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Abstract. We introduce the notion of a multi-fan. It is a generalization of that of
a fan in the theory of toric variety in algebraic geometry. Roughly speaking a toric
variety is an algebraic variety with an action of algebraic torus of the same dimension
as that of the variety, and a fan is a combinatorial object associated with the toric
variety. Algebro-geometric properties of the toric variety can be described in terms of the
associated fan. We develop a combinatorial theory of multi-fans and de�ne \topological
invariants" of a multi-fan. A smooth manifold with an action of a compact torus of half
the dimension of the manifold and with some orientation data is called a torus manifold.
We associate a multi-fan with a torus manifold, and apply the combinatorial theory
to describe topological invariants of the torus manifold. A similar theory is also given
for torus orbifolds. As a related subject a generalization of the Ehrhart polynomial
concerning the number of lattice points in a convex polytope is discussed.

1. Introduction

The purpose of the present paper is to develop a theory of multi-fans which is an

outgrowth of our study initiated in the work [23] on the topology of torus manifolds (the

precise de�nition will be given later). A multi-fan is a combinatorial object generalizing

the notion of a fan in algebraic geometry. Our theory is combinatorial by nature but it

is built so as to keep a close connection with the topology of torus manifolds.

It is known that there is a one-to-one correspondence between toric varieties and fans.

A toric variety is a normal complex algebraic variety of dimension n with a (C �)n-action

having a dense orbit. The dense orbit is unique and isomorphic to (C �)n, and other orbits

have smaller dimensions. The fan associated with the toric variety is a collection of cones

in Rn with apex at the origin. To each orbit corresponds a cone of dimension equal to the

codimension of the orbit. Thus the origin is the cone corresponding to the dense orbit,

one-dimensional cones correspond to maximal singular orbits and so on. The important

point is the fact that the original toric variety can be reconstructed from the associated

fan, and algebro-geometric properties of the toric variety can be described in terms of

combinatorial data of the associated fan.

If one restricts the action of (C �)n to the usual torus T = (S1)n, one can still �nd

the fan, because the orbit types of the action of the total group (C �)n can be detected

by the isotropy types of the action of the subgroup T . Take a circle subgroup S of T

which appears as an isotropy subgroup of the action. Then each connected component of

the closure of the set of those points whose isotropy subgroup equals S is a T -invariant

submanifold of real codimension 2, and contains a unique (C �)n orbit of complex codi-

mension 1. We shall call such a submanifold a characteristic submanifold. If M1; : : : ;Mk

are characteristic submanifolds such that M1 \ � � � \Mk is non-empty, then the submani-

foldM1\� � �\Mk contains a unique (C
�)n-orbit of complex codimension k. This suggests

the following de�nition of torus manifolds and associated multi-fans.
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Let M be an oriented closed manifold of dimension 2n with an e�ective action of n

dimensional torus T with non-empty �xed point set MT . A closed, connected, codimen-

sion two submanifold of M will be called characteristic if it is a connected component

of the �xed point set of a certain circle subgroup S of T , and if it contains at least one

T -�xed point. The manifold M together with a prefered orientation of each characteris-

tic submanifold will be called a torus manifold. The multi-fan associated with the torus

manifoldM consists of cones in the Lie algebra L(T ) of T , with apex at the origin. If Mi

is a characteristic submanifold and Si is the circle subgroup of T which pointwise �xesMi,

then Si together with the orientation of Mi determines an element vi of Hom(S1
; T ), and

hence a one dimensional cone in the vector space Hom(S1
; T )
 R canonically identi�ed

with L(T ). If Mii
; : : : ;Mik

are characteristic submanifolds such that their intersection

contains at least one T -�xed point, and if vi1 ; : : : ; vik are the corresponding elements in

Hom(S1
; T ), then the k-dimensional cone spanned by vi1 ; : : : ; vik lies in the multi-fan as-

sociated with M . It should be noted that the intersection of characteristic submanifolds

may not be connected in contrast with the case of toric manifolds where the intersection

is always connected. For example, the intersection of a family of n characteristic sub-

manifolds is a �nite set consisiting of T -�xed points. These data are also incorporated in

the de�nition of the associated multi-fan.

One of the di�erences between a fan and a multi-fan is that, while cones in a fan

intersect only at their faces and their union covers the space L(T ) just once without

overlap for complete toric varieties, it happens that the union of cones in a multi-fan

covers L(T ) with overlap for torus manifolds. Also the same multi-fan corresponds to

di�erent torus manifolds. Nevertheless it turns out that important topological invariants

of a torus manifold can be described in terms of the associated multi-fan. In fact it is

furthermore possible to develop an abstract theory of multi-fans and to de�ne various

\topological" invariants of a multi-fan in such a way that, when the fan is associated with a

torus manifold, they coincide with the ordinary topological invariants of the manifold. For

example, the \multiplicity of overlap", which we call the degree of the multi-fan, equals

the Todd genus for a unitary torus manifold (unitary toric manifold in the terminology

in [23]).

Another feature of the theory of toric varieties is the correspondence between ample

line bundles over a complete toric variety and convex polytopes. From a topological point

of view this can be explained in the following way. Let (M;!) be a compact symplectic

manifold with a Hamiltonian T -action, and let 	 :M ! L(T )� be an associated moment

map. Then it is well-known ([1], [13]) that the image P of 	 is a convex polytope.

Moreover, if the de Rham cohomology class of ! is an integral class, then the polytope P is

a lattice polytope up to translations in L(T )� identi�ed with Rn . Delzant [7] showed that

the original symplectic manifold (M;!) is equivariantly symplectomorphic to a complete

non-singular toric variety and the form ! is transfomed into the �rst Chern form of an

ample line bundle L over the toric variety. It is known that the number of lattice points

in P is equal to the Riemann-Roch numberZ
M

e
c1(L)T (M)

where T is the Todd class of M , see e.g. [9]. This sort of phenomenon was generalized

to \presymplectic" toric manifolds by Karshon and Tolman [18], then to Spinc toric

manifolds by Grossberg and Karshon [10] and also to unitary toric manifolds by the

second-named author [23] in the form which relates the equivariant index of the line
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bundle L regarded as an element of KT (M) to the Duistermaat-Heckman measure of the

moment map associated with L. In these extended cases the form ! may be degenerate or

the line bundle may not be ample, and consequently the image of the moment map may

not be convex any longer. This leads us to consider more general �gures which we call

multi-polytopes. A multi-polytope is a pair of a multi-fan and an arrangement of a�ne

hyperplanes in L(T )�. A similar notion was introduced by Karshon and Tolman [18] and

also by Khovanskii and Pukhlikov [21] for ordinary fans under the name twisted polytope

and virtual polytope respectively. We shall develop a combinatorial theory of multi-

polytopes as well; we de�ne the Duistermaat-Heckman measure and the equivariant index

in purely combinatorial fashion for multi-fans and multi-polytopes, and generalize above

results in the combinatorial context. Also we shall introduce a combinatorial counterpart

of moment map which can be used to interpret the combinatorial Duistermaat-Heckman

measure.

In carrying out the above program, the use of equivariant homology and cohomol-

ogy plays an important role. First note that the group Hom(S1
; T ) can be canonically

identi�ed with the equivariant integral homology group H2(BT ), and hence the vector

space L(T ) with H2(BT;R). In this way we regard vectors vi in a multi-fan as lying in

H2(BT;R). On the other hand a characteristic submanifold Mi with a �xed orientation

determines a cohomology class �i in H
2
T
(M), the equivariant Poincar�e dual of Mi. These

cohomology classes are fundamental for describing the �rst Chern class of an equivariant

line bundle over M . This fact enables us to associate a multi-polytope and a general-

ization of Duistermaat-Heckman measure with an equivariant line bundle. To a T -line

bundle L with the equivariant �rst Chern class of the form c
T

1 (L) =
P
ci�i, we associate

an arrangement of a�ne hyperplanes Fi in H
2(BT ;R) = L(T )� de�ned by

Fi = fu 2 H2(BT ;R) j hu; vii = cig:
This arrangement de�nes the multi-polytope associated with the line bundle L. Moreover

it is possible to de�ne the equivariant cohomology of a complete simplicial multi-fan and

extend the results to such abstract multi-fans and multi-polytopes.

If vi1 ; : : : ; vin are primitive vectors generating an n-dimensional cone in the multi-fan

associated with a torus manifold, then they form a basis of Hom(S1
; T ). However, in

the de�nition of abstract multi-fans, this condition is not postulated. From this point

of view, it is natural to deal with torus orbifolds besides torus manifolds. This can be

achieved without much change technically. More importantly every complete simplicial

multi-fan (precise de�nition will be given later) can be realized as a multi-fan associated

with a torus orbifold in dimensions greater than 2. In dimensions 1 and 2, realizable

multi-fans are characterized.

We now explain contents of each section. In Section 2 we give a de�nition of a multi-fan

and introduce certain related notions. The completeness of multi-fans is most important.

It is a generalization of the notion of completeness of fans. But the de�nition takes

somewhat sophisticated form. Section 3 is devoted to the Ty-genus of a complete multi-

fan. It is de�ned in such a way that, when the multi-fan is associated with a unitary torus

manifold M , it coincides with the Ty-genus of M . In Lemma 3.1 we exhibit an equality

which is an analogue of the relation between h-vectors and f -vectors in combinatorics

(see e.g. [28]), and which, we hope, sheds a more insight on that relation.

In Section 4 and 5 the notion of a multi-polytope and the associated Duistermaat-

Heckman function are de�ned. As explained above, a multi-polytope is a pair P = (�;F)
of an n-dimensional complete multi-fan � and an arrangement of hyperplanes F = fFig
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in H
2(BT ;R) with the same index set as the set of 1-dimensional cones in �. It is

called simple if the multi-fan � is simplicial. The Duistermaat-Heckman function DHP

associated with a simple multi-polytope P is a locally constant integer-valued function

with bounded support de�ned on the complement of the hyperplanes fFig. The wall

crossing formula (Lemma 5.3) which describes the di�erence of the values of the function

on adjacent components is important for later use. In Section 6 another locally constant

function on the complement of the hyperplanes fFig in a multi-polytope P, called the

winding number, is introduced. It satis�es a wall crossing formula entirely similar to

the Duistermaat-Heckman function. When the multi-fan � is associated with a torus

manifold or a torus orbifold M and if there is an equivariant complex line bundle L over

M , then there is a simple multi-polytope P naturally associated with L, and the winding

number WNP is closely related to the moment map of L. In fact it can be regarded as

the density function of the Duistermaat-Heckman measure associated with the moment

map. Theorem 6.6, main theorem in Section 6, states that the Duistermaat-Heckman

function and the winding number coincide for any simple multi-polytope.

Section 7 is devoted to a generalization of the Ehrhart polynomial to multi-polytopes.

If P is a convex lattice polytope and if �P denotes the multiplied polytope by a pos-

itive integer �, then the number of lattice points ](�P ) contained in �P is developed

as a polynomial of � . It is called the Ehrhart polynomial of P . The generalization to

multi-polytopes is straightforward and properties similar to that of the ordinary Ehrhart

polynomial hold (Theorem 7.2). If P is a simple lattice multi-polytope, then the associ-

ated Ehrhart polynomial ](�P) is de�ned by

](�P) =
X

u2H2(BT ;Z)

DH�P+
(u);

where P+ denotes a multi-polytope obtained from P by a small enlargement. Lemma

7.3 is crucial for the proof of Theorem 7.2 and for the later development of the the-

ory. Its corollary, Corollary 7.4, gives a localization formula for the Laurent polynomialP
u2H2(BT ;Z)DHP+(u)t

u regarded as a character of T . It can be considered as a combina-

torial generalization of Theorem 11.1. It reduces to ]P when evaluated at the identity.

Using this fact, in Section 8, a cohomological formula expressing ]P in terms of the \Todd

class" of the multi-fan and the �rst \Chern class" of the multi-polytope is given in Theo-

rem 8.5. The formula can be thought of as a generalization of the formula expressing the

number of lattice points in a convex lattice polytope by the Riemann-Roch number of the

corresponding ample line bundle. The argument is completely combinatorial. We de�ne

the equivariant cohomology H�

T
(�) of a multi-fan � which is a module over H�(BT ), the

index map (Gysin homomorphism) �! : H
�

T
(�) ! H

��2n(BT ), the cohomology H�(�)

of � and �nally the evaluation on the \fundamental class". As a corollary a generaliza-

tion of Khovanskii-Pukhlikov formula ([21]) for simple lattice multi-polytopes is given in

Theorem 8.7.

In Section 9 it is shown how to associate a multi-fan with a torus manifold. It is also

shown that the associated multi-fan is complete. Then, in Section 10, the Ty-genus of

a general torus manifold is de�ned and is proved to coincide with the Ty-genus of the

associated multi-fan in Theorem 10.1. As a corollary a formula for the signature of a torus

manifold is given. In the same spirit the de�nition of the equivariant index of a line bundle

over a general torus manifold is given in Section 11 using a localization formula which

holds in the case of unitary torus manifolds. The main theorem of this section, Theorem
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11.1, gives a formula describing that equivariant index using the winding number. It

generalizes the results of [18], [23] and [10] as indicated before. Results of Section 5 and

6 are crucially used here.

In Section 12 necessary changes to deal with torus orbifolds are explained briey. One

of remarkable points is that the torus action and the orbifold structure is closely related

for a torus orbifold as is explained in Lemma 12.3. In the last section realization problem

is dealt with. Main results of the section are Theorems 13.1, 13.2 and 13.3.

2. Multi-fans

In [23], we introduced the notion of a unitary toric manifold, which contains a compact

non-singular toric variety as an example, and associated with it a combinatorial object

called a multi-fan, which is a more general notion than the complete non-singular fan.

In this section, we de�ne a multi-fan in a combinatorial way and in full generality. The

reader will �nd that our notion of multi-fan is a complete generalization of a fan. We

also de�ne the completeness and non-singularity of a multi-fan, which generalize the

corresponding notion of a fan. To do this, we begin with reviewing the de�nition of a

fan.

Let N be a lattice of rank n, which is isomorphic to Zn. We denote the real vector

space N 
R by NR. A subset � of NR is called a strongly convex rational polyhedral cone

(with apex at the origin) if there exits a �nite number of vectors v1; : : : ; vm in N such

that

� = fr1v1 + � � �+ rmvm j ri 2 R and ri � 0 for all ig
and � \ (��) = f0g. Here \rational" means that it is generated by vectors in the lattice

N , and \strong" convexity that it contains no line through the origin. We will often call

a strongly convex rational polyhedral cone in NR simply a cone in N . The dimension

dim� of a cone � is the dimension of the linear space spanned by vectors in �. A subset

� of � is called a face of � if there is a linear function ` : NR ! R such that ` takes

nonnegative values on � and � = `
�1(0) \ �. A cone is regarded as a face of itself, while

others are called proper faces.

De�nition. A fan � in N is a set of a �nite number of strongly convex rational polyhe-

dral cones in NR such that

(1) Each face of a cone in � is also a cone in �;

(2) The intersection of two cones in � is a face of each.

De�nition. A fan � is said to be complete if the union of cones in � covers the entire

space NR.

A cone is called simplicial, or a simplex, if it is generated by linearly independent

vectors. If the generating vectors can be taken as a part of a basis of N , then the cone is

called non-singular.

De�nition. A fan � is said to be simplicial (resp. non-singular) if every cone in � is

simplicial (resp. non-singular).

The basic theory of toric varieties tells us that a fan is complete (resp. simplicial or

non-singular) if and only if the corresponding toric variety is compact (resp. an orbifold

or non-singular).
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For each � 2 �, we de�ne N � to be the quotient lattice ofN by the sublattice generated

(as a group) by � \N ; so the rank of N � is n�dim � . We consider cones in � that contain

� as a face, and project them on (N � )R. These projected cones form a fan in N � , which

we denote by �� and call the projected fan with respect to � . The dimensions of the

projected cones decrease by dim � . The completeness, simpliciality and non-singularity

of � are inherited to �� for any � .

We now generalize these notions of a fan. Let N be as before. Denote by Cone(N) the

set of all cones in N . An ordinary fan is a subset of Cone(N). The set Cone(N) has a

(strict) partial ordering � de�ned by: � � � if and only if � is a proper face of �. The

cone f0g consisting of the origin is the unique minimum element in Cone(N). On the

other hand, let � be a partially ordered �nite set with a unique minimum element. We

denote by the (strict) partial ordering by < and the minimum element by �. An example

of � used later is an abstract simplicial set with an empty set added as a member,

which we call an augmented simplicial set. In this case the partial ordering is de�ned by

the inclusion relation and the empty set is the unique minimum element which may be

considered as a (�1)-simplex. Suppose that there is a map

C : �! Cone(N)

such that

(1) C(�) = f0g;
(2) If I < J for I; J 2 �, then C(I) � C(J);

(3) For any I; J 2 � and � 2 Cone(N) such that I < J and C(I) � � � C(J), there

is a unique element K 2 � such that I < K < J and C(K) = �.

For an integer m such that 0 � m � n, we set

�(m) := fI 2 � j dimC(I) = mg:
One can easily check that �(m) does not depend on C. When � is an augmented simplicial

set, I 2 � belongs to �(m) if and only if the cardinality jIj of I is m, namely I is an

(m � 1)-simplex. Therefore, even if � is not an augmented simplicial set, we use the

notation jIj for m when I 2 �(m).

The image C(�) is a �nite set of cones in N . We may think of a pair (�; C) as a set of

cones in N labeled by the ordered set �. Cones in an ordinary fan intersect only at their

faces, but cones in C(�) may overlap, even the same cone may appear repeatedly with

di�erent labels. The pair (�; C) is almost what we call a multi-fan, but we incorporate

a pair of weight functions on cones in C(�) of the highest dimension n = rankN . More

precisely, we consider two functions

w
� : �(n) ! Z�0:

We assume that w+(I) > 0 or w�(I) > 0 for every I 2 �(n). These two functions

naturally arise from geometry, and their sum corresponds to Euler number while their

di�erence is related to Todd genus (see [23]).

De�nition. We call a triple � := (�; C; w�) a multi-fan in N . We de�ne the dimension

of � to be the rank of N (or the dimension of NR).

Since an ordinary fan � in N is a subset of Cone(N), one can view it as a multi-fan

by taking � = �, C = the inclusion map, w+ = 1, and w
� = 0. In a similar way as

in the case of ordinary fans, we say that a multi-fan � = (�; C; w�) is simplicial (resp.
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non-singular) if every cone in C(�) is simplicial (resp. non-singular). The following

lemma is easy.

Lemma 2.1. A multi-fan � = (�; C; w�) is simplicial if and only if � is isomorphic to

an augmented simplicial set as partially ordered sets.

The de�nition of completeness of a multi-fan� is rather complicated. A naive de�nition

of the completeness would be that the union of cones in C(�) covers the entire space NR.

But it turns out that this is not a right de�nition if we look at the multi-fan associated

with a unitary toric manifold, see Section 9. Although the two weighted functions w�

are incorporated in the de�nition of a multi-fan, only the di�erence

w := w
+ � w�

matters in this paper except Section 13. We shall introduce the following intermediate

notion of pre-completeness at �rst. A vector v 2 NR will be called generic if v does not lie
on a linear subspace spanned by a cone in C(�) of dimesnsion less than n. For a generic

vector v we set dv =
P

v2C(I) w(I), where the sum is understood to be zero if there is no

such I.

De�nition. We call a multi-fan � = (�; C; w�) of dimension n pre-complete if �(n) 6= ;
and the integer dv is independent of the choice of generic vectors v. We call this integer

the degree of � and denote it by deg(�).

Remark. For an ordinary fan, pre-completeness is same as completeness.

To de�ne the completeness for a multi-fan �, we need to de�ne a projected multi-fan

with respect to an element in �. We do it as follows. For each K 2 �, we set

�K := fJ 2 � j K � Jg:
It inherits the partial ordering from �, and K is the unique minimum element in �K. A

map

CK : �K ! Cone(NC(K))

sending J 2 �K to the cone C(J) projected on (NC(K))R satis�es the three properties

above required for C. We de�ne two functions

wK
� : �

(n�jKj)

K
� �(n) ! Z�0

to be the restrictions of w� to �
(n�jKj)

K
. A triple �K := (�K; CK; wK

�) is a multi-fan in

N
C(K), and this is the desired projected multi-fan with respect to K 2 �. When � is an

ordinary fan, this de�nition agrees with the previous one.

De�nition. A pre-complete multi-fan � = (�; C; w�) is said to be complete if the pro-

jected multi-fan �K is pre-complete for any K 2 �.

Remark. A multi-fan � is complete if and only if the projected multi-fan �J is pre-

complete for any J 2 �(n�1). The argument is as follows. The pre-completeness of �J

for J 2 �(n�1) implies that dv =
P

v2C(I) w(I) remains unchanged when v gets across the

codimension one cone C(J), which means the pre-completeness of �. Since �
(n�jKj�1)

K
is

contained in �(n�1) for any K 2 �, the pre-completeness of �J for any J 2 �(n�1) also

implies the pre-completeness of �K for any K 2 �.
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Example 2.2. Here is an example of a complete non-singular multi-fan of degree two.

Let v1; : : : ; v5 be integral vectors shown in Figure 1, where the dots denote lattice points.

v1

v4v2

v5 v3

Figure 1

The vectors are rotating around the origin twice in counterclockwise. We take

� = f�; f1g; : : : ; f5g; f1; 2g; f2; 3g; f3; 4g; f4; 5g; f5; 1gg;
de�ne C : �! Cone(N) by

C(fig) = the cone spanned by vi,

C(fi; i+ 1g) = the cone spanned by vi and vi+1,

where i = 1; : : : ; 5 and 6 is understood to be 1, and take w� such that w = 1 on every

two dimensional cone. Then � = (�; C; w�) is a complete non-singular two-dimensional

multi-fan with deg(�) = 2.

Example 2.3. Here is an example of a complete multi-fan \with folds". Let v1; : : : ; v5
be vectors shown in Figure 2.

v2

v1v4

v3 v5

Figure 2

We take the same � and C as in Example 2.2 and take w� such that

w(f3; 4g) = �1 and w(fi; i+ 1g) = 1 for i 6= 3.

Then � = (�; C; w�) is a complete two-dimensional multi-fan with deg(�) = 1.
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A similar example can be constructed for a number of vectors v1; : : : ; vd (d � 3) by

de�ning

w(fi; i+ 1g) = 1 if vi and vi+1 are rotating in counterclockwise,

w(fi; i+ 1g) = �1 if vi and vi+1 are rotating in clockwise,

where d + 1 is understood to be 1. The degree deg(�) is the rotation number of the

vectors v1; : : : ; vd around the origin in counterclockwise and may not be one.

Example 2.4. Here is an example of a multi-fan which is pre-complete but not complete.

Let v1; : : : ; v5 be vectors shown in Figure 3.

v3

v1 = v4

v2 = v5

Figure 3

We take

� = f�; f1g; : : : ; f5g; f1; 2g; f2; 3g; f3; 1g; f4; 5gg;
de�ne C : �! Cone(N) as in Example 2.2, and take w� such that

w(f1; 2g) = 2; w(f2; 3g) = 1; w(f3; 1g) = 1; w(f4; 5g) = �1:
Then � = (�; C; w�) is a two-dimensional multi-fan which is pre-complete (in fact,

deg(�) = 1) but not complete because the projected multi-fan �fig for i 6= 3 is not

pre-complete.

So far, we treated rational cones that are generated by vectors in the lattice N . But,

most of the notions introduced above make sense even if we allow cones generated by

vectors in NR which may not be in N . In fact, the notion of non-singularity requires the

lattice N , but others do not. Therefore, one can de�ne a multi-fan and its completeness

and simpliciality in this extended category as well. The reader will �nd that the arguments

developed in Sections 3 through 6 work in this extended category.

3. Ty-genus of a multi-fan

A unitary toric manifold M determines a complete non-singular multi-fan. (This will

be discussed and extended to torus manifolds in Section 9.) On the other hand, the Ty-

genus for unitary manifolds introduced by Hirzebruch in his famous book [17] is de�ned

for M . It is a polynomial in one variable y of degree (at most) 1
2
dimM . The Kosniowski

formula about the Ty-genus for unitary S
1-manifolds (see [15], [19]) and the results in [23]

imply that the Ty-genus of M should be described in terms of the multi-fan associated
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with M . In this section (and in Section 10) we give the explicit description. In fact,

our argument is rather more general. We think of the Ty-genus of M as a polynomial

invariant of the associated multi-fan which is complete and non-singular. It turns out

that the polynomial invariant can be de�ned not only for the multi-fans associated with

unitary toric manifolds but also for all complete simplicial multi-fans.

Since the lattice N is unnecessary from now until the end of Section 6, we shall denote

the vector space, in which cones sit, by V instead ofNR. Let � = (�; C; w�) be a complete

simplicial multi-fan de�ned on V . By Lemma 2.1 we may assume that � is an augmented

simplicial set, say, consisting of subsets of f1; : : : ; dg and �(1) = ff1g; : : : ; fdgg where d
is the number of elements in �(1). For each i = 1; : : : ; d, let vi denote a nonzero vector

in the one-dimensional cone C(fig). Choose a generic element v 2 V . Let I 2 �(n).

Since vi's (i 2 I) are linearly independent, v has a unique expression
P

i2I
aivi with real

numbers ai's. The coe�cients ai's are all nonzero because v is generic. We set

�(I) := ]fi 2 I j ai > 0g:
This depends on v although v is not recorded in the notation �(I).

De�nition. For an integer q with 0 � q � n, we de�ne

hq(�) :=
X
�(I)=q

w(I) and eq(�) :=
X

K2�(q)

deg(�K):

Note that hn(�) = deg(�) = e0(�), and eq(�)'s are independent of v. If � is a complete

simplicial multi-fan such that deg(�) = 1 and w(I) = 1 for all I 2 �(n) (e.g. this is the

case if � is a complete simplicial ordinary fan), then deg(�K) equals 1 for all K 2 � and

hence eq(�) agrees with the number of cones of dimension q in the multi-fan.

The following lemma reminds us of the relation between the h-vectors and the f -vectors

for simplicial sets studied in combinatorics (see [28]).

Lemma 3.1.

nX
q=0

hq(�)(s+ 1)q =

nX
m=0

en�m(�)sm where s is an indeterminate.

Proof. The lemma is equivalent to the following identity:

nX
q=m

hq(�)

�
q

m

�
= en�m(�):(3.1)

It follows from the de�nition of hq(�) that

l.h.s. of (3.1) =

nX
q=m

�
q

m

� X
�(I)=q

w(I):(3.2)

On the other hand, we shall rewrite en�m(�). It follows from the de�nition of deg(�K)

that

deg(�K) =
X

J2�
(n�jKj)

K
s:t: vK2CK(J)

wK(J)

where vK denotes the projection image of v on the quotient vector space of V by the

subspace VK spanned by the cone C(K). Note that vK lies in CK(J) if and only if v lies
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in C(J [K) modulo VK, and that wK(J) = w(J [K) by de�nition. Therefore, writing

J [K as I, the identity above turns into

deg(�K) =
X
I

w(I);

where I runs over elements in �(n) such that K � I and v 2 C(I) modulo VK. Putting

this in the de�ning equation of en�m(�), we have

en�m(�) =
X
K;I

w(I);(3.3)

where the sum is taken over elements K 2 �(n�m) and I 2 �(n) such that K � I and

v 2 C(I) modulo VK. Fix I 2 �(n) with �(I) = q, and observe how many times I appears

in the above sum. It is equal to the number of K 2 �(n�m) such that K � I and v 2 C(I)
modulo VK. But the number of such K is

�
q

m

�
. To see this, we note that �(I) = q means

that ]fi 2 I j ai > 0g = q by de�nition, where v =
P

i2I
aivi, and that the condition that

v 2 C(I) modulo VK is equivalent to saying that K contains the complement of the set

fi 2 I j ai > 0g in I. Therefore, any such K is obtained as the complement of a subset of

fi 2 I j ai > 0g with cardinality m, so that the number of such K is
�
q

m

�
. This together

with (3.2) and (3.3) proves the identity (3.1).

Corollary 3.2. (1) hq(�)'s are independent of the choice of the generic vector v.

(2) hq(�) = hn�q(�) for any q.

Proof. (1) This immediately follows from Lemma 3.1 because eq(�)'s are independent of

v.

(2) If we take �v instead of v, then �(I) turns into n � �(I), so that hq(�) turns

into hn�q(�). Since hq(�)'s are independent of v as shown in (1) above, this proves

hq(�) = hn�q(�).

When � is associated with a unitary toric manifold M , the Ty-genus of M turns out

to be given by
P

n

q=0 hq(�)(�y)q. (This will be discussed in Section 10 later.) Motivated

by this observation,

De�nition. For a complete simplicial multi-fan �, we de�ne

Ty[�] :=

nX
q=0

hq(�)(�y)q

and call it the Ty-genus of �. Note that T0[�] = h0(�) = hn(�) = deg(�).

Lemma 3.1 can be restated as

Corollary 3.3. Let � be a complete simplicial multi-fan. Then

Ty[�] =

nX
m=0

en�m(�)(�1� y)m:
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4. Multi-polytopes

A convex polytope P in V
� = Hom(V;R) is the convex hull of a �nite set of points

in V �. It is the intersection of a �nite number of half spaces in V � separated by a�ne

hyperplanes, so there are a �nite number of nonzero vectors v1; : : : ; vd in V and real

numbers c1; : : : ; cd such that

P = fu 2 V � j hu; vii � ci for all ig;
where h ; i denotes the natural pairing between V

� and V . (Warning: In this paper,

we take vi to be \outward normal" to the corresponding face of P contrary to the usual

convention in algebraic geometry, cf. e.g. [25].) The convex polytope P can be recovered

from the data f(vi; ci) j i = 1; : : : ; dg. But, a more general �gure like Q shaded in

Figure 4 cannot be determined by the data f(vi; ci) j i = 1; : : : ; dg. We need to prescribe

the vertices of Q, in other words, which pairs of lines `i's are presumed to intersect. For

instance, if four points `1 \ `2, `2 \ `3, `3 \ `4 and `4 \ `1 are presumed to be vertices (and

the others such as `2 \ `4 are not), then we can �nd the �gure Q in Figure 4. But, if

di�erent four points `1 \ `4, `4 \ `2, `2 \ `3 and `3 \ `1 are presumed to be vertices, then

we obtain a �gure Q0 shaded in Figure 4.
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Figure 4

The data of whether two lines `i and `j are presumed to intersect is equivalent to the

data of whether the corresponding vectors vi and vj span a cone. In the former (resp.

latter) example above, resulting cones are four two-dimensional ones shown in Figure 5

(1) (resp. (2)). Needless to say, `i is `perpendicular' to the half line spanned by vi.

A polytope gives rise to a multi-fan in this way. One notes that a convex polytope

gives rise to a complete fan. Taking this observation into account, we reverse a gear.

We start with a complete multi-fan � = (�; C; w�). Let HP(V �) be the set of all a�ne

hyperplanes in V �.

De�nition. Let � = (�; C; w�) be a complete multi-fan and let F : �(1) ! HP(V �) be

a map such that the a�ne hyperplane F(I) is `perpendicular' to the half line C(I) for

each I 2 �(1), i.e., an element in C(I) takes a constant on F(I). We call a pair (�;F)
a multi-polytope and denote it by P. The dimension of a multi-polytope P is de�ned to

be the dimension of the multi-fan �. We say that a multi-polytope P is simple if � is

simplicial.
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v2 v1

v4

v3

(1)

v2 v1

v4

v3

(2)

Figure 5

Remark. There are two notions similar to that of multi-polytopes, which were intro-

duced by Karshon-Tolman [18] and Khovanskii-Pukhlikov [21] when � is an ordinary

fan. They use the terminology twisted polytope and virtual polytope respectively. The

notion of multi-polytopes is a direct generalization of that of twisted polytopes, and it

also generalizes that of virtual polytopes, see [24].

Example 4.1. A convex polytope determines a complete fan together with an arrange-

ment of a�ne hyperplanes containing the facets of the polytope (as explained above), so

it uniquely determines a multi-polytope.

Example 4.2. Associated with the multi-fan in Example 2.2, one obtains the arrange-

ment of lines drawn in Figure 6 with a suitable choice of the map F . The pentagon

shown up in Figure 6 produces the same arrangement of lines and can be viewed as a

multi-polytope as explained in Example 4.1 above, but these two multi-polytopes are

di�erent because the underlying multi-fans are di�erent; one is a multi-fan of degree two

while the other is an ordinary fan. The reader will �nd a star-shaped �gure in the former

multi-polytope.

F(f1g)

F(f2g)

F(f3g)

F(f4g)

F(f5g)
Figure 6
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5. Duistermaat-Heckman functions

A multi-polytope P = (�;F) de�nes an arrangement of a�ne hyperplanes in V �. In

this section, we associate with P a function on V � minus the a�ne hyperplanes when P is

simple. This function is locally constant and Guillemin-Lerman-Sternberg formula ([11]

[12]) tells us that it agrees with the density function of a Duistermaat-Heckman measure

when P arises from a moment map.

Hereafter our multi-polytope P is assumed to be simple, so that the multi-fan � =

(�; C; w�) is complete and simplicial unless otherwise stated. As before, we may assume

that � consists of subsets of f1; : : : ; dg and �(1) = ff1g; : : : ; fdgg, and denote by vi

a nonzero vector in the one-dimensional cone C(fig). To simplify notation, we denote

F(fig) by Fi and set

FI := \i2IFi for I 2 �:

FI is an a�ne space of dimension n � jIj. In particular, if jIj = n (i.e., I 2 �(n)), then

FI is a point, denoted by uI.

Suppose I 2 �(n). Then the set fvi j i 2 Ig forms a basis of V . Denote its dual basis

of V � by fuI
i
j i 2 Ig, i.e., huI

i
; vji = �ij where �ij denotes the Kronecker delta. Take a

generic vector v 2 V such that huI
i
; vi 6= 0 for all I 2 �(n) and i 2 I, and set

(�1)I := (�1)]fi2IjhuIi ;vi>0g and (uI
i
)+ :=

(
u
I

i
if huI

i
; vi > 0

�uI
i

if huI
i
; vi < 0.

We denote by C�(I)+ the cone in V � spanned by (uI
i
)+'s (i 2 I) with apex at uI, and by

�I its characteristic function.

De�nition. We de�ne a function DHP on V �n [d
i=1 Fi by

DHP :=
X

I2�(n)

(�1)Iw(I)�I

and call it the Duistermaat-Heckman function associated with P.
Remark. Apparently, the function DHP is de�ned on the whole space V � and depends

on the choice of the generic vector v 2 V , but we will see in Lemma 5.4 below that it is

independent of v on V �n [ Fi. This is the reason why we restricted the domain of the

function to V �n [ Fi.
For the moment, we shall see the independence of v when dimP = 1.

Example 5.1. Suppose dimP = 1. We identify V with R, so that V � is also identi�ed

with R. Let E be the subset of f1; : : : ; dg such that i 2 E if and only if C(fig) is the half
line consisting of nonnegative real numbers. Then the completeness of � means thatX

i2E

w(fig) =
X
i=2E

w(fig) = deg(�):(5.1)

Take a nonzero vector v. Since V � is identi�ed with R, each a�ne hyperplane Fi is

nothing but a real number. Suppose that v is toward the positive direction. Then

(�1)fig =
(
�1 if i 2 E
1 if i =2 E(5.2)
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and the support of the characteristic function �fig is the half line given by

fu 2 R j Fi � ug:
Therefore

DHP(u) =
X

i2E s:t: Fi<u

(�w(fig)) +
X

i=2E s:t: Fi<u

w(fig)(5.3)

for u 2 Rn [ Fi. If u is su�ciently small, then the sum above is empty; so it is zero. If u

is su�ciently large, then the sum is also zero by (5.1). Hence the support of the function

DHP is bounded.

Now, suppose that v is toward the negative direction. Then (�1)fig above is multiplied
by �1 and the inequality � above turns into �. Therefore

DHP(u) =
X

i2E s:t: u<Fi

w(fig) +
X

i=2E s:t: u<Fi

(�w(fig)):(5.4)

It follows that

r.h.s. of (5.3)� r.h.s. of (5.4) = �
X
i2E

w(fig) +
X
i=2E

w(fig);

which is zero by (5.1). This shows that the function DHP is independent of v when

dimP = 1.

Example 5.2. For the star-shaped multi-polytope in Example 4.2, DHP takes 2 on the

pentagon, 1 on the �ve triangles adjacent to the pentagon and 0 on other (unbounded)

regions. The check is left to the reader.

For each fig 2 �(1), the projected multi-fan �fig = (�fig; Cfig; w
�

fig
), which we ab-

breviate as �i = (�i; Ci; w
�

i
), is de�ned on the quotient vector space V=Vi of V by the

one-dimensional subspace Vi spanned by vi. Since � is complete and simplicial, so is �i.

We identify the dual space (V=Vi)
� with

(V �)i := fu 2 V � j hu; vii = 0g
in a natural way. We choose an element fi 2 Fi arbitrarily and translate Fi onto (V

�)i by

�fi. If fi; jg 2 �(2), then Fj intersects Fi and their intersection will be translated into

(V �)i by �fi. This observation leads us to consider the map

Fi : �i ! HP((V �)i)

sending fjg 2 �
(1)

i
to Fi\Fj translated by �fi. The pair Pi = (�i;Fi) is a multi-polytope

in (V=Vi)
� �= (V �)i.

Let I 2 �(n) such that i 2 I. Since huI
j
; vii = �ij, u

I

j
for j 6= i is an element of (V �)i,

which we also regard as an element of (V=Vi)
� through the isomorphism (V=Vi)

� �= (V �)i.

We denote the projection image of the generic element v 2 V on V=Vi by �v. Then we

have h�v; uI
j
i = hv; uI

j
i for j 6= i, where uI

j
at the left-hand side is viewed as an element

of (V=Vi)
� while the one at the right-hand side is viewed as an element of (V �)i. Since

h�v; uI
j
i = hv; uI

j
i 6= 0 for j 6= i, we use �v to de�ne DHPi

.

Lemma 5.3. (Wall crossing formula.) Let F be one of Fi's. Let u� and u� be elements

in V
�n [d

i=1 Fi such that the segment from u� to u� intersects the wall F transversely at
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�, and does not intersect any other Fj 6= F . Then

DHP(u�)�DHP(u�) =
X

i:Fi=F

signhu� � u�; viiDHPi
(�� fi):

Proof. For simplicity we assume that there is only one i such that Fi = F . We may

assume that hu� � u�; vii is positive without loss of generality. The situation is as in

Figure 7.

vi

uI

u
I

i

�

u�

u�

Fj's

Fi

Figure 7

It follows from the de�nition of DHP that the di�erence between DHP(u�) and DHP(u�)

arises from the cones C�(I)+'s for I 2 �(n) such that i 2 I and huI; vi < h�; vi. In fact,

one sees that

DHP(u�) +
X
I

signhuI
i
; vi(�1)Iw(I)�I(�) = DHP(u�)

where I runs over the elements as above. Since signhuI
i
; vi(�1)I = �(�1)Infig and w(I) =

wi(Infig), the identity above turns into

DHP(u�)�DHP(u�) =
X
I

(�1)Infigwi(Infig)�I(�):

Here �I(�) may be viewed as the value at � of the characteristic function of the cones in

Fi with apex uI spanned by (uI
j
)+'s (j 2 I; j 6= i). This shows that the right-hand side

at the identity above agrees with DHPi
(�� fi), proving the lemma.

Lemma 5.4. The support of the function DHP is bounded, and the function is indepen-

dent of the choice of the generic element v 2 V .

Proof. Induction on the dimension of simple multi-polytopes P. We have observed the

lemma in Example 5.1 when dimP = 1. Suppose that the lemma is true for simple

multi-polytopes of dimension n� 1, and suppose dimP = n. Then the support of DHPi

is bounded by the induction assumption. This together with Lemma 5.3 implies that DHP

takes the same constant on unbounded regions in V �n[Fi. On the other hand, it follows

from the de�nition of DHP that DHP vanishes on a half space Hr := fu 2 V � j hu; vi < rg
for a su�ciently small real number r, because for each I 2 �(n) the cone C�(I)+ is

contained in the complement of Hr if r is su�ciently small. Therefore the constant which

DHP takes on the unbounded regions in V �n [Fi is zero, proving the former assertion in

the lemma.
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As for the latter assertion in the lemma, it follows from the induction assumption that

the right-hand side of the wall crossing formula in Lemma 5.3 is independent of v, and

we have seen above that DHP vanishes on unbounded regions regardless of the choice

of v. Thus, it follows from Lemma 5.3 that DHP is independent of v on any regions of

V
�n [ Fi.

6. Winding numbers

We continue to assume that our multi-polytope P = (�;F) is simple and that � is an

augmented simplicial set consisting of subsets of f1; : : : ; dg. In this section, we associate

another locally constant function on V �n [ Fi with P from a topological viewpoint, and

show that it agrees with the Duistermaat-Heckman function de�ned in Section 5.

Choose an orientation on V and �x it. We de�ne an orientation on I = fi1; : : : ; ing 2
�(n) as follows. If an ordered basis (vi1 ; : : : ; vin) gives the chosen orientation on V , then

we say that the oriented simplex hi1; : : : ; ini has a positive orientation, and otherwise a

negative orientation. We de�ne

hIi :=
(
hi1; : : : ; ini if hi1; : : : ; ini has a positive orientation,

�hi1; : : : ; ini if hi1; : : : ; ini has a negative orientation.

The completeness of � (equivalently, the pre-completeness of the projected multi-fan �J

for any J 2 �(n�1)) implies that X
I2�(n)

w(I)hIi

is a cycle. In fact, the converse holds, i.e., the completeness of � is equivalent toP
I2�(n) w(I)hIi being a cycle. We denote by [�] the homology class that the cycle

de�nes in Hn�1(�). Actually [�] lies in the reduced homology ~Hn�1(�), see Example 6.3

discussed later.

Let S be the realization of the �rst barycentric subdivision of �. For each i 2 f1; : : : ; dg,
we denote by Si the union of simplicies in S which contain the vertex fig, and by SI

the intersection \i2ISi for I 2 �. Note that @Si can be identi�ed with the realization

of the �rst barycentric subdivision of �i, where �i is the augmented simplicial set of the

projected multi-fan �i = (�i; Ci; w
�

i
).

The projected multi-fan �i is de�ned on V=Vi where Vi is the one-dimensional sub-

space spanned by vi. We orient V=Vi as follows: if an ordered basis (vi; vj1; : : : ; vjn�1)

de�nes the given orientation on V , then we give V=Vi the orientation determined by

(vj1; : : : ; vjn�1), and otherwise give the opposite orientaiton. Then [�i] is de�ned in
~Hn�2(�i) = ~Hn�2(@Si).

Lemma 6.1. [�] maps to [�i] through the composition of maps

~Hn�1(�) = ~Hn�1(S)
���! Hn�1(S; Sn IntSi) excision ����

�=
Hn�1(Si; @Si)

@�!
�=

~Hn�2(@Si);

where � is the inclusion.
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Proof. Through �� and the inverse of the excision isomorphism, the cycle
P

I2�(n) w(I)hIi
maps to

P
i2I2�(n) w(I)hIi. We express hIi as �hi; j1; : : : ; jn�1i where � = +1 or �1 and

de�ne an oriented (n� 2)-simplex hInfigi in �
(n�1)

i
by �hj1; : : : ; jn�1i. It follows that

@(
X

i2I2�(n)

w(I)hIi) =
X

i2I2�(n)

w(I)hInfigi:

Here w(I) = wi(Infig) by the de�nition of wi, and i 2 I 2 �(n) if and only of Infig 2
�

(n�1)
i

. Therefore, the right-hand side above reduces to
P

J2�
(n�1)

i

wi(J)hJi, that is [�i]

in ~Hn�2(@Si).

The following lemma will be used later several times.

Lemma 6.2. Let X and Y be topological spaces with subspaces Xi of X and Yi of Y for

each i 2 �(1)
. For I 2 �, we set XI := \i2IXi and YI := \i2IYi. If

(1) X = [d
i=1Xi,

(2) XI's for I 2 �(n)
are disjoint, and

(3) YI is nonempty and contractible for any non-empty set I 2 �,

then there is a continuous map  : X ! Y sending the stratum XI to YI for each I 2 �,

and such a map is unique up to homotopy preserving the strati�cations.

Proof. Existence. We will construct  inductively using decending induction on jIj. If

jIj = n, then we map XI to any point in YI. Thus  is de�ned on [jIj=nXI with the

image in [jIj=nYI . Let k be a nonnegative integer less than n and jIj = k. Suppose that

 is de�ned on [jJ j�k+1XJ with the image in [jJj�k+1YJ . Then

 : XI \ ([jJj�k+1XJ)! YI \ ([jJj�k+1YJ) � YI

extends to a continuous map from XI to YI because YI is contractible. Thus  is de�ned

on [jIj�kXI with the image in [jIj�kYI . This completes the induction step, so that we

obtain the desired map  de�ned on X.

Uniqueness. We construct a homotopy H : X � [0; 1]! Y of given two maps  0 and

 1 in the lemma. The argument is almost same as above. Since YI is contractible, H can

be de�ned on [jIj=nXI � [0; 1] with [jIj=nYI as the image. Let k be as above and jIj = k.

Suppose that H is de�ned on ([jJj�k+1XJ)� [0; 1] with the image in [jJj�k+1YJ and that

H agrees with  t on ([jJj�k+1XJ)� ftg for t = 0; 1. Then a map

H [  0 [  1 : (XI \ ([jJj�k+1XJ))� [0; 1] [XI � f0g [XI � f1g
! (YI \ ([jJ j�k+1YJ)) [ YI [ YI = YI

extends to a continuous map from XI � [0; 1] to YI because YI is contractible. Thus H

is de�ned on ([jIj�kXI)� [0; 1] with the image in [jIj�kYI. This completes the induction

step, so that we obtain the desired homotopy H de�ned on X � [0; 1].

Lemma 6.2 can be applied with X = S, Xi = Si, Y = V
� and Yi = Fi. It follows that

the multi-polytope P associates a continuous map

	: S ! [d
i=1Fi � V

�

sending SI to FI for each I 2 � by Lemma 6.2, and 	 induces a homomorphism

	� : ~Hn�1(S) = ~Hn�1(�)! ~Hn�1(V
�nfug)

for each u 2 V �n[Fi. Such 	 was �rst introduced in [14] and plays the role of a moment

map. The orientation on V chosen at the beginning of this section induces an orientation
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on V
� in a natural way. This determines a fundamental class in Hn(V

�
; V

�nfug) and
hence in ~Hn�1(V

�nfug) through @ : Hn(V
�
; V

�nfug) �= ~Hn�1(V
�nfug). We denote the

fundamental class in ~Hn�1(V
�nfug) by [V �nfug].

De�nition. For each u 2 V �n [ Fi, we de�ne an integer WNP(u) by

	�([�]) = WNP(u)[V
�nfug]

and call it the winding number of the multi-polytope P = (�;F) around u.
Remark. The function WNP is independent of the choice of an orientation on V because

if the orientation on V is reversed, then [�] and [V �nfug] are multiplied by �1 simul-

taneously. Moreover, it is locally constant and vanishes on unbounded regions separated

by Fi's, which immediately follows from the de�nition of WNP .

We will see in Theorem 6.6 below that WNP = DHP . For the moment, we shall check

this coincidence when dimP = 1.

Example 6.3. We use the notation in Example 5.1. We identify V with R, so that V �

is also identi�ed with R. Then V and V � have standard orientations, and since vi gives

the orientation on V if and only if i 2 E, the cycle which de�nes [�] is given by

X
i2E

w(fig)hii+
X
i=2E

w(fig)(�hii) = �
dX
i=1

(�1)figw(fig)hii

where (�1)fig is the same as in (5.2). Since � is complete,
P

d

i=1(�1)figw(fig) = 0; so

[�] actually lies in ~H0(�) = ~H0(S) and one can rewrite the cycle above as

dX
i=1

(�1)figw(fig)(hji � hii)

for any j 2 f1; : : : ; dg. Since Si = fig and 	(fig) = Fi, WNP(u) = 0 unless u is in

between the minimum value and the maximum value of fF1; : : : ; Fdg. Suppose u is in

between them and take j such that Fj is the maximum. Then one easily sees that

WNP(u) =
X
Fi<u

(�1)figw(fig):

This together with (5.3) shows that WNP = DHP when dimP = 1.

We will show that WN satis�es the same wall crossing formula as in Lemma 5.3.

For that, we �rst state a lemma which expresses the winding number as a sum of local

winding numbers so to speak. We orient Fi in such a way that the juxtaposition of a

normal vector to Fi, whose evaluation on vi is positive, and the orientation on Fi agrees

with the prescribed orientation on V
�. By Lemma 6.2, 	 maps a pair (Si; @Si) into a

pair (Fi; Finf�g) for any � 2 Fin(Fi \ ([j2�(1)i

Fj). If we identify Fi with (V �)i through

the translation by �fi as before, then the map 	 restricted to @Si agrees with the map

(up to homotopy) constructed from the multi-polytope Pi = (�i;Fi). It follows that
	�([�i]) = WNPi

(�� fi)[Finf�g]:(6.1)

Let u 2 V �n [ Fi. We choose a generic ray R starting from u with direction  2 V �,

so that the intersection Fi \ R is one point for each i if it is nonempty. We denote the

point Fi \ R by Ri.
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Lemma 6.4. WNP(u) =
X

i:Fi\R 6=�

signh; viiWNPi
(Ri � fi):

Proof. Consider the following commutative diagram:

~Hn�1(S) !Hn�1(S; Sn [i IntSi) excision ����
�=

L
i
Hn�1(Si; @Si)

@�!
�=

L
i
~Hn�2(@Si)

	�

??y 	�

??y 	�

??y 	�

??y
~Hn�1(V

�nfug)�!
�=
Hn�1(V

�nfug; V �nR)  L
i
Hn�1(Fi; FinfRig) @�!

�=

L
i
~Hn�2(FinfRig)

where i runs over the indices of Fi's which intersect R. The element [�] 2 ~Hn�1(S) maps

to �i[�i] 2 �i
~Hn�2(@Si) through the upper horizontal sequence by Lemma 6.1 and down

to �iWNPi
(Ri � fi)[FinfRig] by (6.1).

Now we trace the lower horizontal sequence from the right to the left. Through the

inverse of @, [FinfRig] maps to the fundamental class [Fi; FinfRig], and further maps

to signh; vii[V �nfug] 2 ~Hn�1(V
�nfug), where the sign arises from the choice of the

orientation on Fi. These together with the commutativity of the diagram above show

that

	�([�]) =
X

i:Fi\R 6=�

signh; viiWNPi
(Ri � fi)[V �nfug]:

On the other hand, 	�([�]) = WNP(u)[V
�nfug] by de�nition. The lemma follows by

comparing these two identities.

Lemma 6.5. The wall crossing formula as in Lemma 5.3 holds for WN instead of DH.

Proof. Subtract the identity in Lemma 6.4 for u = u� from that for u = u�. Since one

can take  to be u� � u�, the lemma follows.

Theorem 6.6. DHP = WNP for any simple multi-polytope P.
Proof. The identity is established in Example 6.3 when dimP = 1. Suppose the identity

holds for simple multi-polytopes of dimension n � 1, and suppose dimP = n. Both

DHP and WNP are locally constant, satisfy the same wall crossing formula (Lemma 5.3,

Lemma 6.5) and DHPi
= WNPi

by induction assumption. Therefore, it su�ces to see

that DHP and WNP agree on one region. But we know that they vanish on unbounded

regions (Lemma 5.4 and the remark after the de�nition of WNP), hence they agree on

the whole domain. This completes the induction step, proving the theorem.

7. Ehrhart polynomials

Let P be a convex lattice polytope of dimension n in V
�, where \lattice polytope"

means that each vertex of P lies in the lattice N� = Hom(N;Z) of V � = Hom(V;R). For

a positive integer �, let �P := f�u j u 2 Pg. It is again a convex lattice polytope in

V
�. We denote by ](�P ) (resp. ](�P �)) the number of lattice points in �P (resp. in the

interior of �P ). The lattice N� determines a volume element on V � by requiring that the

volume of the unit cube determined by a basis of N� is 1. Thus the volume of P , denoted

by vol(P ), is de�ned. The following theorem is well known.
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Theorem 7.1. (See [9], [25] for example.) Let P be an n-dimensional convex lattice

polytope.

(1) ](�P ) and ](�P �) are polynomials in � of degree n.

(2) ](�P �) = (�1)n](��P ), where ](��P ) denotes the polynomial ](�P ) with � re-

placed by ��.
(3) The coe�cient of �

n
in ](�P ) is vol(P ) and the constant term in ](�P ) is 1.

The fan � associated with P may not be simplicial, but if we subdivide �, then we

can always take a simplicial fan that is compatible with P . In this section, we show

that the theorem above holds for a simple lattice multi-polytope P = (�;F). For that,
we need to de�ne ](P) and ](P�). This is done as follows. Let vi (i = 1; : : : ; d) be a

primitive integral vector in the half line C(fig). In our convention, vi is chosen \outward

normal" to the face F(fig) when P arises from a convex polytope. We slightly move

F(fig) in the direction of vi (resp. �vi) for each i, so that we obtain a map F+ (resp.

F�) : �(1) ! HP(V �). We denote the multi-polytopes (�;F+) and (�;F�) by P+ and

P� respectively. Since the a�ne hyperplanes F�(fig)'s miss the lattice N�, the functions

DHP� and WNP� are de�ned on N�.

De�nition. We de�ne

](P) :=
X
u2N�

DHP+(u) =
X
u2N�

WNP+(u);

](P�) :=
X
u2N�

DHP�
(u) =

X
u2N�

WNP�
(u):

When P arises from a convex polytope P , DHP+ = WNP+ (resp. DHP� = WNP�)

takes 1 on u in P (resp. in the interior of P ) and 0 otherwise. Therefore, ](P) (resp.
](P�)) agrees with the number of lattice points in P (resp. in the interior of P ) in this

case.

Denote the volume element on V � by dV �, and de�ne the volume vol(P) of P by

vol(P) :=
Z
V �

DHP dV
� =

Z
V �

WNP dV
�
:

When P arises from a (convex) polytope P , vol(P) agrees with the actual volume of P ,

but otherwise it can be zero or negative.

For a (not necessarily positive) integer �, we denote (�; �F) by �P, where
(�F)(fig) := fu 2 V � j hu; vii = �cig

when F(fig) = fu 2 V � j hu; vii = cig for a constant ci.

Theorem 7.2. Let P = (�;F) be a simple lattice multi-polytope of dimension n.

(1) ](�P) and ](�P�) are polynomials in � of degree (at most) n.

(2) ](�P�) = (�1)n](��P) for any integer �.

(3) The coe�cient of �
n
in ](�P) is vol(P) and the constant term in ](�P) is deg(�).

(See Section 2 for deg(�).)

In order to prove this theorem, we need some notations and a lemma. Basic ideas in

the following arguments are in [4] and [5]. Let I 2 �(n). Although the integral vectors

fvi j i 2 Ig are not necessarily a basis of the lattice N , they are linearly independent.

Therefore, the sublattice NI of N generated by vi's (i 2 I) is of the same rank as N ,
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hence N=NI is a �nite group. Needless to say, N=NI is trivial for any I 2 �(n) if � is

non-singular. For u 2 N�

I
= Hom(NI ;Z) � N

� and g 2 N=NI , we de�ne

�I(u; g) := exp(2�
p
�1hu; vgi)(7.1)

where vg 2 N is a representative of g. The right-hand side does not depend on the choice

of the representative vg, and �I(u; ) (resp. �( ; g)) is a homomorphism from N=NI (resp.

N
�

I
) to C � . Note that �I(u; ) : N=NI ! C � is trivial if and only if u 2 N�. It follows that

X
g2N=NI

�I(u; g) =

(
jN=NI j if u 2 N�,

0 otherwise.
(7.2)

Lemma 7.3. For each I 2 �(n)
let uI be the corresponding vertex of P and let fuI

i
j i 2 Ig

be the dual basis of fvi j i 2 Ig as in Section 5. Then, for v 2 N such that huI
i
; vi is a

nonzero integer for any I 2 �(n)
and i 2 I, we haveX

I2�(n)

w(I)zhuI ;vi

jN=NI j
X

g2N=NI

1Q
i2I

(1� �I(uIi ; g)z�hu
I
i ;vi)

=
X
u2N�

DHP+
(u)zhu;vi

as functions of z 2 C .
Proof. The Maclaurin expansion of 1=(1� az�m) (a 2 C � ; m 2 Z) is given by(

�a�1
z
m � a�2

z
2m � : : : if m > 0

1 + az
�m + a

2
z
�2m + : : : if m < 0.

Taking this into account, we expand the sum

SI :=
X

g2N=NI

1Q
i2I

(1� �I(uIi ; g)z�hu
I
i
;vi)

into Maclaurin series and get

SI =
X

g2N=NI

(�1)I
Y
i2I

X
fbig

(�I(u
I

i
; g)�bizbihu

I
i ;vi)

=
X

g2N=NI

(�1)I
X
fbig

�I(�
X
i2I

biu
I

i
; g)zh

P
i2I biu

I
i ;vi;

where the summation
X
fbig

runs over the collection of such fbi j i 2 I; bi 2 Zg that

bi � 1 for i with huI
i
; vi > 0 and bi � 0 for i with huI

i
; vi < 0;(7.3)

(see Section 5 for (�1)I). Since
X

g2N=NI

�I(�
X
i2I

biu
I

i
; g) =

(
jN=NIj if

P
i2I

biu
I

i
2 N�,

0 otherwise,

by (7.2), the coe�cient of zhu;vi for u 2 N� in the Maclaurin expansion of the left-hand

side at the identity in our lemma is given byX
I2�(n)

(�1)Iw(I)�0
I
(u)
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where

�
0

I
(u) =

(
1 if u = uI +

P
i2I

biu
I

i
and bi's are as in (7.3),

0 otherwise.

One easily checks that
P

I2�(n)(�1)Iw(I)�0I(u) agrees with DHP+
(u), proving the lemma.

Proof of Theorem 7.2. We shall prove (2) �rst. It su�ces to prove ](P�) = (�1)n](�P).
Since ](P�) =P

u2N� WNP�
(u) by de�nition, it su�ces to prove that

WNP�(u) = (�1)nWN(�P)+(u) for any u 2 N�.(7.4)

Let 	P� and 	(�P)+ be the maps introduced in Section 6 which are associated with

multi-polytopes P� and (�P)+ respectively. We note that 	P� and �	(�P)+ considered

as maps from S to V �nfug for u 2 N� are homotopic. Since the multiplication by �1 on
V
� sends the fundamental class [V �nf�ug] to (�1)n[V �nfug], we obtain (7.4).

We shall prove (1). Because of (2), it su�ces to prove (1) for ](�P). We apply

Lemma 7.3 to �P in place of P (so that uI is replaced by �uI), and approach z to 1

at the identity. Since the right-hand side approaches ](�P), it su�ces to show that the

left-hand side approaches a polynomial in � of degree at most n. When g 2 N=NI is the

identity element, �I(u
I

i
; g) = 1. Therefore, the term in the summand

P
g2N=NI

at the

identity in Lemma 7.3 has a pole at z = 1 of degree exactly n when g is the identity

element, and of degree at most n otherwise. Thus the left-hand side of the identity in

Lemma 7.3 applied to �P can be written asP
I2�(n) z

�huI ;vihI(z)

(1� z)nf(z)
where hI(z) and f(z) are polynomials in z and f(1) 6= 0. Then the repeated use of

L'Hospital's Theorem implies that when z approaches 1, the limit of the above rational

function is a polynomial in � of degree at most n.

Finally we prove (3). Since

](�P) =
X

u2H2(BT )

DH(�P)+(u) =
X

u2H2(BT )=�

DHP+(u);

it follows from the de�nition of the de�nite integral that

lim
�!1

1

�n
](�P) = lim

n!1

1

�n

X
u2H2(BT )=�

DHP+(u) =

Z
V �

DHP dV
� = vol(P);

proving that the coe�cient of �n in ](�P) is vol(P).
We apply Lemma 7.3 to 0P, that is �P with � = 0. Then the uI in the lemma is zero,

and DH(0P)+(u) = WN(0P)+(u) = 0 unless u = 0 because the origin is the only vertex of

0P so that the vertices of (0P)+ are very close to the origin. Thus the right-hand side

at the identity in the lemma applied to 0P is a constant, say c, which is nothing but the

constant term in ](�P). Now we approach z to 1. Then the identity reduces toX
v2C(I)

w(I) = c

because huI
i
; vi > 0 for all i 2 I if and only if v =

P
i2I

aivi with ai > 0 for all i 2 I, and
the latter is equivalent to saying that v belongs to the cone C(I) spanned by vi's (i 2 I).
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Since the left-hand side in the identity above is deg(�) by de�nition, the constant term

in ](�P), that is c, agrees with deg(�).

Let N�

� be the lattice of N�

R generated by all uI
i
's for I 2 �(n) and i 2 I. If � is

non-singular, then N�

� = N
�. The group ring C [N �

� ] is a commutative C -algebra, and it

has a basis tu (u 2 N�

�) as a complex vector space with multiplication determined by the

addition in N�

�:

t
u � tu0 := t

u+u0
:

Each v 2 N such that huI
i
; vi is an integer for any I 2 �(n) and i 2 I determines a map

from C [N �

� ] to a Laurent polynomial ring C [z; z�1 ] sending tu to zhu;vi. Since Lemma 7.3

holds for any such v that huI
i
; vi 6= 0, we obtain

Corollary 7.4. Let the notation be the same as in Lemma 7.3. ThenX
I2�(n)

w(I)tuI

jN=NIj
X

g2N=NI

1Q
i2I

(1� �I(uIi ; g)t�u
I
i )

=
X
u2N�

DHP+(u)t
u

as elements in the quotient ring of C [N �

� ]. In particular, if the multi-fan � is non-

singular, then N
�

� = N
�
andX
I2�(n)

w(I)tuIQ
i2I

(1� t�uIi )
=
X
u2N�

DHP+(u)t
u
:

For a later use, we shall rewrite �I(u
I

i
; g). Consider a homomorphism � : Rd ! NR

mapping a = (a1; : : : ; ad) 2 Rd to
P

d

i=1 aivi 2 NR. For I 2 �(n), we de�ne

G
0

I
:= fa 2 Rd j �(a) 2 N and aj = 0 for j =2 Ig

and de�ne GI to be the projection image of G0

I
on Rd

=Zd. Since vi's (i 2 I) are linearly
independent and belong to N , GI is a �nite subgroup of Rd

=Zd and � restricted to G0

I

induces an isomorphism

�I : GI
�= N=NI :

Note that �I([a]) = [
P

i2I
aivi] where [ ] denotes the equivalence class.

On the other hand, for i = 1; : : : ; d, let

�i : R
d
=Zd! C �

be a homomorphism de�ned by �i([a]) = exp(2�
p
�1ai).

Lemma 7.5. For [a] 2 GI � Rd
=Zd

and i 2 I, we have �i([a]) = �I(u
I

i
; �I([a])).

Proof. Since �I([a]) = [
P

i2I
aivi] and huIi ;

P
i2I

aivii = ai, it follows from the de�nition

(7.1) of �I that �I(u
I

i
; �I([a])) = exp(2�

p
�1ai), which is equal to �i([a]) by de�nition.

Since GI is isomorphic to N=NI , Corollary 7.4 can be restated as follows.

Corollary 7.6. Let the notation be as above. ThenX
I2�(n)

w(I)tuI

jGI j
X
g2GI

1Q
i2I

(1� �i(g)t�uIi )
=
X
u2N�

DHP+(u)t
u

as elements in the quotient ring of C [N �

� ].
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8. Cohomological formula for ](P)
Motivated by the geometrical observation done in subsequent sections 9 and 11, we de-

�ne the \(equivariant) cohomology" of a complete simplicial multi-fan and the \(equivari-

ant) �rst Chern class" of a multi-polytope. We then de�ne an index map \in cohomology"

and establish a \cohomological formula" describing ](P) for a lattice multi-polytope. This
cohomological formula is a counterpart in combinatorics to the Hirzebruch-Riemann-Roch

formula applied to a complex T -line bundle over a torus manifold. As an application of

the cohomological formula, we show that the Khovanskii-Pukhlikov formula for a simple

lattice convex polytope ([4] [5]) can be generalized to a simple lattice multi-polytope.

Let T be a compact torus of dimension n = rankZN and let BT be the classifying space

of T . Then H2(BT ) is canonically isomorphic to Hom(S1
; T ), the group consisting of

homomorphisms from S
1 to T . In fact, a homomorphism f : S1 ! T induces a continuous

map Bf : BS1 ! BT and once we �x a generator � of H2(BS
1) �= Z, (Bf)�� de�nes an

element of H2(BT ). The correspondence : f ! (Bf)�� is known to be an isomorphism

from Hom(S1
; T ) to H2(BT ). In the following we assume N = H2(BT ) and identify it

with Hom(S1
; T ). Then N� = H

2(BT ) is identi�ed with Hom(T; S1) and the group ring

C [N � ] can be identi�ed with the representation ring R(T ) of T .

Let � = (�; C; w�) be a complete simplicial multi-fan in N . Let vi 2 H2(BT ) be

a unique primitive vector in C(fig) for each i = 1; : : : ; d as before. Motivated by the

description of the equivariant cohomology of a compact non-singular toric variety (see

Proposition 9.2 in the next section), we de�ne H�

T
(�) to be the face ring of the augmented

simplicial set �, i.e.,

H
�

T
(�) := Z[x1; : : : ; xd]=(xI j I =2 �);

where xI =
Q

i2I
xi and the degree of xi is two, and callH

�

T
(�) the equivariant cohomology

of �. We also de�ne a homomorphism �
� : H2(BT )! H

2
T
(�) by

�
�(u) =

dX
i=1

hu; viixi;(8.1)

where h ; i denotes the natural pairing between cohomology and homology. It extends

to an algebra homomorphism H
�(BT )! H

�

T
(�), which we also denote by ��. One can

think of H�

T
(�) as a module (or more generally an algebra) over H�(BT ) through ��.

In the following we will mainly work with Q coe�cients but the argument will work

with Z coe�cients when the multi-fan � is non-singular. Any homomorphism f : A! B

between additive groups induces a homomorphism : A
Q ! B
Q (or A
R ! B
R),
which we also denote by f .

Lemma 8.1. Any element in H
�

T
(�)
Q can be written in the form

P
J2� �

�(aJ)xJ with

aJ 2 H�(BT ;Q) (not necessarily uniquely), in other words, H
�

T
(�) 
 Q is generated by

xJ 's (J 2 �) as an H�(BT ;Q)-module.

Proof. Let I denote a �nite set which consists of elements in f1; : : : ; dg taken with mul-

tiplicity, i.e., elements in f1; : : : ; dg may appear in I repeatedly. Set xI :=
Q

i2I
xi and

denote by �I the subset of f1; : : : ; dg consisting of elements appearing in I. It follows from
the de�nition that H�

T
(�) is additively generated by xI 's for I such that �I 2 �, so it

su�ces to prove the lemma for such xI . We shall prove it by induction on [I] := jIj�j�Ij.
If [I] = 0, then I = �I 2 �; so xI is obviously of the form in the lemma in this

case. Suppose [I] � 1. Then there is an i 2 I which appears in I at least twice. Set
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J := Infig. Then �J = �I 2 � and [J ] = [I]� 1. Multiplying the both sides at (8.1) by

xJ , we obtain

�
�(u)xJ = hu; viixI +

X
k 6=i

hu; vkixJ[fkg

for any u 2 H2(BT ;Q). We choose u such that hu; vii = 1 and hu; vji = 0 for all j 2 J
di�erent from i. (Such u exists because fvj j j 2 �J g is a subset of a basis of NQ .) Then

the identity above reduces to

xI = �
�(u)xJ �

X
k 6=i;k =2J

hu; vkixJ[fkg:

Here [J [ fkg] = [J ](= [I]� 1) for k =2 J , so the right-hand side above are of the form

in the lemma by the induction assumption, showing that so is xI . This completes the

induction step and proves the lemma.

For I 2 �(n), let fuI
i
j i 2 Ig be the dual basis of fvi j i 2 Ig as before. We de�ne a

ring homomorphism �
�

I
: H�

T
(�)
 Q ! H

�(BT ;Q) by

�
�

I
(xi) =

(
u
I

i
if i 2 I,

0 otherwise.

This map is well-de�ned because xJ for J =2 �, which is zero in H�

T
(�)
Q , maps to zero

through ��
I
.

Lemma 8.2. The composition �
�

I
��� is the identity map, so �

�

I
is an H

�(BT ;Q)-module

map.

Proof. Both �� and ��
I
are ring homomorphisms and H�(BT ) is a polynomial ring gen-

erated by elements in H
2(BT ), so it su�ces to check the lemma on H

2(BT ). Let

u 2 H2(BT ). It follows from the de�nitions of �� and ��
I
that

(��
I
� ��)(u) = �

�

I
(

dX
i=1

hu; viixi) =
dX
i=1

hu; viiuIi ;

which agrees with u because fuI
i
j i 2 Ig is the dual basis of fvi j i 2 Ig. Since u is

arbitrary, this proves that ��
I
� �� is the identity on H2(BT ).

A multi-polytope P = (�;F) is associated with real numbers ci's by

F(fig) = fu 2 H2(BT ;R) j hu; vii = cig;
and these numbers determine an element cT1 (P) :=

P
d

i=1 cixi of H
2
T
(�) 
 R, which we

call the equivariant �rst Chern class of P. This gives a bijective correspondence between
the set of multi-polytopes de�ned on � and H

2
T
(�) 
 R. Note that ��

I
(cT1 (P)) agrees

with the vertex \i2IF(fig). If P is a lattice multi-polytope (i.e., the vertices of P lie in

the lattice H2(BT ) of H2(BT ;R)), then ci's are integers and the uI in Corollary 7.4 or

7.6 agrees with ��
I
(cT1 (P)). When � is non-singular, P is a lattice multi-polytope if and

only if the ci's are all integers, but otherwise the \if" part does not hold, in other words,

an element of H2
T
(�) is not necessarily realized as the equivariant �rst Chern class of

a lattice multi-polytope. However, there is a nonzero integer m such that mx for any

x 2 H
2
T
(�) is realized as the equivariant �rst Chern class of a lattice multi-polytope

because jN=NIj��I(x)'s lie in H2(BT ).
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Lemma 8.3. For any J 2 �, we have

X
I2�(n)

w(I)��
I
(
Q

j2J
(emxj � 1))

jGIj
X
g2GI

1Q
i2I

(1� �i(g)e�uIi )
2 H��(BT ;Q):

where H
��(BT ;Q) :=

Q
1

q=0H
q(BT ;Q).

Proof. Since
Q

j2J
(emxj�1) is a linear combination ofQ

k2K
e
mxk = e

m
P

k2K xk for K 2 �,

it su�ces to show thatX
I2�(n)

w(I)��
I
(em

P
xk)

jGIj
X
g2GI

1Q
i2I

(1� �i(g)e�uIi )
2 H��(BT ;Q):(8.2)

As remarked above, m
P

k2K
xk is realized as the equivariant �rst Chern class of a lattice

multi-polytope, so it follows from Corollary 7.6 that

X
I2�(n)

w(I)t�
�

I
(m
P

xk)

jGI j
X
g2GI

1Q
i2I

(1� �i(g)t�uIi )
2 C [N � ] = R(T ):

The Chern character : C [N� ] = R(T )! H
��(BT ;Q) mapping tu to eu extends to a map

from C [N�

� ] and it further extends to a map between their quotient rings. Sending the

element above by this extended Chern character, we obtain (8.2).

Let S be the multiplicative set consisting of nonzero homogeneous elements of positive

degree in H�(BT ;Q). Since H�(BT ;Q) is a polynomial ring (hence an integral domain),

H
�(BT ;Q) can be thought of as a subring of the localized ring S�1

H
�(BT ;Q). We de�ne

the index map

�! : H
�

T
(�)
 Q ! S

�1
H
�(BT ;Q)

\in cohomology" by

�!(x) :=
X

I2�(n)

w(I)��
I
(x)

jGI j
Q

i2I
uI
i

(cf. [2, (3.8)]). This map decreases degrees by 2n, and is an H�(BT ;Q)-module map by

Lemma 8.2.

Lemma 8.4. The image of �! lies in H
�(BT ;Q).

Proof. Since �! is an H
�(BT ;Q)-module map, it su�ces to check the lemma for elements

xJ 's (J 2 �) by Lemma 8.1. We distinguish two cases.

Case 1. The case where jJ j = n, i.e., J 2 �(n). In this case

�
�

I
(xJ) =

(Q
i2I

u
I

i
if I = J ,

0 otherwise.

Therefore

�!(xJ) =
X

I2�(n)

w(I)��
I
(xJ)

jGIj
Q

i2I
uI
i

=
w(J)

jGJ j
2 H0(BT ;Q):
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Case 2. The case where jJ j < n. In this case we will show that �!(xJ) = 0. Since

�i(g) = 1 for any i 2 I if and only if g is the identity, andY
i2I

(1� e�uIi ) = (
Y
i2I

u
I

i
)(1 + higher degree term)

Y
j2J

(emxj � 1) = m
jJj
xJ(1 + higher degree term);

the term of lowest degree in Lemma 8.3 (up to a nonzero constant multiple) isX
I2�(n)

w(I)��
I
(xJ)

jGI j
Q

i2I
uI
i

;

that is, �!(xJ), and Lemma 8.3 tells us that it is an element of H�(BT ;Q). This means

that �!(xJ) = 0 because �! decreases degrees by 2n and jJ j < n.

Now, motivated by the description of the cohomology ring of a compact non-singular

toric variety (see p.106 in [9]), we de�ne H�(�) to be the quotient ring of H�

T
(�) by the

ideal generated by ��(H2(BT )), in other words,

H
�(�) := Z[x1; : : : ; xd]=A;

where A is the ideal generated by all

(1) xI for I =2 �,

(2)
P

d

i=1hu; viixi for u 2 N .

Since �! is an H
�(BT ;Q)-module map and H

�(BT ;Q)=(H2(BT ;Q)) is isomorphic to

H
0(BT ;Q) = Q , �! induces a homomorphismZ

�

: H�(�)
 Q ! Q ;

where only elements of degree 2n in H�(�)
 Q survive through the map

Z
�

.

Remember that GI is a �nite subgroup of Rd
=Zd. We denote by G� the union of GI

over all I 2 �(n). Since �i is de�ned on Rd
=Zd, �i(g) makes sense for g 2 G�. It follows

from the de�nition of GI and �i that if g 2 GI , then �i(g) = 1 for i =2 I.
We de�ne the equivariant Todd class T T (�) of the complete simplicial multi-fan � by

T T (�) :=
X
g2G�

dY
i=1

xi

1� �i(g)e�xi
2 H��

T
(�)
 Q ;

and the Todd class T (�) of � by

T (�) :=
X
g2G�

dY
i=1

�xi

1� �i(g)e��xi
2 H��(�)
 Q ;

where �xi denotes the image of xi 2 H
�

T
(�) in H

�(�) (cf. [5]). We also de�ne the

�rst Chern class c1(P) of a multi-polytope P de�ned on � to be the image of cT1 (P) 2
H

2
T
(�)
 R in H2(�)
 R.

Theorem 8.5. If P is a simple lattice multi-polytope, then

Z
�

e
c1(P)T (�) = ](P):
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Proof. We shall compute �!(e
cT1 (P)T T (�)). For that, we need to see ��

I
(T T (�)). Let

g 2 G�. If g =2 GI , then there is an i =2 I such that �i(g) 6= 1; so

�
�

I

�
xi

1� �i(g)e�xi
�
= 0

for such i because the Maclaurin expansion of xi=(1 � �i(g)e
�xi) has no constant term

and ��
I
(xi) = 0. Therefore, only elements g in GI contribute to �

�

I
(T T (�)). Now suppose

g 2 GI . Then �i(g) = 1 for i =2 I, so

�
�

I

�
xi

1� �i(g)e�xi
�
= 1

for such i because the Maclaurin expansion of xi=(1� �i(g)e�xi) has the constant term 1

and ��
I
(xi) = 0. Finally, since ��

I
(xi) = u

I

i
for i 2 I, we thus have

�
�

I
(T T (�)) =

X
g2GI

Y
i2I

u
I

i

1� �i(g)e�uIi
:

This together with the de�nition of �! and Corollary 7.6 shows that

�!(e
c
T
1 (P)T T (�)) =�!

�
e
c
T
1 (P)

X
g2G�

dY
i=1

xi

1� �i(g)e�xi
�

=
X

I2�(n)

w(I)e�
�

I
(cT1 (P))

jGIj
X
g2GI

1Q
i2I

(1� �i(g)e�uIi )

=
X

u2H2(BT )

DHP+(u)e
u
:

This implies that Z
�

e
c1(P)T (�) =

X
u2H2(BT )

DHP+(u) = ](P):

Remark. The argument developed above in this section is purely combinatorial, but it is

possible to take a topological approach. Namely, associated with a complete simplicial

multi-fan �, one can construct a torus space M� with H�

T
(M�;Q) = H

�

T
(�) 
 Q (see

[6]). It is not necessarily a manifold but has a fundamental class so that the equivariant

Gysin homomorphism �! : H
�

T
(M�;Q ) = H

�

T
(�) 
 Q ! H

��2n
T

(pt;Q) = H
��2n(BT ;Q),

that is, the index map, can be de�ned.

As an application of the theorem above, we shall show that Khovanskii-Pukhlikov

formula, which relates a certain variation of the volume of a simple convex lattice polytope

to the number of lattice points in it, can be generalized to simple multi-polytopes. We

begin with

Lemma 8.6. vol(P) = 1

n!

Z
�

c1(P)n =
Z
�

e
c1(P)

for a simple multi-polytope P.

Proof. The latter identity is obvious because only elements of degree 2n in H�(�) 
 R

survive through the map
R
�
. We shall prove the former identity.
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Step 1. If P is a lattice multi-polytope, then Theorem 8.5 applied to �P for any integer

� implies

Z
�

e
c1(�P)T (�) = ](�P):

We compare the coe�cients of �n at the both sides above. Since c1(�P) = �c1(P), the
coe�cient of �n at the left-hand side is 1

n!

R
�
c1(P)n, while the one at the right-hand side

is vol(P) by Theorem 7.2 (3). Therefore the lemma is proven for a lattice multi-polytope

P.
Step 2. If P is rational, by which we mean that there is a nonzero integer m such

that mP is a lattice multi-polytope, then vol(mP) = 1
n!

R
�
c1(mP)n by Step 1. Since

vol(mP) = m
n vol(P) and c1(mP) = mc1(P), the lemma is proven for a rational multi-

polytope P.
Step 3. The functions vol(�) and

R
�
c1(�)n are de�ned on the vector space H2

T
(�)
 R

through the equivariant �rst Chern class, and they are obviously continuous. By Step 2

they agree on all rational multi-polytopes which form a dense subset of the vector space,

so they must agree on the entire vector space by continuity. This completes the proof of

the lemma.

Multi-polytopes de�ned on � form a vector space isomorphic to H2
T
(�) 
 R through

the equivariant �rst Chern class, and Lemma 8.6 implies that the volume function is a

homogeneous polynomial function of degree n. In fact, if one writes cT1 (P) =
P

d

i=1 cixi,

then vol(P) is a homogeneous polynomial in c1; : : : ; cd of degree n.

For h = (h1; : : : ; hd) 2 Rd , we denote by Ph a multi-polytope with cT1 (Ph) =
P

d

i=1(ci+

hi)xi. Since c1(Ph) =
P

d

i=1(ci + hi)�xi, Lemma 8.6 applied to Ph implies that vol(Ph) is
a polynomial in h1; : : : ; hd (of total degree n). We de�ne the Todd operator as follows:

T (@=@h) :=
X
g2G�

dY
i=1

@=@hi

1� �i(g)e�@=@hi
:

Although the Todd operator is of in�nite order, its operation on vol(Ph) converges because
vol(Ph) is a polynomial in h1; : : : ; hd. The following theorem extends the Khovanskii-

Pukhlikov formula [21] [4] [5] to simple lattice multi-polytopes.

Theorem 8.7. If P is a simple lattice multi-polytope, then

T (@=@h) vol(Ph)jh=0 = ](P):

Proof. An elementary computation shows that

@=@hi

1� �i(g)e�@=@hi
e
(ci+hi)�xijhi=0 = e

ci�xi
�xi

1� �i(g)e��xi
:
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Therefore, it follows from Lemma 8.6 and Theorem 8.5 that

T (@=@h) vol(Ph)jh=0 = T (@=@h)
Z
�

e
c1(Ph)jh=0 =

Z
�

T (@=@h)ec1(Ph)jh=0

=

Z
�

X
g2G�

dY
i=1

@=@hi

1� �i(g)e�@=@hi
e
(ci+hi)�xi jhi=0

=

Z
�

X
g2G�

dY
i=1

e
ci�xi

�xi

1� �i(g)e��xi

=

Z
�

e
c1(P)T (�) = ](P);

proving the theorem.

Remark. One can reformulate the Khovanskii-Pukhlikov formula as follows. As remarked

above, the volume function vol is a polynomial in c1; : : : ; cd, so one can apply the Todd

operator T (@=@c) (with the variables c = (c1; : : : ; cd) instead of h = (h1; : : : ; hd)) to

the volume function vol and evaluate at a simple lattice multi-polytope P. The same

argument as in the proof of Theorem 8.7 shows that the evaluated value agrees with ](P).

9. Multi-fan of a torus manifold

In this section we introduce the notion of a torus manifold and associate a complete

non-singular multi-fan with it. A compact non-singular toric variety provides an example

of a torus manifold, but the class of torus manifolds is much wider than that of compact

non-singular toric varieties, (apparently, even wider than that of unitary toric manifolds

introduced in [23]). The basic theory of toric varieties says that there is a one-to-one

correspondence between compact non-singular toric varieties and complete non-singular

fans. This correspondence is extended in one direction, namely from torus manifolds

to complete non-singular multi-fans. But the usual way to associate a fan with a toric

variety (see [9, Section 2.3]) does not work in our extended category. However, when a

toric variety is compact and non-singular, the corresponding (complete and non-singular)

fan can be reproduced using equivariant cohomology and this argument works even for

torus manifolds. The idea is essentially same as in [23].

We begin with the de�nition of a torus manifold. An elementary representation theory

of a torus group tells us that if anm-dimensional torus (S1)m acts e�ectively and smoothly

on a connected smooth manifold of dimension 2n with non-empty �xed point set, then

m � n and the dimension of the �xed point set is at most 2(n�m). We are interested in

an extreme case m = n. Let M be a closed, connected, smooth manifold of dimension 2n

with an e�ective smooth action of an n-dimensional torus group T = (S1)n such that the

�xed point set MT is non-empty. Then MT is necessarily isolated. A closed, connected,

codimension two submanifold ofM is called characteristic if it is a connected component

of the set �xed pointwise by a certain circle subgroup of T and contains at least one T -

�xed point. SinceM is compact, there are only �nitely many characteristic submanifolds.

We denote them by Mi (i = 1; : : : ; d). They are orientable if M is orientable.

De�nition. Let M be a closed, connected, oriented, smooth manifold M of dimension

2n with an e�ective smooth action of an n-dimensional torus group T with non-empty
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�xed point set MT . M will be called a torus manifold if a prefered orientation is given

for each characteristic submanifold Mi.

A toric variety X (of dimension n) is a normal complex algebraic variety of complex

dimension n with an e�ective algebraic action of (C �)n having a dense orbit. If X is

compact and non-singular, then X with the restricted action of T (� (C �)n) provides an

example of a torus manifold of dimension 2n. In this case, characteristic submanifolds are

(C �)n-invariant divisors. They have canonical orientations since they are complex mani-

folds. Similarly, when a torus manifold is equipped with a T -invariant unitary structure,

characteristic submanifolds have canonical orientations. With these orientations of char-

acteristic submanifolds, the torus manifold will be called a unitary torus manifold (also

called a unitary toric manifold in [23]).

Example 9.1. A complex projective space C P n with an action of (C �)n given by

[z0; z1; : : : ; zn]! [z0; g1z1; : : : ; gnzn];

where [z0; z1; : : : ; zn] 2 C P n and (g1; : : : ; gn) 2 (C �)n, is a compact non-singular toric vari-

ety. This with the restricted T -action is a torus manifold and there are n+1 characteristic

submanifolds, that are respectively de�ned by zi = 0 for i = 0; 1; : : : ; n.

There are many torus manifolds which do not arise from compact non-singular toric

varieties, see [6], [23], [26].

Henceforth M will denote a torus manifold of dimension 2n. Let p 2 MT . Since MT

is isolated, the tangential T -representation �pM of M at p has no trivial factor, so it

decomposes into the direct sum of n irreducible real two-dimensional T -representations.

This implies that there are exactly n characteristic submanifolds which contain p. In

fact, an irreducible factor in �pM corresponds to the normal direction to a characteristic

submanifold at p. We set

�(M) := fI � f1; : : : ; dg j (\i2IMi)
T 6= �g:

We add an empty set to �(M) as a member, so that �(M) becomes an augmented

simplicial set. The observation above implies that the cardinality of an element in �(M)

is at most n and there is an element in �(M) with cardinality n.

The augmented simplicial set �(M) is closely related to the ring structure of the

equivariant cohomologyH�

T
(M) ofM with integer coe�cients. Let us explain this briey.

Since Mi and M are oriented closed T -manifolds and the codimension of Mi is two, the

inclusion map from Mi to M induces a Gysin homomorphism H
�

T
(Mi) ! H

�+2
T

(M) in

equivariant cohomology which raises dgrees by two (see [19] for example). Denote by

�i 2 H
2
T
(M) the image of the identity element in H

0
T
(Mi). We may think of �i as the

Poincar�e dual of Mi (considered as a cycle in M) in equivariant cohomology. If the

orientation on M or Mi is reversed, then �i turns into ��i.
We take a polynomial ring Z[x1; : : : ; xd] in d-variables and consider a map

' : Z[x1; : : : ; xd]! H
�

T
(M)

which sends xi to �i. This map is often surjective. Here is a case.

Proposition 9.2. ([23], Proposition 3.4.) Suppose that H
�(M) is generated by elements

in H
2(M) as a ring (this is the case when M is a compact non-singular toric variety).

Then the map ' is surjective and the kernel is the ideal generated by monomials
Q

i2I
xi

for all subsets I � f1; : : : ; dg such that I =2 �(M). In other words, H
�

T
(M) is isomorphic

to the face ring (or Stanley-Reisner ring) of �(M).
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The equivariant cohomology H�

T
(M) has a �ner structure than the ring structure. The

map � collapsing M to a point induces a homomorphism �
� : H�

T
(pt) = H

�(BT ) !
H
�

T
(M), so that H�

T
(M) can be viewed as an algebra over H�(BT ) through �

�. This

algebra structure over H�(BT ) cannot be determined by �(M) and contains more infor-

mation on the torus manifold M . To see the algebra structure, it is enough to see the

image of H2(BT ) by �� because H�(BT ) is a polynomial ring generated by elements in

H
2(BT ).

Lemma 9.3. ([23], Lemma 1.5.) For each i 2 f1; : : : ; dg there exists a unique element

vi 2 H2(BT ) such that

�
�(u) =

dX
i=1

hu; vii�i modulo H
�(BT )-torsions

for any u 2 H
2(BT ), where h ; i denotes the usual pairing between cohomology and

homology.

Proof. The proof is given in [23], but we shall give a simple proof for the reader's con-

venience when M is as in Proposition 9.2. Since H2
T
(M) is additively generated by �i's,

one can express

�
�(u) =

dX
i=1

vi(u)�i

with a unique integer vi(u) depending on u for each i. We view vi(u) as a function of

u 2 H2(BT ). Since it is linear, it de�nes an element vi of Hom(H2(BT );Z) = H2(BT )

such that vi(u) = hu; vii.

Note. A geometrical interpretation of the vectors vi will be given in Section 12.

In order to introduce a multi-fan, we adopt H2(BT ) as the lattice N and identify

H2(BT ;R) with the vector space NR = N 
 R. Then we de�ne a map

C(M) : �(M)! Cone(N)

by sending I 2 �(M) to the cone in H2(BT ;R) spanned by vi's (i 2 I) (and the empty

set to f0g).
Finally we shall de�ne a pair of weight functions on maximal cones of dimension n.

Remember that a characteristic submanifold Mi is a connected component of the set

�xed pointwise by a certain circle subgroup, say Ti, of T . It turns out that Ti agrees

with the circle subgroup determined by vi 2 H2(BT ) through the natural identi�cation

H2(BT ) �= Hom(S1
; T ) ([23], Lemma 1.10). Therefore MI := \i2IMi is �xed pointwise

by a subtorus TI generated by Ti's for i 2 I.
Lemma 9.4. ([23], Lemma 1.7.) Suppose I 2 �(M)(n). Then the set fvi j i 2 Ig forms

a basis of H2(BT ), so that MI is a subset of M
T
and the cone C(M)(I) is of dimension

n.

A �xed point p 2MT belongs to MI for some I 2 �(n), and the tangent space �pM at

p 2MI naturally decomposes into

�pM
�=
M
i2I

(�pM=�pMi):
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The orientations on M and Mi determine an orientation on �pM=�pMi for each i, and

then an orientation on �pM through the above isomorphism. On the other hand, �pM

has a given orientation sinceM is oriented. These two orientations on �pM may disagree.

We de�ne the sign �p at p to be +1 or �1 according as the two orientations agree or

disagree, and set

w(M)+(I) := the number of fp 2MI j �p = +1g;
w(M)�(I) := the number of fp 2MI j �p = �1g:

Note that w(M)+(I) = 1 and w(M)�(I) = 0 for all I 2 �(n) if M is a compact non-

singular toric variety.

De�nition. We call the triple �(M) := (�(M); C(M); w(M)�) the multi-fan of M .

A characteristic submanifold of Mi is a connected component of Mi \Mj for some j

containing a T -�xed point. We give it the orientation induced from those on Mi and Mj.

With these orientations equipped, Mi, on which T=Ti acts e�ectively, is considered as a

torus manifold. If Mi \Mj is connected for any j 2 �(M)
(1)

i
(this is the case when M

is a compact non-singular toric variety), then the multi-fan �(Mi) of Mi agrees with the

projected multi-fan �(M)i with respect to fig 2 �(M)(1). They are di�erent otherwise

but there is a natural surjective map from �(Mi) to �(M)i.

Similarly, a connected component of MK for K 2 �(M) containing a T -�xed point is

considered as a torus manifold, and �(MK) agrees with �(M)K ifMK and MK \Mj are

connected for all j 2 �(M)
(1)

K
, but otherwise they are di�erent although there is a natural

surjective map from �(MK) to �(M)K , where �(MK) is an augmented simplicial set

obtained from the union of the simplicial sets associated with the connected components

of MK .

The multi-fan �(M) is non-singular by Lemma 9.4. We shall show that it is complete.

Lemma 9.5. �(M) is complete.

Proof. As we remarked in Section 2 after the de�nition of the completeness of a multi-

fan, it su�ces to prove the pre-completeness of �(M)J for any J 2 �(M)(n�1). Choose

a generic vector v from N = H2(BT ). The sign (�1)fig for i 2 �(M)
(1)

J
is de�ned as in

Section 5 with respect to the projection image of v on the quotient lattice of N by the

sublattice generated by C(M)(J) \N . The pre-completeness of �(M)J is equivalent to

this identity: X
fig2�(M)

(1)

J

(�1)figw(M)J(fig) = 0;

which we will verify in the following. Since jJ j = n � 1, a connected component of MJ

containing a T -�xed point is a 2-dimensional sphere on which T J := T=TJ acts e�ectively.

We denote those connected components by S2
�
's. They are torus manifolds equipped with

the orientations discussed before this lemma. Since S2
�
has two T J-�xed points, �(S2

�
)(1)

consists of two elements, denoted by ��, corresponding to the T
J -�xed points. One easily

checks that the multi-fan �(S2
�
) of S2

�
is complete, which is equivalent to this identity:

(�1)�+w(S2
�
)(�+) + (�1)��w(S2

�
)(��) = 0:(9.1)

As discussed before this lemma, we have a natural map �J : �(MJ) ! �(M)J . Note

that if �J(��) = fig where � stands for + or �, then (�1)�� = (�1)fig. On the other
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hand, we have

w(M)J(fig) =
X

�J(��)=fig

w(S2
�
)(��):

Therefore X
fig2�(M)

(1)

J

(�1)figw(M)J(fig) =
X
��

(�1)��w(S2
�
)(��);

which vanishes by (9.1), proving the lemma.

We make a remark on orientations at this point. Choose an orientation on T and �x

it. It induces an orientation on H2(BT ;R), so that [�(M)] 2 Hn�1(�(M)) is de�ned. If

the orientation on T or M is reversed, then [�(M)] turns into �[�(M)]. But we have

Lemma 9.6. [�(M)] does not depend on the orientations on Mi's.

Proof. Recall that the cycle which de�nes [�(M)] is
P

I2�(M)(n) w(M)(I)hIi. We reverse

the orientation on Mi. Obviously, w(M)(I) and hIi remain unchanged unless i 2 I.

Suppose i 2 I. Then, since the orientation on �pM=�pMi is reversed, w(M)+(I) and

w(M)�(I) will be interchanged, so that w(M)(I) turns into �w(M)(I). As for hIi, �i
turns into ��i as remarked before and hence so does vi by Lemma 9.3. Thus, hIi turns
into �hIi if i 2 I. After all, w(M)(I)hIi does not depend on the orientations on Mi's for

any I 2 �(M)(n).

Remember that there is a canonical isomorphism Hom(T; S1) �= H
2(BT ). We denote

by tu the element in Hom(T; S1) corresponding to u 2 H2(BT ). Elements of Hom(T; S1)

are complex one-dimensional representations of T and they generate the representation

ring R(T ) of T which is identi�ed with the group ring of H2(BT ). Since �i is the image

of 1 2 H0
T
(Mi) by the equivariant Gysin map from Mi to M , its restriction to a T -�xed

point p in Mi, denoted by �ijp, gives the equivariant Euler class of the T -representation
�pM=�pMi; so �pM=�pMi = t

�ijp. On the other hand, the identity in Lemma 9.3 restricted

to p shows that f�ijp j i 2 Ig is the dual basis of fvi j i 2 Ig, so �ijp is independent of the
choice of p 2MI and �ijp = u

I

i
in the notation of Section 7. Therefore we have

�pM =
M
i2I

t
u
I
i

as a T -representation whenever p 2MI .

The elements �i's (i = 1; : : : ; d) generate H2
T
(M) additively modulo H�(BT )-torsions

([23, Lemma 3.2]) and the torsion elements vanish when restricted to the �xed point

set MT because H�

T
(MT ) is a free H�(BT )-module. Since the restriction �ijp (p 2 MI)

depends on only I, we shall denote an element � 2 H2
T
(M) restricted to a point in MI by

�jI. Note that

�ijI =
(
u
I

i
if i 2 I,

0 otherwise.
(9.2)

Lemma 9.7. For any � 2 H2
T
(M),X

I2�(M)(n)

w(M)(I)t�jIQ
i2I

(1� t�uIi )
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is an element of R(T ) when M is a torus manifold.

Proof. Since �i's generate H2
T
(M) additively modulo H

�(BT )-torsions, � =
P

d

i=1 ci�i

modulo H
�(BT )-torsions with some integers ci's. We de�ne a map F� : �(M)(1) !

HP(H2(BT ;R)) by

F�(fig) := fu 2 H2(BT ;R) j hu; vii = cig:
The pair (�(M);F�) is a lattice multi-polytope, and \i2IF�(fig) = �jI for I 2 �(M)(n)

which follows from (9.2). Since �(M) is non-singular by Lemma 9.4 and complete

by Lemma 9.5, the lemma follows from Corollary 7.4 applied to the multi-polytope

(�(M);F�).

10. Ty-genus of a torus manifold

When M is a unitary torus manifold, the localization formula of the Ty-genus Ty[M ]

of M tells us that

Ty[M ] =
X

I2�(n)

w(M)(I)

Q
i2I

(1 + yt
�uIi )Q

i2I
(1� t�uIi )

(10.1)

and this is actually a polynomial in y with constant coe�cients. As is well known, T0[M ]

agrees with the Todd genus of M and T1[M ] agrees with the signature of M , see [17].

The Ty-genus is a genus for unitary manifolds and it is not de�ned for general torus

manifolds. But the right-hand side of (10.1) makes sense even for a torus manifold, and

we take it as the de�nition of the Ty-genus Ty[M ] of M and de�ne the Todd genus of M

to be T0[M ]. Note that the signature of M is already de�ned for a torus manifold M

because M is an oriented closed manifold, and that it agrees with T1[M ] which follows

from the Atiyah-Singer G-signature theorem.

Theorem 10.1. Let M be a torus manifold of dimension 2n. Then

Ty[M ] = Ty[�(M)] =

nX
m=0

en�m(�(M))(�1� y)m:

(See Section 3 for eq(�(M)).) In particular, the Todd genus T0[M ] of M equals deg(�).

Proof. Look at the expansion of the right-hand side of (10.1) with respect to y. It follows

from (9.2) and Lemma 9.7 that all coe�cients of powers of y in (10.1) are elements of

R(T ). Take a generic vector v 2 H2(BT ) and evaluate the right-hand side of (10.1) on

v. Then we get the following polynomial in y whose coe�cients are Laurent polynomials

in z: X
I2�(n)

w(M)(I)

Q
i2I

(1 + yz
�huIi ;vi)Q

i2I
(1� z�huIi ;vi)

(10.2)

It is easily seen that (10.2) approaches to a polynomial in y with constant coe�cents if

z tends either to 0 or to 1. This means that (10.2) itself is a polynomial with constant

coe�cients. Since v is generic, this implies that (10.1), that is Ty[M ], is actually a
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polynomial with constant coe�cients equal to (10.2). Then, by letting z tend to 0, we

obtain

Ty[M ] =
X

I2�(n)

w(M)(I)(�y)�(I);

where �(I) = ]fi 2 I j huI
i
; vi > 0g. This �(I) agrees with the �(I) in Section 3 because

fuI
i
j i 2 Ig is the dual basis of fvi j i 2 Ig. Hence Ty[M ] = Ty[�(M)], proving the

former identity in the theorem. The latter follows from Corollary 3.3.

As noted in the de�nition of Ty[�] in Section 3, T0[�(M)] = deg(�(M)). Since

T0[M ] = T0[�(M)], the last statement in the theorem follows.

Corollary 10.2. The signature Sign(M) of a torus manifold M is given by

Sign(M) =

nX
m=0

(�2)men�m(�(M)):

If T [M ] = 1 and w(M)(I) = 1 for all I 2 �(M)(n), then eq(�(M)) agrees with the

number of cones of dimension q in �(M).

Proof. Since Sign(M) equals T1[M ], the former statement follows from Theorem 10.1.

The latter statement is noted in the de�nition of eq(�) in Section 3.

Remark. If M is a compact non-singular toric variety, then T [M ] = 1 and w(M)(I) = 1

for all I 2 �(M)(n), and the formula above is already known in that case ([25, Theorem

3.12(3)]).

11. Equivariant index of a torus manifold

If M is a unitary torus manifold, then the map � collapsing M to a point induces, in

equivariant K-theory, an equivariant Gysin homomorphism

�! : KT (M)! KT (pt) = R(T ):

If E is a complex T -vector bundle overM , then �!(E) equals the index of a Dirac operator

twisted by E. It is sometimes called the equivariant Riemann-Roch number. The Todd

genus of M is equal to �!(1).

Let L be a complex T -line bundle over a unitary torus manifold M . Since �!(L) is an

element of R(T ), one can express

�!(L) =
X

u2H2(BT )

mL(u)t
u(11.1)

with integers mL(u) which are zero for all but �nitely many elements u. In this section

we describe the multiplicitymL(u) of t
u in terms of the (shifted) moment map associated

with L when M is a torus manifold. For that, we need to de�ne �!(L) when M is a torus

manifold. This is done as follows. When M is a unitary torus manifold, the localization

formula applied to �!(L) tells us that

�!(L) =
X

I2�(M)(n)

w(M)(I)tc
T
1 (L)jIQ

i2I
(1� t�uIi )

(11.2)
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where cT1 (L) 2 H2
T
(M) denotes the equivariant �rst Chern class of L. (Note that tc

T
1 (L)jI

is nothing but the complex one-dimensional T -representation obtained by restricting L

to a point in MI .) The right-hand side of (11.2) is an element of R(T ) by Lemma 9.7

whenever M is a torus manifold although �! may not be de�ned. Thus we de�ne �!(L)

as the right-hand side of (11.2) when M is a torus manifold, and then de�ne mL(u) as

before using (11.1).

In the following, we will make the following assumption on a torus manifoldM , which

is satis�ed for compact non-singular toric varieties with restricted T -actions: all isotropy

subgroups of M are subtori of T and each connected component �xed pointwise by a

subtorus contains at least one T -�xed point. Then the union [d
i=1Mi is the set of points

with nontrivial isotropy subgroups, and it follows from the slice theorem that the orbit

space M=T is a compact connected smooth manifold of dimension n with [d
i=1Mi=T as

boundary (after corners rounded).

We make a further remark on orientations. The orbit space M=T is orientable (see

[23], Lemma 6.7) and we orient it in such a way that the orientation on T followed by

that of M=T agrees with that of M times (�1)n(n�1)=2. This determines a fundamental

class in Hn(M=T; @(M=T )) and hence in Hn�1(@(M=T )), denoted by [@(M=T )], through

the boundary homomorphism from Hn(M=T; @(M=T )) to Hn�1(@(M=T )).

Since H2
T
(M) is additively generated by �i's (i = 1; : : : ; d) modulo H�(BT )-torsions,

c
T

1 (L) =
P

i
ci�i modulo H�(BT )-torsions with some integers ci's. Associated with L,

there is de�ned the moment map �L : M ! H
2(BT ;R) = L(T )�. It maps Mi into an

a�ne hyperplane fu 2 H
2(BT ;R) j hu; vii = cig for each i (see [23], Lemma 6.5). We

slightly shift �L so that the shifted map �0

L
maps Mi into

F 0

L
(fig) := fu 2 H2(BT ;R) j hu; vii = ci +

1

2
g

for each i. In fact, �0

L
is de�ned as follows. Let K be a complex T -line bundle over

M with cT1 (K) = �Pd

i=1 �i. Such K exists ([16]). When M is a compact non-singular

toric variety, K is the canonical line bundle of M . Using the moment map �K : M !
H

2(BT ;R) associated with K, we de�ne

�0

L
:= �L �

1

2
�K :

The moment maps �L and �K are equivariant, the T -action on the target H2(BT ;R)

being trivial; so �0

L
induces a map

��0

L
: M=T ! H

2(BT ;R):

The shifted a�ne hyperplanes F 0

L
(fig)'s miss the lattice H2(BT ). Since @(M=T ) =

[i(Mi=T ) and ��0

L
maps Mi=T to F 0

L
(fig) for each i, ��0

L
induces a homomorphism

(��0

L
)� : Hn�1(@(M=T ))! Hn�1(H

2(BT ;R)nfug)
for each lattice point u 2 H2(BT ). We de�ne

d
0

L
(u) := the mapping degree of (��0

L
)�

where the orientation on H2(BT ;R) is determined by that on T . Our main theorem in

this section is the following.

Theorem 11.1. Let M be a torus manifold. Then mL = d
0

L
on H

2(BT ).



THEORY OF MULTI-FANS 39

Remark. This theorem was �rst established by Karshon-Tolman [18] whenM is a compact

non-singular toric variety, and then extended to a unitary torus manifold by the second

named author [23], while Grossberg-Karshon [10] extends the result of [18] to Spinc

manifolds with torus actions. The family of torus manifolds contains these manifolds.

Let S(M) be the realization of the �rst barycentric subdivision of �(M) and let S(M)i
be the union of simplicies in S(M) which contain the vertex fig as in Section 6. Since

S(M)I = \i2IS(M)i is contractible for any non-empty set I 2 �(M) and @(M=T ) =

[d
i=1(Mi=T ), it follows from Lemma 6.2 that there is a continuous map

�M : @(M=T )! S(M)

sending \i2I(Mi=T ) to S(M)I for each I 2 �(M), and that such a map is unique up to

homotopy preserving the strati�cations, where the strati�cations on @(M=T ) and S(M)

mean subspaces \i2I@(Mi=T ) and S(M)I indexed by elements I's in �(M).

If the orientation on T or M is reversed, then [@(M=T )] and [�(M)] will be multiplied

by �1 simultaneously; so the following lemma makes sense.

Lemma 11.2. �M �([@(M=T )]) = [�(M)].

Proof. We prove the lemma by induction on the dimension n = dim(M=T ). When n = 1,

M is S2 with a nontrivial smooth S1-action. In this case, it is not di�cult to check the

lemma, which we leave to the reader.

Since a characteristic submanifold ofMi is a connected component ofMi\Mj for some

j and such j is uniquely determined by the characteristic submanifold of Mi, there is a

natural map �i : �(Mi)! �(M)i. This map is an isomorphism if Mi \Mj is connected

for any j, but otherwise it is only surjective. As we did in Lemma 6.1, we identify the

realization of �(M)i with @(S(M)i). One sees that

�i�([�(Mi)]) =
X

i2I2�(M)(n)

w(M)(I)hInfigi 2 Hn�2(@(S(M)i)) = Hn�2(�(M)i):(11.3)

Since Mi is itself a torus manifold, the spaces @(Mi=T ) and S(Mi) have strati�cations

like for M , and hence we have a map �Mi
: @(Mi=T ) ! S(Mi) preserving the strati�ca-

tions. By the induction assumption

�Mi�
([@(Mi=T )]) = [�(Mi)] 2 Hn�1(S(Mi)) = Hn�1(�(Mi)):(11.4)

On the other hand, @(S(M)i) has a strati�cation induced from S(M) and each stratum

is contractible. Since �M restricted to @(Mi=T ) is a map from @(Mi=T ) to @(S(M)i)

preserving the strati�cations and so is �i ��Mi
as well, they are homotopic preserving the

strati�cations by Lemma 6.2. Therefore, we have the following commutative diagram:

Hn�1(@(M=T ))
injective����! L

i
Hn�1(Mi=T; @(Mi=T ))

�=���! L
i
Hn�2(@(Mi=T ))

�M�

??y ??y ��i��Mi�

??y
Hn�1(S(M))

injective����! L
i
Hn�1(S(M)i; @(S(M)i))

�=���! L
i
Hn�2(@(S(M)i))

where the left horizontal maps are restrictions. Tracing the upper horizontal sequence

from the left to the right, [@(M=T )] 2 Hn�1(@(M=T )) maps to
L

i
[@(Mi=T )], and

down to
P

i2I2�(M)(n) w(M)(I)hInfigi 2L
i
Hn�2(@(S(M)i)) by (11.3) and (11.4), while

[�(M)] 2 Hn�1(S(M)) maps through the lower horizontal sequence to the same element

as observed in Lemma 6.1. Since the horizontal sequences above are injective, the lemma

follows.
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Proof of Theorem 11.1. By Lemma 6.2 we have a map S(M) ! H
2(BT ;R) associated

with the multi-polytope P 0
L
:= (�(M);F 0

L
). We denote the map by 	0

L
. The composition

	0

L
��M is a map from @(M=T ) to H2(BT ;R) sending \i2I(Mi=T ) to \i2IF 0

L
(fig) for any

I 2 �(M), and so is ��0

L
as well. Therefore, 	0

L
� �M and ��0

L
are homotopic preserving

the strati�cations by Lemma 6.2. It follows from Lemma 11.2 that

d
0

L
(u) = the mapping degree of (��0

L
)� : Hn�1(@(M=T ))! Hn�1(H

2(BT ;R)nfug)
= the mapping degree of (	0

L
� �M )� : Hn�1(@(M=T ))! Hn�1(H

2(BT ;R)nfug)
= the mapping degree of (	0

L
)� : Hn�1(S(M))! Hn�1(H

2(BT ;R)nfug)
=WNP 0

L
(u) = DHP 0

L
(u) = DH(PL)+(u):

This together with Corollary 7.4 and the de�nition of mL (i.e., (11.1) and (11.2)) proves

the theorem.

12. Torus orbifolds

We �rst recall basic de�nitions concerning orbifolds. We refer to [27], [20] or [8] for

details. The reference [22] will be also useful; it deals with torus actions on symplectic

orbifolds. If M is an orbifold of dimension n, then there is a family f(U�; V�; H�; p�)g
of orbifold charts, where fU�g is an open covering of M , V� is an n-dimensional man-

ifold, H� is a �nite group acting on V� and p� : V� ! U� is a map which induces a

homeomorphism from V�=H� onto U�. If U� and U� intersect each other, then the charts

(U�; V�; H�; p�) and (U�; V�; H�; p�) satisfy suitable compatibility conditions. Such a

family f(U�; V�; H�; p�)g is called an orbifold atlas. For any point x in M , there exists

a special type of orbifold chart (Ux; Vx; Hx; px) with the property that p�1
x
(x) is a single

point ~x 2 Vx. The isomorphism class of the group Hx is uniquely determined by x and is

called the isotropy group of x. The order of Hx, denoted by dx, is called the multiplicity

of the point x. Such an orbifold chart will be called a special orbifold chart. When M is

connected, the minimum of the multiplicities is called the multiplicity of the orbifold M

and is denoted by d(M). The set fx 2 M j dx = d(M)g is open and dense in M . It is a

manifold. This set is called the principal stratum of the orbifold M . We have d(M) = 1

if and only if the actions of all the isotropy groups are e�ective.

A map f : M ! M
0 from an orbifold M into another orbifold M 0 is called smooth

if, near every point x in M , there is a smooth map f� : V� ! V
0

�
for suitable orbifold

charts (U�; V�; H�; p�) forM around x and (U 0

�
; V

0

�
; H

0

�
; p

0

�
) forM 0 around f(x) satisfying

the commutativity relation p0
�
� f� = f � p�. A subset M of an orbifold M 0 is called a

suborbifold if, for each orbifold chart (U 0

�
; V

0

�
; H

0

�
; p

0

�
) of M 0, V� = p

0

�

�1
(M \ U 0

�
) is an

H
0

�
-invariant submanifold of V 0

�
. If this is the case, M becomes an orbifold with orbifold

charts (U�; V�; H
0

�
; p

0

�
) where U� = M \ U 0

�
, and the inclusion M ! M

0 becomes a

smooth map. It may happen that d(M) > d(M 0) (M and M 0 are assumed connected).

The integer d(M jM 0) = d(M)=d(M 0) will be called the relative multiplicity of M (with

respect to M 0).

Orbifold vector bundles are also de�ned. Typical examples are the tangent bundle of

an orbifold and the normal bundle of a suborbifold. An orbifold is orientable if its tangent

bundle is orientable. If E ! M is an orbifold vector bundle over a connected orbifold,

then the relative multiplicity of the orbifold vector bundle E is de�ned to be d(M jE),
the relatvie multiplicity of the zero cross-section M regarded as a suborbifold of E. If
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M is a suborbifold of M 0 and � is the normal bundle of M in M 0, then d(M j�) equals
d(M jM 0).

LetG be a Lie group. An action ofG on an orbifoldM is a smooth map  : G�M !M

satisfying the usual rule of group action. Suppose that G is connected. If x 2 M is a

�xed point of the action, and (Ux; Vx; Hx; px) is a special orbifold chart around x such

that Ux is invariant under the action of G, then there is a �nite covering group ~Gx of G

and an action of ~Gx on Vx which covers the action of G on Ux. If G is compact, the �xed

point set of the action is a suborbifold.

Now let M be an oriented, closed orbifold of dimension 2n with an e�ective action

of an n-dimensional torus T . A connected component of the �xed point set by a circle

subgroup is a suborbifold. A suborbifold of this type which has codimension two and

contains at least one �xed point of the T -action will be called a characteristic suborbifold.

LetMi be a characteristic suborbifold and x 2Mi. We take, as we may, a special orbifold

chart (Ux; Vx; Hx; px) around x such that Vx is an open disk in R2n and the action of Hx

on Vx is linear. We denote by the same symbol Vx the tangent space to Vx at the point

~x = p
�1
x
(x). Then the vector space Vx decomposes into a direct sum Vix � V ?

ix
where V ?

ix

is tangent to p�1
x
(Ux \Mi), and the vector space Vix represents the �ber direction of the

normal bundle of Mi in M . The isotropy group Hx acts on Vix.

Lemma 12.1. Let M be an oriented closed orbifold as above and Mi a characteristic

suborbifold. Let Si denote the circle subgroup which �xes the points of Mi. Then there

exists a �nite covering group ~Si of Si and a lifting of the action of Si to the action of ~Si
on Vx for any point x 2Mi. The lifted action of ~Si preserves Vix.

Proof. To x 2Mi we correspond the degree of the minimal �nite covering ~Six of Si such

that there is a lifting of the action to ~Six. The lifted action necessarily preserves Vix. It

is not di�cult to see that the correspondence is locally constant. Since Mi is connected

the correspondence must be constant.

Hereafter we denote by �i : ~Si ! Si the minimal �nite covering of Si with the above

property. ~Si acts e�ectively on Vx.

An oriented, closed orbifold M of dimension 2n with an e�ective action of a torus T

of dimension n with non-empty �xed point set MT equipped with a preferred orientation

of the normal bundle of each characteristic suborbifold will be called a torus orbifold if,

for each Mi and at each point x 2Mi, the action of Hx preserves the orientation of each

Vix. Note that choosing an orientation of a characteristic submanifold is equivalent to

choosing an orientation of its normal bundle. Thus a torus manifold is a torus orbifold in

the above sense. Another example is a unitary torus orbifold. A unitary torus orbifold is

a torus orbifold such that V� is a unitary manifold, the action of H� preserves the unitary

structure of V� for each orbifold chart (U�; V�; H�; p�) and the action of T on M also

preserves the unitary structure of V 0

�
s.

Let M be a torus orbifold. The preferred orientation of the normal bundle �i of Mi

makes it a complex orbifold line bundle. Then there is a unique isomorphism 'i : S
1 ! ~Si

such that '(z) acts by the complex multiplication of z on each Vix. We identify ~Si with

S
1 via 'i. The homomorphism �i : S

1 = ~Si ! T de�nes an element vi 2 Hom(S1
; T ) =

H2(BT ;Z). We are now ready to de�ne the multi-fan �(M) = (�(M); C(M); w(M)�)

associated with a torus orbifoldM in an entirely similar way to the case of torus manifolds.

Speci�cally

�(M) = fI j (\i2IMi)
T 6= ;g;
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and C(M)(I) is the cone in H2(BT ;R) with apex at 0 and spanned by fvi j i 2 Ig.
Furthermore w(M)�(I) = #fx 2 MI j �x = �1g for I 2 �(M)(n), where �x is de�ned to

be the ratio of two orientations at x, one which is given by the orientation of M and the

other by that of the oriented vector space Vx = �i2IVix.

We set ~TI =
Q

i2I
~Si for I 2 �(M)(k) and �I =

Q
i2I

�i : ~TI ! T . The image of �I is

denoted by TI . �I : ~TI ! TI is a �nite covering. TI �xes the points of MI =
T

i2I
Mi.

If I 2 �(M)(n), then TI = T . Let x be a �xed point of the action of T on M . Then

there is a unique I 2 �(M)(n) such that x belongs to MI . The inclusion S
1 = ~Si ! ~TI

de�nes an element ~vi 2 Hom(S1
; ~TI) = H2(B ~TI ;Z), and we have �I�(~vi) = vi. Vx and

Vix; i 2 I; are complex ~TI-modules, and the decomposition Vx = �i2IVix is compatible

with the action of ~TI . The e�ectiveness of the T -action on M implies that ~TI e�ectively

acts on Vx; equivalently, it implies that f~vi j i 2 Ig is a basis of H2(B ~TI ;Z). Since

�I� : H2(B ~TI ;Z) ! H2(BT ;Z) is injective, the vi; i 2 I; are linearly independent in

H2(BT ;R).

Lemma 12.2. �(M) is a complete multi-fan.

Proof. The argument is almost similar to the case of torus manifolds. One has only to

observe that the characteristic suborbifolds and their intersections are torus orbifolds and

a 2-dimensional torus orbifold is topologically a 2-sphere acted on by a circle group with

exactly two �xed points.

Lemma 12.3. Suppose d(M) = 1. Let I 2 �(M)(k), and let x be a point in the principal

stratum (as an orbifold) of MI . Then the isotropy group Hx of x is isomorphic to the

kernel of �I : ~TI ! T .

Proof. Let (Ux; Vx; Hx; px) be an orbifold chart around x. We may regard Vx as an n

dimensional ~TI-module as before. As such Vx is decomposed as a direct sum of ~TI-modules

Vx = (�i2IVix)� V 0

where V 0 is projected into MI by px. ~TI =
Q

i2I
~Si can be regarded as embedded in the

general linear group of �i2IVix. Since Hx acts on each Vix preserving its orientation, there

is a homomorphism Hx ! ~TI . The action of Hx on V
0 is trivial. Moreover the action of

Hx on Vx is e�ective because d(M) = 1. It follows that the homomorphism above embeds

Hx into ~TI . Since the kernel of �I is equal to the intersection of ~TI with the image of Hx,

it is isomorphic to Hx.

It is known that a closed oriented orbifold M of dimension n has the fundamental

class [M ] 2 Hn(M ;Z), and that the Poincar�e duality holds, i.e., the operation # =

[M ]\ : Hq(M ;Q ) ! Hn�q(M ;Q ) is an isomorphism. If f : M ! M
0 is a smooth map

from an oriented close orbifold M to another such M
0, then the Gysin homomorphism

f! : H
q(M ;Q ) ! H

q+n�n0(M 0;Q) is de�ned to be the compostion #�1 � f� �#, where n0 is
the dimension of M 0. If a compact Lie group G acts on M and M 0, and f is equivariant,

then the equivariant Gysin homomorphism f! : H
q

G
(M ;Q ) ! H

q+n�n0

G
(M 0;Q) is also

de�ned.

Henceforth M will be a torus orbifold. For each i 2 �(M)(1), we set

�i = (fi)!(1) 2 H2
T
(M ;Q );

where fi :Mi !M is the inclusion.
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Lemma 12.4. Let c
T

1 (�i) be the equivariant �rst Chern class of the normal bundle �i.

Then we have

c
T

1 (�i) = f
�

i
(�i):

Proof. We may assume that d(M) = 1. Take an equivariant Thom form � for the

equivariant orbifold bundle �i (we refer to [3] for Thom form and Chern form). Let x be

a point in the principal stratum of Mi, and (Ux; Vx; Hx; px) an orbifold chart around x.

The restriction of � to Vx is invariant under the action of Hx and its support is contained

in a tubular neighborhood Wi of Vi = p
�1
x
(Ui), where Ui = Ux \Mi. Moreover, with

respect to the �bering ~�i : Wi ! Vi, we have jHxj�1(~�i)�(�) = 1, where (~�i)� is the

integration along the �ber of ~�i. Note that the �ber is Vix, and that the action of Hx

preserves the orientation of Vix. The equivariant Chern class cT1 (�i) is the restriction

to Mi of the cohomology class [�] of �. Here [�] is considered as a relative class in

H
2
T
(W;W nMi;R) where W is a tubular neighborhood of Mi.

On the other hand, �i is the restriction of a cohomology class  2 H2
T
(W;W nMi;R)

such that

��( ) = 1 2 H0
T
(W ;R) = H

0
T
(Mi;R);

where � : W ! Mi denotes the projection of the �bration. Note that the �ber of � is

Uix = Vix=Hx, where Hx acts e�ectively on Vix. We have

��([�]) = jHxj�1(~�i)�([�]) = 1 = ��( ):

But �� is an isomorphism (Thom isomorphism). Hence we have [�] =  , and consequently

c
T

1 (�i) = [�]jMi =  jMi = f
�

i
(�i):

We noticed that, for I 2 �(M)(n), fvi j i 2 Ig was a basis of H2(BT ;R). Let fuIig be
the dual basis inH2(BT ;R). This can be interpreted in the following way. Let f~ui j i 2 Ig
be the basis of H2(B ~TI ;Z) dual to f~vi j i 2 Ig. We have ��

I
(uI

i
) = ~ui, since �I�(~vi) = vi.

We identify H2(B ~TI ;R) with H
2(BT ;R) by the isomorphism �

�

I
. Then H2(B ~TI ;Z) can

be considered as embedded in H2(BT ;R). With this convention we have uI
i
= ~ui.

Let x 2 MT be a �xed point of the T -action. In the sequel we identify H2
T
(x;R) with

H
2(BT ;R).

Lemma 12.5. Let I 2 �(M)(n) and x 2 MI . Then �ijx = u
I

i
2 H2(BT ;R) for i 2 I. If

j =2 I, then �jjx = 0.

Proof. By Lemma 12.4 we have

�ijx = c
T

1 (�ijx):
But �ijx viewed as ~TI-module is Vix. It follows that c

~TI
1 (�ijx) = ~ui. Hence

c
T

1 (�ijx) = u
I

i
:

If j =2 I, then x =2Mj. Therefore �jjx = 0.

If we consider uI
i
= ~ui as an element of Hom( ~TI ; S

1) = H
2(B ~TI ;Z), then Lemmas 12.5

and 12.6 imply that uI
i
is nothing but the ~TI -module Vix. The following Lemma describes

the algebra structure of H�

T
(M ;R) over H�(BT ;R) modulo H�(BT ;R)-torsion as in the

case of torus manifolds (Lemma 9.3).
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Lemma 12.6. The following equality holds for any u 2 H2(BT ;R):

�
�(u) =

X
i2�(M)(1)

hu; vii�i modulo H
�(BT ;R)-torsion:

Proof. Let x 2 MI � M
T be a �xed point of the T -action. We restrict both sides of the

equality in Lemma 12.6 to x. On the left hand side we get u. On the right hand side the

result is X
i2I

hu; viiuIi

by virtue of Lemma 12.5. But this is equal to u by the de�nition of the uI
i
. Thus both

sides coincide after the restriction to each x 2MT . Since the restriction homomorphism

�
� : H�

T
(M ;R) ! H

�

T
(MT ;R) is injective modulo H�(BT ;R)-torsion, the equality is

con�rmed.

Remark. The equality in Lemma 12.6 characterizes the vectors vi in terms of the �i as in

Lemma 9.3.

We set N = H2(BT ;Z) and de�ne NI for I 2 �(M)(n) to be the lattice generated by

the vi; i 2 I.
Lemma 12.7. Assume that d(M) = 1. Let x 2 MI with I 2 �(M)(n). Then Hx is

isomorphic to Ker �I. Moreover Ker �I is isomorphic to N=NI.

Proof. We have already shown that Hx is isomorphic to the kernel of �I in Lemma 12.3.

For the second part it su�ces to note that N and NI can be identi�ed with the funda-

mental group of T and ~TI . Therefore the kernel of �I is isomorphic to N=NI .

Remark. Hereafter we identify Hx and N=NI with Ker �I � ~TI through the isomor-

phisms given in Lemma 12.7. We put �I(u; v) = exp(2�
p
�1hu; vi) for u 2 H2(B ~TI ;Z)

and v 2 H2(BT ;R). If u is �xed, then the value �I(u; v) depends only on the equiv-

alence class of v modulo NI . Hence, if we identify ~Si with S
1 via 'i as before and ~TI

with
Q

i2I
S
1 via

Q
i2I

'i, then the map exp : H2(BT ;R) ! ~TI de�ned by exp(v) =Q
i2I

exp(2�
p
�1huI

i
; vi) is a universal covering map and its kernel is NI . It induces an

isomorphism from Hx = N=NI onto Ker �I . We shall write �I(u; g) instead of �I(u; v)

for g = exp(v) 2 ~TI as in Section 7. Let V be a one dimensional ~TI-module. It de�nes

an element u 2 Hom( ~TI ; S
1) = H

2(B ~TI ;Z). Then the action of g 2 ~TI on V is given by

the complex multiplication by �I(u; g).

Suppose that M is a unitary torus orbifold such that d(M) = 1. Let L be a T -

invariant complex line bundle over M . By using the hermitian connection of M and a

hermitian connection of L, a Dirac operator twisted by L is de�ned as in the case of

torus manifolds. Its index is a T -module. It is called the equivariant Riemann-Roch

number with coe�cient in L, and is denoted by RRT (M;L) 2 R(T ). It can be expressed

by the �xed point formula due to Vergne [29]; cf. also [8]. The formula is particularly

simple when all the �xed points are isolated. It is convenient to write down the image of

RR
T (M;L) by ch : R(T )! H

��(BT ;R); the result is

Lemma 12.8. Let � = c
T

1 (L) be the equivariant Chern class of L. Then

ch(RRT (M;L)) =
X
x2MT

�xe
�jx

jHxj
X
g2Hx

�Ix(�jx; g)Q
i2Ix

(1� �Ix(uIxi ; g)�1e�u
Ix
i )

;
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where Ix 2 �(M)(n) is such that x 2MIx.

It can be shown that, if x and y both lie in the same MI , then �jx = �jy for � = c
T

1 (L).

The proof is same as in the case of torus manifolds as was given in [23]. We shall write

uI = c
T

1 (L)jx for x 2MI . Taking Remark below Lemma 12.7 in account, we get

Proposition 12.9.

ch(RRT (M;L)) =
X

I2�(M)(n)

w(M)(I)euI

jN=NIj
X

g2N=NI

�I(uI ; g)Q
i2I

(1� �I(uIi ; g)�1e�u
I
i )
:

Since ch : R(T )! H
��(BT ;R) is injective, the formula in Proposition 12.9 character-

izes RRT (M;L). Using the notation in Section 7, we obtain

Corollary 12.10.

RR
T (M;L) =

X
I2�(M)(n)

w(M)(I)tuI

jN=NIj
X

g2N=NI

�I(uI; g)Q
i2I

(1� �I(uIi ; g)�1t�u
I
i )
:

When uI = c
T

1 (L)jx; x 2 MI ; lies in N
� = H

2(BT ;Z), then �I(uI; g) = 1 for all

g 2 N=NI . Therefore, if uI 2 N for all I 2 �(M)(n), then

RR
T (M;L) =

X
I2�(M)(n)

w(M)(I)tuI

jN=NIj
X

g2N=NI

1Q
i2I

(1� �I(uIi ; g)�1t�u
I
i )
:

By observing that g 7! �I(u; g) is a character of N=NI for any u 2 H
2(B ~TI ;Z) =

Hom( ~TI ; S
1), the formula above can be rewritten in the following form:

RR
T (M;L) =

X
I2�(M)(n)

w(M)(I)tuI

jN=NIj
X

g2N=NI

1Q
i2I

(1� �I(uIi ; g)t�u
I
i )
:(12.1)

The right hand side of this formula (12.1) appeared in Corollary 7.4. There, it was

related to a lattice multi-polytope P and the Duistermaat-Heckman function DHP+.

Suppose that cT1 (L) is of the form c
T

1 (L) =
P

i2�(M)(1) ci�i. Then we de�ne F(i) to be the
hyperplane in H2(BT ;R) de�ned by

F(i) = fu 2 H2(BT ;R) j hu; vii = cig
for each i 2 �(M)(1). The multi-polytope P = (�(M);F) is the one mentioned in

Corollary 7.4. Note that P is not always a lattice multi-polytope in this case.

Remark. Corollary 7.4 shows that the right hand side of the formula (12.1) depends

only on �(M) and P; namely, it does not depend on the choice of generating vectors

vi 2 H2(BT ;R) in so far as they lie in N = H
2(BT ;Z) and fuI

i
j i 2 Ig is interpreted as

the dual basis of fvi j i 2 Ig.
When M is a torus manifold, the Duistermaat-Heckman function has a geometric

meaning coming from the moment map of the line bundle L as was explained in Section 11.

There it is also explained the role of the winding number. These notions are generalized

to the case of torus orbifolds and similar results hold in this case too. The details can be

worked out without much alteration and are left to the reader.
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13. Realizing multi-fans by torus orbifolds

In the previous section, we associated a complete simplicial multi-fan of dimension n

with a torus orbifold of dimension 2n. In this section, we consider the converse problem. If

a multi-fan � is associated with a torus orbifoldM , then we say that � is (geometrically)

realized by M , or M realizes �.

We recall how the multi-fan of M changes when the orientations on M or Mi are re-

versed. If the orientation of M is unchanged but that of Mi is reversed, then the orienta-

tion of the normal bundle ofMi is reversed and, hence, 1-dimensional cone C(i) tunrs into

the cone �C(i), and the pair (w(M)+(I); w(M)�(I)) turns into (w(M)�(I); w(M)+(I))

for I 2 �(M)(n) containing i while others remain unchanged. If the orientations of

M and of all the Mi's are reversed, then all the cones C(i)'s remain unchanged but

(w(M)+(I); w(M)�(I)) turns into (w(M)�(I); w(M)+(I)) for any I 2 �(M)(n) so that

w(M)(I) turns into �w(M)(I) for any I 2 �(M)(n). The torus orbifold M with the

reversed orientations of M and all the Mi's will be denoted by �M .

The underlying space of a torus orbifold of dimension 2 is S2 with the standard S
1-

action. In this case, there are two characteristic submanifolds. They are S1-�xed points.

Taking orientations on S2 and its characteristic submanifolds into account, we easily have

the following theorem.

Theorem 13.1. A complete simplicial multi-fan � = (�; C; w�) of dimension 1 is geo-

metrically realized if and only if � is isomorphic to the argumented simplicial set obtained

from the boundary of a 1-simplex and fw+(I); w�(I)g = f1; 0g as a set for I 2 �(1)
.

The analysis of a torus orbifold of dimension 4 is more complicated. In this case, each

characteristic suborbifold is homeomorphic to S2 and has two �xed points. Therefore,

if two of the characteristic suborbifolds intersect, then they intersect at one point or

two points, and if they intersect at two points, then they do not intersect at any other

characteristic suborbifolds. We also note that a T -�xed point is an intersection of two

characteristic suborbifolds. These facts imply the \only if" part in the following theorem.

We will prove the \if" part later.

Theorem 13.2. A complete simplicial multi-fan � = (�; C; w�) of dimension 2 is geo-

metrically realized if and only if the following two conditions are satis�ed for each I 2 �(2)
:

(1) fw+(I); w�(I)g = f1; 0g or f1; 1g,
(2) when fw+(I); w�(I)g = f1; 0g, there are exactly two elements, say I

0
and I

00
,

in �(2)
such that I \ I 0 and I \ I 00 are in �(1)

and I \ I 0 \ I 00 = ;, and when

fw+(I); w�(I)g = f1; 1g, there is no element I
0 2 �(2)

such that I \ I 0 2 �(1)
.

In contrast to the low dimensional cases above, we have

Theorem 13.3. Any complete simplicial multi-fan of dimension � 3 is geometrically

realized.

In the following � = (�; C; w�) will be a complete simplicial multi-fan of dimension

n � 2 unless otherwise stated. Here is an outline of how to realize � by a torus orbifold.

We choose and �x a generic (rational) 1-dimensional cone in NR, and decompose � using

it into a number of what we callminimal multi-fans. Minimal multi-fans can essentially be

realized by weighted projective spaces. We paste them together by performing equivariant

connected sum along characteristic suborbifolds and at T -�xed points to obtain a desired

torus orbifold realizing the given �.
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Equivariant connected sum is performed through two isomorphic orbifold charts. In

this way attention should be payed to orbifold structures. So we make a remark on

orbifold structures at this point. There are many choices of an orbifold structure on M

(e.g. S
2 with the standard S

1-action admits in�nitely many orbifold structures), but

the associated multi-fan does not depend on the choice of an orbifold structure. In fact,

the circle subgroup Si determined by the vector vi in the previous section is the one

which �xes points in the characteristic suborbifold Mi, so the line generated by vi is

independent of the orbifold structure. Moreover the direction of vi is determined by the

choice of orientations on M and Mi, so the cone spanned by vi is independent of the

orbifold structure. What depends on the orbifold structure is the length of vi which is

equal to the degree of the covering map ~Si ! Si. In this way the vectors vi reect the

orbifold structure related to the torus action. We shall call the vector vi the edge vector

of the 1-dimensional cone C(i).

We shall use two types of equivariant connected sum; one is at T -�xed points and the

other is along characteristic suborbifolds. Let us explain the former �rst. Suppose that

torus orbifolds M and M 0 with d(M) = d(M 0) have T -�xed points q and q0 respectively

such that the n-dimensional cones and the edge vectors corresponding to them are the

same and the signs �q and �q0 at q and q
0 are opposites. Then there are a �nite covering

~T of T , a �nite subgroup H of ~T and orbifold charts (U; V;H; p) and (U 0
; V;H; p

0) around

q and q
0 respectively such that V is an invariant open disk centered at the origin in a

~T -module. In particular a di�eomorphism (in the sense of orbifold) f from the closure of

U onto that of U 0 is induced. Moreover f sends characteristic suborbifolds that contain q

onto characteristic suborbifolds that contain q0. It should be noticed that f is orientation

reversing on U and on all the characteristic suborbifolds. We remove U and U 0 from M

andM 0 respectively and glue their boundaries through the di�eomorphism f restricted to

the boundaries. The resulting space is a torus orbifold with the orientations compatible

with the torus orbifolds M and M 0.

Let us explain the equivariant connected sum along characteristic suborbifolds. For

the sake of simplicity we assume that d(M) = 1. Let Mi be a characteristic suborbifold,

p a point in the principal stratum of the orbifold M . We may assume that the isotropy

subgroup at p of the T -action is the circle group Si. Let ~Si be the covering group of Si
corresponding to the edge vector vi as introduced in the previous section. Denote by Vi
the standard complex 1-dimensional ~Si-module and by D(Vi) the unit disk of Vi. Then

it follows from the Slice Theorem and Lemma 12.3 that the T -orbit of p has a closed

invariant tubular neighborhood �Ui in M equivariantly di�eomorphic to

(T � ~Si
D(Vi))�Dn�1(13.1)

where T � ~Si
D(Vi) denotes the orbit space of T � D(Vi) by the ~Si-action de�ned by

s(t; x) = (t�i(s)
�1
; sx) for s 2 ~Si; t 2 T and x 2 D(Vi).

Suppose that there are characteristic suborbifolds Mi and M
0

i0
of torus orbifolds M

and M 0 with d(M) = d(M 0) = 1 respectively such that the corresponding edge vectors

coincide. Then the corresponding circle subgroups ~Si and ~S 0
i0
agree and there is an

equivariant di�eomorpism between �Ui and �U 0

i0
reversing the orientations induced from

M , Mi, M
0 and M 0

i0
because both �Ui and �U 0

i0
are equivariantly di�eomorphic to the space

in (13.1) and Dn�1 (n � 2) has an orientation reversing self-di�eomorphism. We remove

the interior of �Ui and �U 0

i0
from M and M 0 and paste them together along the boundaries

of �Ui and �U 0

i0
through the orientation reversing equivariant di�eomorphism restricted to



48 AKIO HATTORI AND MIKIYA MASUDA

the boundaries, producing a new torus orbifold, say M
00. We call this procedure the

equivariant connected sum of M and M
0 along Mi and M

0

i0
. The codimension of the

principal orbits in Mi and M
0

i0
is n� 1, so when n � 3, Mi and M

0

i0
are pasted together

to become one characteristic suborbifold in M 00 and �(M 00) is obtained from �(M) and

�(M 0) by identifying i with i
0. However, when n = 2, the characteristic suborbifolds

Mi and M
0

i0
are S2 and the principal orbits in them are circles; so the orbits separate

Mi and M
0

i0
into two connected components respectively and hence two characteristic

suborbifolds of M 00 are produced.

Let I 2 �(M)(n) and I 0 2 �(M 0)(n) be such that C(M)(I) = C(M)(I 0). Suppose that

the corresponding edge vectors are the same for I and I 0. Then one can make equivariant

connected sum of M and M 0 along each pair of characteristic suborbifolds Mi and M
0

i0

such that C(M)(i) = C(M 0)(i0) for i 2 I and i0 2 I 0, and then elements in I and I 0 will

be identi�ed in pairs in the multi-fan of the resulting torus orbifold and the weights w�

on the identi�ed n-dimensional cone is the sum of those at I and I 0.

We say that � is connected if � is connected. According to the decomposition of �

into connected components, the multi-fan � decomposes into connected multi-fans which

are again complete simplicial and of dimension n.

Lemma 13.4. Suppose n � 2. Then the multi-fan � is geometrically realized if all

connected components of � are geometrically realized.

Proof. Let M be a torus orbifold of dimension 2n and let p be a point in the principal

stratum ofM . We may suppose that d(M) = 1. A closed tubular neighborhood �U of the

orbit of p is equivariantly di�eomorphic to T �Dn and the complement of �U is connected

because M is connected and the orbit has codimension n � 2.

Let M 0 be another torus orbifold of dimension 2n with d(M 0) = 1, and let �U 0 be a

closed subset in M
0 corresponding to �U in M . Since both �U and �U 0 are equivariantly

di�eomorphic to T � D
n and D

n has an orientation reversing di�eomorphim, there is

an orientation reversing equivariant di�eomorphism between �U and �U 0. We remove the

interior of �U and �U 0 from M and M 0 respectively and glue their boundaries through the

di�eomorphism restricted to the boundaries and obtain a new torus orbifold M 00. The

multi-fan �(M 00) is the disjoint union of �(M) and �(M 0). (Precisely speaking, �(M 00)

is the disjoint union of �(M) and �(M 0) with the empty sets in them identi�ed.)

If all connected components of � are geometrically realized, then we connect torus

orbifolds that realize the connected components of � by the above method. Then the

resulting torus orbifold realizes �.

As is shown in the proof of Lemma 13.4, whenever we have more than two torus

orbifolds of dimension n � 2, we can connect them and the multi-fan of the resulting

torus orbifold is the disjoint union of the multi-fans of the torus orbifolds we had.

De�nition. We say that a complete simplicial multi-fan � = (�; C; w�) of dimension n

is minimal if

(1) � is isomorphic to the argumented simplicial set obtained from the boundary of

an n-simplex, and

(2) the set fw+(I); w�(I)g is independent of I 2 �(n).

Although the set fw+(I); w�(I)g is independent of I for a minimal multi-fan �, the pair

(w+(I); w�(I)) may not be independent of I 2 �(n). But one can convert � into another

minimal multi-fan �� = (�; �C; �w�) such that the pair ( �w+(I); �w�(I)) is independent of I.



THEORY OF MULTI-FANS 49

The de�nition of �� is as follows. Since � is of dimension n and the cardinality of �(1)

is n+ 1, there is a relation
P

i2�(1) bivi = 0 among the edge vectors vi with non-zero real

numbers bi. We then de�ne

�C(i) :=

(
C(i) if bi > 0,

�C(i) if bi < 0,

and de�ne �C(K) for K 2 �(m) with m � 2 to be the cone spanned by �C(k)'s for k 2 K.

We also de�ne

( �w+(I); �w�(I)) :=

(
(w+(I); w�(I)) if ]fi 2 I j bi < 0g is even,
(w�(I); w+(I)) if ]fi 2 I j bi < 0g is odd,

for I 2 �(n).

Lemma 13.5. �� is minimal and satis�es the following two conditions:

(1) the n-dimensional cones �C(I) (I 2 �(n)) do not overlap and their union covers the

entire space NR, and

(2) the pair ( �w+(I); �w�(I)) is independent of I 2 �(n)
.

Moreover � is geometrically realized if and only if so is ��.

Proof. Let �vi be a non-zero vector in the cone �C(i). One may choose it to be vi if bi > 0

and �vi if bi < 0. Then one has a relation
P

i2�(1)
�bi�vi = 0 with positive numbers �bi.

This implies the statement (1) in the lemma.

We shall prove the statement (2) in the lemma. Let J 2 �(n�1). Since the cardinality

of �(1) is n+1, there are exactly two elements i; i0 2 �(1) not contained in J , and J [fig
and J [ fi0g are in �(n), in other words, the (n� 1)-dimensional cone C(J) is a facet of

only two n-dimensional cones C(J [fig) and C(J [fi0g). We project them on N
C(J)

R (the

quotient space of NR by the subspace generated by C(J)). Then the vectors projected

from vi and vi0 are toward opposite directions if and only if bibi0 > 0. It follows from

the completeness of � that w(J [ fig) = sign(bibi0)w(J [ fi0g). This together with the

de�nition of �w� shows that �w(J [ fig) = �w(J [ fi0g). Since J 2 �(n�1) is arbitrary, this

proves the statement (2). It also proves the completeness of ��, so that �� is minimal.

The procedure from � to �� corresponds to reversing orientations on characteristic

suborbifolds Mi with bi < 0, so the latter statement in the lemma is obvious.

Lemma 13.6. Let � be a minimal multi-fan of dimension n � 2. If n � 3, then �

is geometrically realized. If n = 2, then � is geometrically realized if (and only if)

fw+(I); w�(I)g = f1; 0g for any I 2 �(2)
. In any case we can take an orbifold struc-

ture on the realizing torus orbifold such that the corresponding edge vectors fvig are all

primitive; that is, if vi = aiv
0

i
for some v

0

i
2 N and ai 2 Z, then ai = �1.

Proof. By Lemma 13.5, we may assume that the union of cones C(I) over I 2 �(n)

covers the entire space NR and the pair (w+(I); w�(I)), which we denote by (p; q), is

independent of I. When (p; q) = (1; 0), � can be realized by a weighted projective space,

say X. There is an orbifold structure on a weighted projective space such that the edge

vectors are all primitive. We admit these facts for a moment; the proof will be give in

the appendix at the end of this section. Then �X realizes the case when (p; q) = (0; 1).

This completes the proof when n = 2.

Suppose n � 3. For a general value of (p; q), we prepare p copies of X and q copies

of �X and do equivariant connected sum along all Xi's and �Xi's for each i 2 �(X).
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Then the resulting torus orbifold realizes �. The edge vectors are all primitive in this

construction since it is so for X.

Now let � be an arbitrary complete simplicial multi-fan of dimension n � 2. We

decompose � into a number of minimal multi-fans as follows. We choose and �x a

generic (rational) 1-dimensional cone inNR, say `, which is not contained in any subspaces

spanned by cones of dimension � n � 1 in �. We label ` as ?. To each n-dimensional

cone C(I) for I 2 �(n), we form n cones which are respectively spanned by ` and facets

of C(I). These n cones together with C(I) determine a simplicial multi-fan �[I] =

(�[I]; C[I]; w[I]�), where �[I] consists of all proper subsets of I [ f?g. The weight

functions w[I]� are de�ned as follows. Let vi be a non-zero vector in C(i) for each i 2 I
and v? a non-zero vector in `. Then there is a relation

v? +
X
i2I

aivi = 0(13.2)

with non-zero real numbers ai's. Let I 2 �[I](n). Then I = I or (Infig) [ f?g for i 2 I.
We de�ne

(w[I]+(I); w[I]�(I)) :=

8><
>:
(w+(I); w�(I)) if I = I or

I = (Infig) [ f?g and ai > 0,

(w�(I); w+(I)) if I = (Infig) [ f?g and ai < 0.

(13.3)

Lemma 13.7. �[I] is complete and hence minimal.

Proof. The proof is essentially the same as that of lemma 13.5. As remarked in Section 2,

it su�ces to show that, when a generic vector v gets across an (n� 1)-dimensional cone,

the integer dv in Section 2 remains unchanged. Let J be an element of �[I](n�1) and let i

and i0 be the two elements in (I [ f?g)nJ . Then I := J [ fig and I 0 := J [ fi0g are the
elements in �[I](n) which contain J . We project cones C[I](I) and C[I](I 0) on NC[I](J )

R .

Then it follows from (13.2) that the vectors projected from vi and vi0 are toward opposite

directions if and only if aiai0 > 0, where a? is understood to be 1. This together with

the de�nition (13.3) of w[I]� implies that dv remains unchanged regardless of the sign of

aiai0 when v gets across the (n� 1)-dimensional cone C[I](J ).
Let J 2 �(n�1) and let I1; : : : ; Ir be the elements in �(n) containing J . The n-

dimensional cone spanned by C(J) and ` appears in �[Ik] for k = 1; 2 : : : ; r with the

form C[Ik](J [ f?g).
Lemma 13.8.

P
r

k=1w[Ik](J [ f?g) = 0:

Proof. Consider the projection of the cones C(Ik)'s on N
C(J)

R . We de�ne sign(Ik) = 1 or

�1 according as the projection image of C(Ik) disagrees or agrees with that of `. Applying

(13.3) with I = Ik and Infig = J , one sees that

w[Ik](J [ f?g) = sign(Ik)w(Ik):

On the other hand, it follows from the completeness of � thatX
sign(Is)=1

w(Is) =
X

sign(It)=�1

w(It):

These two identities imply the lemma.
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Proof of Theorem 13.3. By lemma 13.4 we may assume that � is connected. We choose

a generic (rational) 1-dimensional cone ` and decompose � using ` into minimal multi-

fans �[I]'s (I 2 �(n)). By Lemma 13.6 �[I] is realized by a torus orbifold, say M [I],

such that all its edge vectors are primitive. We consider the disjoint union of M [I] over

I 2 �(n) and piece them together using equivariant connected sum in the following way.

For each i 2 �(1) we do equivariant connected sum of fM [I] j i 2 Ig successively along

M [I]i's, and similarly do equivariant connected sum of all M [I]'s along M [I]? as well.

The resulting space is connected because � is connected, and becomes a torus orbifold.

Its multi-fan is close to � but contains extra cones which are the cones spanned by ` and

C(J) for J 2 �(m) with m � n� 1. For a �xed J 2 �(n�1), it follows from Lemma 13.8

that there are the same number of T -�xed points p with �p = 1 and q with �q = �1
contained in the union of M [Ik] with J � Ik and corresponding to the cone spanned by

` and C(J). Hence one can do equivariant connected sum at pairs of T -�xed points p

and q so that those T -�xed points will be eliminated. Doing this for each J 2 �(n�1),

we obtain a torus orbifold, say M , realizing �. In fact, the characteristic suborbifolds

M [I]? turn into a codimension two suborbifold ofM , which is �xed by the circle subgroup

determined by ` but has no T -�xed point, so it is not a characteristic suborbifold of M

by de�nition. This means that all the cones in �[I]'s containing ` as an edge do not show

up in the mulit-fan of M .

Proof of Theorem 13.2. We already observed the \only if" part, so we prove the \if" part.

By Lemma 13.4 we may assume that our �, which satis�es the conditions (1) and (2) in

Theorem 13.2, is connected. Then (the realization of) � is either

Case 1. a 1-simplex, or

Case 2. the boundary of a d-gon where d � 3,

and that

fw+(I); w�(I)g =
(
f1; 1g in Case 1,

f1; 0g in Case 2.

Using the latter statement in Lemma 13.6, the same argument as in the proof of Theo-

rem 13.3 shows that � in Case 2 is geometrically realized. As for Case 1, let I 2 �(2) be

the unique simplex. There exist a �nite covering ~T ! T whose kernel H is isomorphic to

N=NI where NI is the sublattice generated by the primitive vectors vi's for i 2 I, and a

2-dimensional ~T -module V corresponding to the cone C(I), as was explained in Section

12. Then the one point compacti�cation of V=H, i.e., the orbit space of S4 by an action

of N=NI , realizes our � in Case 1.

Appendix. Realization of minimal multi-fans by weighted projective spaces.

We identify the (n + 1)-dimensional torus T n+1 = S
1 � � � � � S

1 with the standard

maximal torus of GL(n + 1; C ) consisting of diagonal matrices. We set ~T = T
n+1

=D

where D denotes the subgroup of diagonal elements (z; : : : ; z). It is a maximal torus in

PGL(n+1; C ) and acts e�ectively on the projective space Pn. Let ~Si denote the i-th factor

of T n+1. It is mapped injectively into ~T . We shall denote by the same letter ~Si its image

in ~T . We set ~Mi = f[z0; : : : ; zn] j zi = 0g, for i = 0; : : : ; n. They are the characteristic

submanifolds of Pn regarded as a torus manifold with the orientations induced from the

complex structure. If H is a �nite subgroup of ~T , then the quotient MH = Pn=H is a
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torus orbifold acted on by T = ~T=H for which (MH ;P
n
; H; p) is an orbifold chart, where

p : Pn !MH is the projection. It is called a weighted projective space. Its characteristic

suborbifolds are Mi = p( ~Mi); i = 0; : : : ; n, and the corresponding circle subgroups are

Si = �( ~Si), where � : ~T ! T is the projection. The symmetric group Sn+1 of degree

n+1 acts on T n+1 and also induces an action on ~T . It also acts on Pn. If H� denotes the

transform of H by an element � 2 Sn+1, then the transformation � : Pn ! Pn induces

an isomorphism of torus manifolds MH !MH� . We set

WP = fH j �nite subgroup of ~Tg=Sn+1:

Every element in WP represents an isomorphism class of weighted projective spaces.

In order to describe the multi-fan �H associated with the torus orbifold MH we intro-

duce the following notations:

~N = Zn+1
=diagonal submodule; ~vi = image of ei in ~N; N = Zn

;

where ei is the i-th fundamental unit vector in Zn+1. ~N is canonically identi�ed with

Hom(S1
; ~T ). If one chooses an identi�cation of Hom(S1

; T ) = H2(BT ;Z) with N , then

the �nite covering map � : ~T ! T induces an injective homomorphism ' : ~N ! N . The

vectors vi = '(~vi) are the edge vectors of the 1-dimensional cones of �H . Note that they

satisfy the equality X
i

vi = 0;(13.4)

since the ~vi's satisfy a similar equality. This implies that �H is a minimal multi-fan

satisfying the conditon (1) in Lemma 13.5. It is also clear that (w+(I); w�(I)) = (1; 0).

We shall denote byMF the set of minimal multi-fans satisfying the above two conditions.

If one chooses another identi�cation of Hom(S1
; T ) with N , then ' is transformed to

 � ' where  2 GL(n;Z). GL(n;Z) acts onMF from left by transforming the cones

simultaneously by its elements. Let dH 2 Z be the maximal common divisor of the edge

vectors vi of �H . We get a correspondence

� :WP=Sn+1 ! GL(n;Z)nMF � Z>0

which sends H to (�H ; dH).

Lemma 13.9. The correspondence � is a bijection. In particular, every minimal multi-

fan � inMF is realizable.

Proof. We shall de�ne a correspondence � : GL(n;Z)nMF � Z>0!WP=Sn+1 which is

to be the inverse of �. Take a multi-fan � inMF and d 2 Z>0. It is easy to see there is a

unique set fvig of edge vectors of � such that
P

i
vi = 0 and the maximal common divisor

of fvig is d. De�ne a homomorphism ' : ~N ! N by requiring '(~vi) = vi. Then there

is a unique �nite covering map � : ~T ! T which induces ' : ~N = Hom(S1
; ~T ) ! N =

Hom(S1
; T ). Let H be the kernel of �. The homomorphism ', hence H either, does not

depend on the choice of identi�cation N = Hom(S1
; T ), but it depends on the numbering

of vi's. So if we put �(�; d) = the class of H in WP=Sn+1, it induces a correspondence

� as above. It is clear that � is in fact the inverse of �.

Remark. Let a be a positive integer. The correspondence T n+1 3 (z0; z1; : : : ; zn) 7!
(za0 ; z

a

1 ; : : : ; z
a

n
) 2 T n+1 induces a homomorphism � : ~T ! ~T . For a �nite group H of ~T

de�ne H 0 = �
�1(H). The edge vectors fv0

i
g corresponding to the torus manifoldMH0 are

of the form v
0

i
= avi, where fvig correspond toMH . Hence �H = �H0 and dH0 = adH . Let
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g : Pn ! Pn be the map de�ned by g[z0; z1; : : : ; zn] = [za0 ; z
a

1 ; : : : ; z
a

n
]. Then it induces a

homeomorphismMH0 !MH which is equivariant with respect to the isomorphism of tori

between ~T=H 0 and ~T=H induced by �. IfMH andMH0 are considered as algebraic varieties

then the homeomorphism becomes an equivalence. It is a fundamental fact in the theory

of toric varieties that to each fan corresponds a toric variety. The above equivalence gives

an interpretation of this fact within this special case in our context. Related results are

found in [22]. Related to the above remark, for a later use, we point out the following

fact. Let ai; : : : ; an be positive integers, and let Z=ai � S
1 be the subgroup of ai-th roots

of unity. Set G =
Q

i
Z=ai. Then the map C n 3 (z1; : : : ; zn) 7! (za11 : : : ; z

an
n
) 2 C n induces

an equivalence of a�ne algebraic varieties C n
=G! C n .

LetMH 2 WP and let fvig be the edge vectors corresponding to the orbifold structure
as given above. Even if dH = 1, it may happen that some of vi's are not primitive.

We will show that there always exists a torus orbifold structure on MH such that the

corresponding edge vectors are all primitive. More generally we have

Lemma 13.10. Let MH be a weighted projective space and fvig the corresponding edge

vectors satisfying
P

i
vi = 0 as given above. Suppose that fv0

i
g are vectors in N such that

vi = aiv
0

i
with ai 2 Z>0. Then there is an orbifold structure on MH which admits fv0

i
g as

the corresponding edge vectors.

Proof. For each x 2 MH let ~Tx � ~T be the isotropy subgroup at ~x of the ~T -action on

Pn where ~x 2 p
�1(x). ~Tx does not depend on the choice of ~x in p

�1(x). If x lies in

IntMI =MI n
S

J�I
MJ for I 2 �(MH)

(k), then ~Tx = ~SI =
Q

i2I
~Si. We put Hx = H\ ~Tx.

We take a family fVx;�j� 2 Z>0g of small ~Tx-invariant open neighborhoods of ~x such that

Vx;� converges to ~x when � tends to in�nity. We may assume that Vx;� is equivariantly

di�eomorphic to an ~SI-invariant open disk in C n . It is possible to make Vx;�'s so small

that they satisfy the following condition:

Hx = fh 2 H j h � Vx;� \ Vx;� 6= ;g:(13.5)

Then Ux;� = Vx;�=Hx is an open neighborhood of ~x in MH , and (Ux;�; Vx;�; Hx; pjVx;�) is
an orbifold chart of MH compatible with (MH ;P

n
; H; p).

On the other hand the fact that vi = aiv
0

i
implies that the kernel of p : ~Si ! Si contains

Z=ai,which we denote by Gi. Since H is the kernel of p : ~T ! T , Gi is contained in H.

We put GI =
Q

I2I
Gi for I 2 �(MH)

(k) and de�ne

V
0

x;�
= Vx;�=GI; H

0

x
= Hx=GI for x 2 IntMI :

V
0

x;�
can be considered as an open disk in C n as pointed out in Remark above. The pro-

jection pjVx : Vx ! Ux induces a map p0
x;�

: V 0

x;�
! Ux which induces a homeomorphism

V
0

x;�
=H

0

x
! Ux.

We shall prove that the family f(U 0

x;�
; V

0

x;�
; H

0

x
; p

0

x;�
) j x 2 M; � 2 Z>0g forms a set

of orbifold charts of an orbifold structure on MH . For that purpose it su�ces to show

that, if U 0

x:�
� U

0

y;�
, then there are an open embedding � : V 0

x;�
! V

0

y;�
and an injective

homomorphism � : H 0

x
! H

0

y
such that

�(H 0

x
) = fh 2 H 0

y
j h � �(V 0

x;�
) \ �(V 0

x;�
) 6= ;g:(13.6)

The condition (13.5) implies that, if x 2 IntMI and y 2 IntMJ with I and J 2 �(MH),

and if U 0

x:�
� U

0

y;�
, then I � J . Therefore

Hx � Hy and GI \Hy = GJ :
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It follows that the inclusion Hx ! Hy induces an injective homomorphism � : H 0
x
=

Hx=GI ! Hy=GJ = H
0

y
. If ~x is taken in Vy;�, then Vx;� is contained in Vy;�. The inclusion

induces an embedding � : V 0

x;�
! V

0

y;�
. The condition (13.6) follows from (13.5).

If x lies in Mi, then the action of Si lifts to the action of ~S 0
i
= ~Si=Gi and the lifting is

minimal. Hence the edge vector of C(i) corresponding to the orbifold structure de�ned

above must be v0
i
.
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