.
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(a) (b) (c) (d)

Figure 3. (a) The n tangle. (b) The 0 tangle. (c) The �n tangle. (d) The 1 tangle.

.....
.....

m crossingsm crossings

(a) (b)

Figure 4. (a) The 1
m

tangle. (b) The � 1
m

tangle.

For a tangle R, we denote by R? the image of R under the rotation by angle 90� given

by �(x; y; z) = (�y; x; z), R? = �R, and by R�
?
the tangle ��yzR. Thus if R is the n tangle,

n 2 Z n f0g, then R? and R�
?
are the the �1=n and 1=n tangles, respectively.

When R is the n tangle, n 2 Z[ f1g (resp. 1=m tangle, m 2 Zn f0g), we denote a tangle

T (R) by T (n) (resp. T (1=m)). In the following, we shall use a similar notation. We consider

a tangle T (R) satisfying the condition:

(?) The two tangles T (0) and T (1) are freely equivalent.

In Sect. 5, we give some tangles satisfying the condition (?).

Now we state our main theorems. The de�nitions of the Kau�man bracket, HOMFLY, Q,

and Conway polynomials will be given in the next section.

Theorem 2.1. Suppose that a tangle T (R) satis�es the condition (?). Then each of the

following pairs of diagrams share the same Kau�man bracket polynomial.

(i) D(T ;R;R�) ( = DT (R) ) and D(T ;R�
?
; R?) ( = DT (R�

?
) ).

(ii) D(T ;R;R) and D(T ;R?; R?).

(iii) D(T ;R;R�
?
) and D(T ;R�; R?).
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Theorem 2.2. Suppose that an oriented tangle T (R) satis�es the condition (?) and R is

oriented as in Fig. 5. Then each of the pairs of the oriented links (i){(iii) in Theorem 2.1

share the same HOMFLY polynomial.

R

Figure 5. An oriented tangle R.

Theorem 2.3. Suppose that a tangle T (R) satis�es the condition (?). Then the pair of the

link (ii) in Theorem 2.1 share the same Q polynomial.

Remark 2.4. For any tangle T , it is easy to see that its doubleDT is a slice link in the strong

sense, that is, DT is cobordant to a trivial link with the same number of components. Then

the multivariable Alexander polynomial of DT is zero, and hence the Conway polynomial is

zero; see [15, 21, 22], cf. [16, Sect. 12.3].

3. Link Polynomials

The Kau�man bracket polynomial hGi 2 Z[A�1] [14] of a link diagram G is de�ned by the

following formulas:

hOi = 1; (3.1)

hG1i = AhG1i+A�1hG0i; (3.2)

hG�1i = AhG0i+A�1hG1i; (3.3)

hG tOi =
�
�A2 �A�2

�
hGi; (3.4)

where O is a diagram of the unknot with no crossing and Gn, n 2 Z[f1g, are link diagrams

that are identical except near one point where they are the n tangles. Then hGi is invariant

under regular isotopy of G, that is, invariant under the Reidemeister moves II and III; see

Fig. 2. The writhe w(G) of a diagram of an oriented link is the sum of the signs of the
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crossings of G; the convention is shown in Fig. 6. The Jones polynomial V (L; t) 2 Z[t�1=2]

[9] is an invariant of an oriented link L given by

V (L; t) =
h
(�A)�3w(G)hGi

i
A=t�1=4

; (3.5)

where G is a diagram of L.

+1 �1

Figure 6. Crossing signs.

The �-polynomial �(G) 2 Z[a�1; x�1] [14] of a link diagram G is de�ned by the following

formulas:

�(O) = 1; (3.6)

�(C+) = a�(C); �(C�) = a�1�(C); (3.7)

�(G1) + �(G�1) = x (�(G0) + �(G1)) ; (3.8)

where O and Gn, n 2 Z[f1g, are link diagrams as above and C+, C, C� are link diagrams

that are identical except near one point where they are as shown in Fig. 2. Then �(G)

is invariant under regular isotopy of G and can be modi�ed to the Kau�man polynomial

F (L; a; x) 2 Z[a�1; x�1] of an oriented link L by

F (L; a; x) = a�w(G)�(G); (3.9)

where G is a diagram of L.

The Q polynomial Q(L;x) 2 Z[x�1] [2, 6] is an invariant of an unoriented link L, which is

de�ned by the following formulas:

Q(U ;x) = 1; (3.10)

Q(L1;x) +Q(L�1;x) = x (Q(L0;x) +Q(L1;x)) ; (3.11)

where U is a trivial knot and Ln, n 2 Z[ f1g, are links having diagrams that are identical

except near one point where they are the n tangles. The Q polynomial is obtained from the
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Kau�man polynomial:

Q(L;x) = F (L; 1; x): (3.12)

The HOMFLY polynomial P (L; t; z) 2 Z[t�1; z�1] [5, 25] is an invariant of an oriented link

L, which is de�ned, as in [9], by the following formulas:

P (U ; t; z) = 1; (3.13)

t�1P (L+; t; z)� tP (L�; t; z) = zP (L0; t; z); (3.14)

where U is a trivial knot and L+, L�, L0 are three links that are identical except near one

point where they are as in Fig. 7. The Conway polynomial r(L; z) 2 Z[z] [4] of an oriented

link L is given by

r(L; z) = P (L; 1; z): (3.15)

L+ L� L0

Figure 7. Skein triple.

Note that the Jones polynomial is obtained from both the HOMFLY and Kau�man poly-

nomials; cf. [17]:

V (L; t) = P (L; t; t1=2 � t�1=2); (3.16)

= F (L; t�3=4;�t1=4 � t�1=4): (3.17)

4. Proofs of Theorems

Two link diagrams G and G0 are said to be balanced isotopic [1, p. 240] if they are related

by a �nite sequence of the Reidemeister moves II and III and the move BI as shown in Fig. 8,

which introduces or deletes an opposite pair of curls. Then the Kau�man bracket and �

polynomials are invariants of balanced isotopy.
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Figure 8. Balanced Reidemeister move BI.

Lemma 4.1. Suppose that T0 and T1 are freely equivalent tangles. Then their doubles DT0

and DT1 are balanced isotopic.

Proof. Let T1 = (B3; �). Then T0 is equivalent to T 01 = (B3; �) [h (S
2
� [0; 1]; �0) for some

4-string braid �0 on the 2-sphere S2, where h : S2�f0g ! @B3 is a homeomorphism sending

the endpoints of �0 in S
2
� f0g to those of � ; cf. [3, Lemma 2.3]. Then T 01 can be expressed

as in Fig. 9, where � is a 4-string braid. Thus DT1 and DT
0

1 are related by a �nite sequence

of the Reidemeister move II. On the other hand, since T0 and T 01 are equivalent, they are

related by a �nite sequence of the Reidemeister moves keeping the endpoints �xed, and thus

DT0 and DT
0

1 are balanced isotopic. This completes the proof. �

T1 �

Figure 9. The tangle T 01.

Proof of Theorem 2.1. Let LR be a link diagram that contains a tangle R. When R is the n

tangle, n 2 Z[ f1g, we denote LR by Ln. Applying the axioms (3.2){(3.4), we may express

the bracket polynomial hLRi in terms of hL0i and hL1i:

hLRi = �RhL0i+ �RhL1i; (4.1)
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where �R = �R(A), �R = �R(A) 2 Z[A
�1]. In the terminology of the linear skein theory [19],

the 0 and1 tangles skein-generate the room inhabited by R, and the link diagrams obtained

by substituting these tangles for R generate LR.

From (4.1), we have

hD(T ;R1; R2)i = �R1�R2hD(T ; 0; 0)i + �R1�R2hD(T ; 0;1)i

+ �R1�R2hD(T ;1; 0)i + �R1�R2hD(T ;1;1)i:
(4.2)

Using Lemma 4.1, the condition (?) implies

hD(T ; 0; 0)i = hD(T ;1;1)i; (4.3)

which we denote by . Then we have

hD(T ;R1; R2)i = (�R1�R2 + �R1�R2) 

+ �R1�R2hD(T ; 0;1)i + �R1�R2hD(T ;1; 0)i:
(4.4)

Replacing R with R�, R?, R
�

?
in (4.1), we have:

hL(R�)i = ��hL(0)i + ��hL(1)i; (4.5)

hL(R?)i = �hL(0)i + �hL(1)i; (4.6)

hL(R�
?
)i = ��hL(0)i + ��hL(1)i; (4.7)

where �� = �R�(A) = �R(A
�1), �� = �R�(A) = �R(A

�1), � = �R and � = �R. Thus from

(4.4), we obtain

hD(T ;R;R�)i = hD(T ;R?; R
�

?
)i

=
�
��� + � ��

�
 + ���hD(T ; 0;1)i + ���hD(T ;1; 0)i; (4.8)

hD(T ;R;R)i = hD(T ;R?; R?)i

=
�
�2 + �2

�
 + �� (hD(T ; 0;1)i + hD(T ;1; 0)i) ; (4.9)

hD(T ;R;R�
?
)i = hD(T ;R�; R?)i

=
�
��� + ���

�
 + ���hD(T ; 0;1)i + � ��hD(T ;1; 0)i; (4.10)

completing the proof. �

Proof of Theorem 2.2. We use a similar equation to (4.1). Let LR be an oriented link diagram

that contains a tangle R, which is oriented as in Fig. 5. Applying the axioms (3.13) and (3.14),
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we may express the HOMFLY polynomial P (LR) of LR in terms of P (L0) and P (L1):

P (LR) = 'P (L0) +  P (L1); (4.11)

where ' = '(t; z),  =  (t; z) 2 Z[t�1; z�1]. Then we have

P (LR�) = �'P (L0) + � P (L1); (4.12)

P (LR
?

) =  P (L0) + 'P (L1); (4.13)

P (LR�
?

) = � P (L0) + �'P (L1); (4.14)

where �' = �'(t; z) = '(�t�1; z) and � = � (t; z) =  (�t�1; z). Using these formulas, we may

prove in a similar way to Theorem 2.1. �

Proof of Theorem 2.3. Let LR be an unoriented link diagram that contains a tangle R. Ap-

plying the axioms (3.10) and (3.11), we may express the Q polynomial Q(LR) of LR in terms

of Q(L0) and Q(L1):

Q(LR) = fQ(L0) + gQ(L1) + hQ(L1); (4.15)

where f = f(x), g = g(x), h = h(x) 2 Z[x�1]. Then we have

Q(LR
?

) = gQ(L0) + fQ(L1) + hQ(L�1): (4.16)

Let Q(R1; R2) be the Q polynomial of the link D(T ;R1; R2). Then using (4.15), we have

Q(R;R) = f2Q(0; 0) + fgQ(0;1) + fhQ(0; 1)

+ fgQ(1; 0) + g2Q(1;1) + ghQ(1; 1)

+ fhQ(1; 0) + ghQ(1;1) + h2Q(1; 1)

=
�
f2 + g2

�
k + fg (Q(0;1) +Q(1; 0))

+ fh (Q(0; 1) +Q(1; 0))

+ gh (Q(1; 1) +Q(1;1)) + h2Q(1; 1); (4.17)

where

k = Q(0; 0) = Q(1;1); (4.18)
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which follows from the condition (?). Similarly, using (4.16), we have

Q(R?; R?) =
�
f2 + g2

�
k + fg (Q(0;1) +Q(1; 0)) + gh (Q(0;�1) +Q(�1; 0))

+ fh (Q(1;�1) +Q(�1;1)) + h2Q(�1;�1): (4.19)

If we ip over the link D(T ;R1; R2) by �y, we obtain D(�yT
�;�yR2; �yR1), where �yT

�

is the image of T under the reection with regard to the xy-plane; �yT
� = �xyT with

�xy(x; y; z) = (x; y;�z). Thus D(�yT
�;�yR2; �yR1) = D(�xyT ; �xyR

�

2; �xyR
�

1), which is the

mirror image of the link D(T ;R�2; R
�

1), and so by [2, Property 1(c)]

Q(R1; R2) = Q(R�2; R
�

1): (4.20)

By (3.11),

Q(0; 1) +Q(0;�1) = x (Q(0; 0) +Q(0;1)) : (4.21)

From (4.20), Q(0;�1) = Q(1; 0) and Q(0; 1) = Q(�1; 0), and so this becomes

Q(0; 1) +Q(1; 0) = Q(�1; 0) +Q(0;�1) = x (k +Q(0;1)) : (4.22)

Similarly, using Q(�1;1) = Q(1; 1) and Q(1;1) = Q(1;�1), Q(1;1) + Q(�1;1) =

x (Q(1;1) +Q(0;1)) becomes

Q(1;1) +Q(1; 1) = Q(1;�1) +Q(�1;1) = x (k +Q(0;1)) : (4.23)

Substituting (4.22) and (4.23) into (4.17) and (4.19) respectively, and usingQ(1; 1) = Q(�1;�1)

and Q(0;1) = Q(1; 0), which follow from (4.20), we obtain

Q(R;R) = Q(R?; R?)

=
�
f2 + g2

�
k + 2fgQ(0;1) + x(f + g)h (k +Q(0;1)) + h2Q(1; 1); (4.24)

completing the proof. �

5. Examples

Let T (R0; R1; R2; R3; R4) be the tangle as shown in Fig. 10. Then the following tangles

satisfy the condition (?) with respect to the sub-tangle R:

� T (m; �;R; n; �) for any integers m, n.

� T (R; �;R2; �; R4) for any tangles R2, R4.
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Here � = �1. In fact, T (m; �; 0; n; �) and T (m; �;1; n; �) are rational tangles [4], which are

freely equivalent to the trivial tangles, and T (0; �; R2; �; R4) and T (1; �; R2; �; R4) are easily

seen to be freely equivalent each other.

R 1R 2

R 3 R 4

R 0

Figure 10. T (R0; R1; R2; R3; R4).

5.1. T (3;�1; R;�2;�1). For the tangle T (R) = T (3;�1; R;�2;�1), let us consider the ori-

ented link diagram or the oriented link DT (R1; R2) as shown in Fig. 11, which we denote

by L(R1; R2). When L(R1; R2) is a 2-component oriented link, we denote by �L(R1; R2) the

oriented link obtained from L(R1; R2) by changing the orientation of one component.

From Theorems 2.1 and 2.2, each of the following pairs of link diagrams or oriented links

have the same Kau�man bracket and HOMFLY polynomials.

(i) L(�2; 2) and L
�
�
1
2
; 1
2

�
.

(ii) L(�2;�2) and L
�
1
2
; 1
2

�
.

(iii) L
�
�2;�1

2

�
and L

�
2; 1

2

�
.

The pairs (i), (ii) are of two components and the pair (iii) are knots. Let us examine each

pair.
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R 1 R 2

Figure 11. L(R1; R2).

(i) L(�2; 2) and L
�
�
1
2
; 1
2

�
. This pair have di�erent Q polynomials, and thus have di�erent

Kau�man polynomials:

Q(L(�2; 2)) = 2x�1 � 1 + 64x2 + 96x3 � 432x4 � 120x5 + 936x6 + 56x7 � 1088x8

� 104x9 + 764x10 + 200x11 � 280x12 � 140x13 + 20x14 + 24x15 + 4x16;

Q
�
L
�
�
1
2
; 1
2

��
= 2x�1 � 1� 32x+ 48x2 + 232x3 � 396x4 � 424x5 + 832x6 + 396x7 � 904x8

� 252x9 + 644x10 + 204x11 � 260x12 � 136x13 + 20x14 + 24x15 + 4x16:

From Remark 2.4, the Conway polynomials of the oriented links L(�2; 2), L(�1=2; 1=2),

�L(�2; 2), �L(�1=2; 1=2) are zeros. Further, since the writhes of these oriented diagrams are

zeros and their linking numbers are zeros, they have the same Jones polynomials. However,

the pairs �L(�2; 2), �L(�1=2; 1=2), which do not satisfy the condition for orientations of the

sub-tangles in Theorem 2.2, have di�erent HOMFLY polynomials:

P (�L(�2; 2)) = (t�1 � t)z + (�t�5 + t�3 + 2t�1 � 2t� t3 + t5)z

+ (�5t�5 + 6t�3 + 11t�1 � 11t� 6t3 + 5t5)z3

+ (�4t�5 + 9t�3 + 13t�1 � 13t� 9t3 + 4t5)z5

+ (�t�5 + 5t�3 + 6t�1 � 6t� 5t3 + t5)z7 + (t�3 + t�1 � t� t3)z9;
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P
�
�L
�
�
1
2
; 1
2

��
= (t�1 � t)z + (�4t�3 + 12t�1 � 12t+ 4t3)z

+ (�24t�3 + 76t�1 � 76t+ 24t3)z3 + (�37t�3 + 135t�1 � 135t + 37t3)z5

+ (�25t�3 + 112t�1 � 112t+ 25t3)z7 + (�8t�3 + 49t�1 � 49t+ 8t3)z9

+ (�t�3 + 11t�1 � 11t+ t3)z11 + (t�1 � t)z13:

(ii) L(�2;�2) and L
�
1
2
; 1
2

�
. From Theorem 2.3, this pair have the same Q polynomials.

As mentioned above, they have the same HOMFLY polynomials, and thus have the same

Jones and Conway polynomials. Note that their linking numbers are �2. However, this pair

have di�erent Kau�man polynomials:

F (L(�2;�2)) = (a5 + a3)x�1 � a4

+ (�2a9 � 5a7 � 4a5 + 4a3 + 5a1 � a�1 � a�3)x+O(x2);

F
�
L
�
1
2
; 1
2

��
= (a5 + a3)x�1 � a4

+ (�a9 � 2a7 � 2a5 + 2a3 + 2a1 � 2a�1 � a�3)x+O(x2):

Similarly, the pair �L(�2;�2), �L(1=2; 1=2) have the same Jones and Q polynomials, but have

di�erent Kau�man polynomials. Further they have di�erent Conway polynomials, and thus

have di�erent HOMFLY polynomials:

r(�L(�2;�2)) = 2z + z3 � 4z5 � 10z7 � 4z9;

r

�
�L
�
1
2
; 1
2

��
) = 2z + z3 � 12z5 � 24z7 � 19z9 � 7z11 � z13:

(iii) L
�
�2;�1

2

�
and L

�
2; 1

2

�
. As mentioned above, these are knots and have the same

HOMFLY, Jones and Conway polynomials. They have di�erent Q polynomials, and thus

have di�erent Kau�man polynomials:

Q
�
L
�
�2;�1

2

��
=� 3� 26x� 12x2 + 36x3 + 114x4 � 24x5 � 300x6 � 60x7 + 404x8

+ 212x9 � 266x10 � 252x11 + 24x12 + 104x13 + 44x14 + 6x15;

Q
�
L
�
2; 1

2

��
=� 3 + 6x+ 4x2 � 100x3 + 78x4 + 280x5 � 196x6 � 400x7 + 220x8

+ 360x9 � 146x10 � 256x11 + 4x12 + 100x13 + 44x14 + 6x15:
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5.2. T (2;�1; R;�3;�1). For the tangle T (R) = T (2;�1; R;�3;�1), let us consider the ori-

ented link diagram or the oriented link DT (R1; R2) as shown in Fig. 12, which we denote by

M(R1; R2).

R 1 R 2

Figure 12. M(R1; R2).

From Theorem 2.1 (iii), the following pair of 2-component link diagrams have the same

Kau�man bracket polynomials:

� M
�
�2;�1

2

�
and M

�
2; 1

2

�
.

Since the writhes of these oriented diagrams are 10, they have the same Jones polynomials.

They have di�erent Conway polynomials, and thus have di�erent HOMFLY polynomials:

r

�
M

�
�2;�1

2

��
= 4z + 5z3 � 7z5 + 3z9;

r

�
M

�
2; 1

2

��
= 4z + 5z3 � 15z5 � 6z7 + 2z9:

Further, they have di�erent Q polynomials and thus have di�erent Kau�man polynomials:

Q
�
M

�
�2;�1

2

��
=� 6x�1 + 7� 6x� 74x2 + 74x3 + 314x4 � 74x5 � 594x6 � 90x7

+ 602x8 + 234x9 � 374x10 � 268x11 + 72x12 + 130x13 + 48x14 + 6x15;

Q
�
M

�
2; 1

2

��
=� 6x�1 + 7 + 58x� 42x2 � 230x3 + 98x4 + 414x5 � 158x6 � 402x7

+ 234x8 + 286x9 � 242x10 � 252x11 + 56x12 + 126x13 + 48x14 + 6x15:

5.3. T (R; 1; R2; 1; R4). In addition to Theorems 2.1{2.3, the following holds in this class.
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Theorem 5.1. Let U = U(R) = T (R; 1; R2; 1; R4). Then the pair of the link diagrams

D(U ;R;R�) ( = DU(R) ) and D(U ;R�
?
; R?) ( = DU(R�

?
) ) share the same � polynomial

for any tangles R2 and R4.

Proof. Let GR be a link diagram that contains a tangle R. Applying the axioms (3.6){(3.8),

we may express the � polynomial �(GR) of GR in terms of �(G0), �(G1) and �(G1):

�(GR) = f�(G0) + g�(G1) + h�(G1); (5.1)

where f = f(a; x), g = g(a; x), h = h(a; x) 2 Z[a�1; x�1]. Then we have

�(GR�) = �f�(G0) + �g�(G1) + �h�(G�1); (5.2)

�(GR
?

) = g�(G0) + f�(G1) + h�(G�1); (5.3)

�(GR�
?

) = �g�(G0) + �f�(G1) + �h�(G1); (5.4)

where �f = �f(a; x) = f(a�1; x), �g = �g(a; x) = g(a�1; x), �h = �h(a; x) = h(a�1; x). Let

�(R1; R2) be the � polynomial of the link diagram D(U ;R1; R2). Then using (5.1), we have

�(R;R�) = f �f�(0; 0) + f�g�(0;1) + f�h�(0;�1)

+ �fg�(1; 0) + g�g�(1;1) + g�h�(1;�1)

+ �fh�(1; 0) + �gh�(1;1) + h�h�(1;�1):

(5.5)

It is easy to see that the following pairs of link diagrams are regular isotopic:

D(U ; 0; 0) and D(U ;1;1); D(U ; 0;�1) and D(U ; 1;1); D(U ;1;�1) and D(U ; 1; 0):

Thus we have

�(R;R�) = (f �f + g�g)�(0; 0) + (f�h+ �gh)�(0;�1) + (g�h + �fh)�(1;�1)

+ f�g�(0;1) + �fg�(1; 0) + h�h�(1;�1):
(5.6)

From (5.1){(5.4), we see that �(R�
?
; R?) is obtained from (5.6) by exchanging f , g, h for �g,

�f , �h, respectively. Therefore we obtain:

�(R;R�) = �(R�
?
; R?): (5.7)

This completes the proof. �

For the tangle U(R) = T (R; 1; 1; 1; 2), let us consider the oriented link diagramD(U ;R;R�)

as shown in Fig. 13, which we denote by N(R). Then the pair N(R) and N(R�
?
) share the
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same Kau�man bracket (Theorem 2.1 (i)), HOMFLY (Theorem 2.2 (i)), and � (Theorem 5.1)

polynomials. In general, N(R) and N(R�
?
) are distinct. Take N(�2) and N(�1=2) for

example; each of them is a 2-component link consisting of a trivial knot and a square knot.

Let N(�2)0 and N(�1=2)0 be the 4-component links obtained from N(�2) and N(�1=2)

by taking 3-cables about the unknotted components, respectively. Then by the computer

calculation, we see that the Jones polynomials of N(�2)0 and N(�1=2)0 are distinct. We

omit the detail, which will be found in [29].

R R*

Figure 13. N(R).
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