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1. Introduction

The rigidity theorem of Witten-Bott-Taubes-Hirzebruch [W, BT, H] tells us that, if the

circle group acts on a closed almost complex (or more generally unitary) manifold whose

�rst Chern class is divisible by a positive integer N greater than 1, then its equivariant

elliptic genus of level N is rigid. Applying this to a non-singular compact toric variety

we see that its elliptic genus of level N is rigid if its �rst Chern class is divisible by N .

But, using a vanishing theorem of Hirzebruch [H], we can show moreover that the genus

actually vanishes. In this note we shall extend this result to torus manifolds [M, HM]. A

torus manifold is an oriented closed manifold of even dimension which admits an action

of a torus of half the dimenstion of the manifold with some orientation data concerning

codimension two �xed point set components of circle subgroups. Though there is not

an almost complex nor unitary structure on a torus manifold in general, one can still

de�ne elliptic genus of level N on torus manifolds. In the almost complex or unitary

case the elliptic genus is de�ned as the index of a twisted Dirac operator, so that the

equivariant index is a virtual character of the torus acting on the manifold. For general

torus manifolds the equivariant elliptic genus of level N is de�ned in terms of the multi-

fan associated with the torus manifold. Thus the genus is in fact de�ned for multi-fans

(precisely speaking for complete simplicial multi-fans). The fact that it is a character of

a torus is proved by using the multiplicity formula for Duistermaat-Heckman function

for multi-polytopes given in [HM]. The Chern class is also de�ned for multi-fans, and

rigidity and vanishing of elliptic genus of level N can be formulated and proved. One of

the main results is Corollary 4.4 which states that, if the �rst Chern class of a complete

non-singular multi-fan is divisible by N , then the elliptic genus of level N vanishes. The

proof of rigidity and vanishing of level N elliptic genus follows the idea of the proof given

in [H]. The formula for Duistermaat-Heckman function is also used to modify topological

terms into combinatorial terms so as to be applicable to multi-fans. When N = 2, the

torus manifold is a spin manifold. The corresponding multi-fan might be called a spin

multi-fan. As a corollary we see that its signature vanishes in this case.

The Ty-genus can be considered as a special value of equivariant elliptic genus. Thus,

if the �rst Chern class is divisible by N , then Ty-genus vanishes for (�y)
N = 1. One can

derive some applications from this fact. For example if � is a complete non-singular multi-

fan of dimension n with �rst Chern class c1(�) divisible by N and with non-vanishing

Todd genus, then N must be equal or less than n+ 1 (Proposition 5.2). In the extremal

case N = n + 1, if � is assumed to be a complete non-singular ordinary fan, then �

must be isomorphic to the fan of projective space Pn. Hence a complete non-singular

toric variety M of dimension n with c1(M) divisible by n + 1 must be isomorphic to Pn

as toric varity (Corollary 5.4). We show furthermore that, in case c1(M) is divisible by

n, M is isomorphic to a certain projective space bundle over P1 (Corollary 5.8).
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The paper is organizd as follows. In Section 2 we recall some basic facts about multi-

fans from [HM]. In Section 3 we de�ne equivariant �rst Chern class of multi-fans and

discuss properties concerning its divisibility. Section 4 is the main part of the paper. The

equivariant elliptic genus of complete non-singular multi-fans is introduced and the main

results are stated and proved here. The main results are Theorem 4.3 and Corollary 4.4.

Section 5 is devoted to applications. Finally in Section 6 we discuss phenomena which

arises when the multi-fan is not assumed to be non-singular.

2. Multi-fans

We refer to [HM] for notions and notations concerning multi-fans and torus manifolds.

We shall summarize some of them. Let � = (�; C; w�) be an n-dimensional complete

non-singular multi-fan. Here � is an augmented simplicial set which means that � is

a simplicial set with empty set � = ; added as (�1)-dimenional simplex. �(k) denotes

the k � 1 skeleton of � so that � 2 �(0). We assume that � =
P

n

k=0�
(k). There is

associated with � an n-dimensional lattice L (the notation N was used in [HM]). C is a

map from �(k) into the set of k-dimensional strongly convex rational polyhedral cones in

the vector space LR = L
 R for each k such that, if J is a face of I, then C(J) is a face

of C(I). w� are maps �(n)
! Z which, when � is complete, satisfy certain compatibility

conditions. We set w(I) = w+(I) � w�(I). T will denote an n-dimensinal torus. We

identify Hom(S1; T ) = H2(BT ) with the lattice L. Thus there is a unique primitive

vector vi 2 H2(BT ) which generates the cone C(i) for each i 2 �(1). Non-singularity of �

means that fvi j i 2 Ig is a basis of the lattice L = H2(BT ) for each I 2 �(n). Let fuI
i
g

be the dual basis of fvi j i 2 Ig in the dual lattice L� = H2(BT ). H2(BT ) is canonically

identi�ed with Hom(T; S1). The latter is embedded in the character ring R(T ). In fact

R(T ) can be considered as the group ring of the group Hom(T; S1). It is convenient to

write the element in R(T ) corresponding to u 2 H2(BT ) by tu. The homomorphism

v� : R(T )! R(S1) induced by an element v 2 H2(BT ) = Hom(S1; T ) can be written in

the form

v�(tu) = thu;vi;

where hu; vi is the dual pairing and tm 2 Hom(S1; S1) � R(S1); m 2 Z; is de�ned by

tm(�) = �m.
We de�ne the equivariant cohomology H�

T
(�) of a complete non-singular multi-fan �

as the face ring of the simplicial complex �. Namely let fxig be indeterminates indexed

by �(1), and let R be the the polynomial ring over the integers generated by fxig. We

denote by I the ideal in R generated by monomials
Q

i2J xi such that J =2 �. H�
T
(�)

is by de�nition the quotient R=I. We regard H2(BT ) as a submodule of H2
T
(�) by the

formula

u =
X
i2�(1)

hu; viixi:(1)

This determines an H�(BT )-module structure of H�
T
(�). For each I 2 �(n) we de�ne the

restriction homomorphism i�
I
: H�

T
(�)! H�(BT ) by

i�
I
(xi) =

(
uI
i

for i 2 I

0 for i =2 I:
(2)

It follows from (1) that i�
I
jH2(BT ) is the identity map for any I, and

P
I2�(n) i�I is injective.
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The following lemma is a consequence of Corollary 7.4 in [HM].

Lemma 2.1. For any x =
P

i2�(1) cixi 2 H2
T
(�); ci 2 Z, the element

X
I2�(n)

w(I)
ti
�

I
(x)Q

i2I(1� t�u
I

i )

in the quotient ring of R(T ) actually belongs to R(T ).

We also use an extended version of Corollary 7.4 in [HM]. Given K 2 �(k) an (n� k)-
dimensional multi-fan �K = (�K; CK; w

�
K
), which we called projected multi-fan, was

de�ned in [HM]. �K consists of such I 2 � that K � I. If I is in �(l) then I is

considered as lying in �
(l�k)
K

. An element of �
(1)

K
is of the form K [fig which we identify

with i. When K = ; then �K = �. The lattice LK is the quotient of L by the

susbmodule generated by fvi j i 2 Kg, and CK(I) 2 LK 
 R is the projection image of

C(I) 2 LR = L
 R. The torus TK corresponding to LK is a quotient of T . We consider

the polynomial ring RK generated by fxi j i 2 K [ �
(1)

K
g and the ideal IK generated by

monomials
Q

i2J xi such that J =2 �K . We de�ne the equivariant cohomology H2
T
(�K) of

�K with respect to the torus T as the quotient ring RK=IK . H
2(BT ) is regarded as a

submodule of H2
T
(�K) by a formula similar to (1). The projection H2

T
(�)! H2

T
(�K) is

de�ned by putting xi = 0 for i =2 K [�
(1)

K
, which is an H2(BT )-module homomorphism.

The restriction homomorphism i�
I
: H2

T
(�K) ! H2(BT ) is also de�ned for I 2 �

(n�k)
K

.

Given x =
P

i
cixi 2 H2

T
(�K ;R); ci 2 R, let A� be the a�ne subspace in the dual space

L�
R
de�ned by hu; vii = ci for i 2 K. Then we introduce a collection FK = fFi j i 2 �

(1)

K
g

of a�ne hyperplanes in A� by setting

Fi = fu j u 2 A�; hu; vii = cig:

The pair PK = (�K ;FK) will be called a multi-polytope associated with x; see [HM] for

the case K = ;. For I 2 �
(n�k)
K

, i.e. I 2 �(n) with I � K, we put uI = \i2IFi 2 A�.
Note that uI is equal to i�

I
(x). The dual vector space L�

K

 R of LK 
 R is canonically

ideniti�ed with the subspace fu j hu; vii = 0; i 2 Kg of L�

 R = H2(BT ;R). It is

parallel to A�, and uI
i
lies in L�

K

 R for I 2 �

(n�k)
K

and i 2 I nK. A vector v 2 LK 
 R

is called generic if huI
i
; vi 6= 0 for any I 2 �

(n�k)
K

and i 2 I nK. We take a generic vector

v 2 LK 
 R, and de�ne, for I 2 �
(n�k)
K

and i 2 I nK,

(�1)I := (�1)#fj2InKjhuI
j
;vi>0g and (uI

i
)+ :=

(
uI
i

if huI
i
; vi > 0

�uI
i

if huI
i
; vi < 0:

We denote by C�
K
(I)+ the cone in A� spanned by the (uI

i
)+; i 2 I nK; with apex at uI ,

and by �I its characteristic function. With these understood, we de�ne a function DHPK
on A�

n [iFi by

DHPK :=
X

I2�(n�k)
K

(�1)Iw(I)�I:

As in [HM] we call this function the Duistermaat-Heckman function associated with PK .

Lemma 2.2. The support of the function DHPK is bounded, and the function is inde-
pendent of the choice of generic vector v.
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The proof is similar to that of Lemma 5.4 in [HM]. We shall denote by PK+ the

multi-polytope associated with x+ =
P

i2K cixi +
P

i2�(1)
K

(ci + �)xi where 0 < � < 1. The

following theorem is a generalization of Corollary 7.4 in [HM].

Theorem 2.3. Let x and x+ be as above with all ci integers. ThenX
u2A�\L�

DHPK+
(u)tu =

X
I2�(n�k)

K

w(I)
ti
�

I
(x)Q

i2InK(1� t�u
I

i )
:

In particular the right hand side belongs to R(T ).

The proof is similar to that of Corollary 7.4 in [HM].

Take I 2 �
(n�k)
K

and let GI be the subgroup of the permutation group of I consisting of

those elements which are identity on K. Let LI be the set of all linear forms
P

i2I miu
I

i

with integer coe�cients mi. The group GI acts on LI . Let OI denote the set of orbits

of that action. If I 0 is also in �
(n�k)
K

, take a bijection f : I ! I 0 which is the identity on

K. It induces a bijection f� : OI ! OI0 . It is easy to see that f� does not depend on the

choice of particular f . Thus we can write them simply O. For � 2 O we de�ne t�
I
by

t�
I
=
X
l2�

tl;

where � is regarded as contained in OI in the sum at the right hand side.

Corollary 2.4. For any � 2 O the expressionX
I2�(n�k)

K

w(I)
t�
IQ

i2InK(1� t�u
I

i )

belongs to R(T ).

Proof. Let �G denote the subgroup of permutation group of K [ �
(1)

K
consisting of those

elements which are identity on K. It acts on the set �L of linear forms l =
P

i2K[�(1)
K

mixi.

Let �O denote the set of orbits of that action on �L. There is an obvious map of O in �O.

We denote the image of � 2 O in �O by ��. We de�ne the length of a linear form l as

the maximal number of i's with i 2 �
(1)

K
and mi 6= 0. The length is invariant under the

action of �G, so that the length j��j of �� 2 �O is de�ned as that of a linear form contained

in ��. The length is also de�ned for � 2 O independently of I and we have j�j = j��j.
The proof will proceed by induction on the length of �. If j�j = 0, then it is clear that

� consists of a single linear form l =
P

i2K mixi. Applying Theorem 2.3 to x = l we see
that the statement of Corollary is true in this case. Suppose that j�j > 0. Then it is not

di�cult to see that X
l2��

ti
�

I
(l) = t�

I
+
X
j�j<j�j

a�t
�

I

where a� 2 Z does not depend on I. We apply Theorem 2.3 and use induction assumption

to conclude that X
I2�(n�k)

K

w(I)
t�
IQ

i2InK(1� t�u
I

i )

belongs to R(T ).
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If we take K to be the empty set, the GI is the permutation group of I, and t�
I
is a

symmetric character with respect to GI . We obtain

Corollary 2.5. For any � 2 O the expressionX
I2�(n)

w(I)
t�
IQ

i2I(1� t�u
I

i )

belongs to R(T ).

3. Equivariant first Chern class

Let � be a complete non-singular multi-fan as in the previous section. The classX
i2�(1)

xi

will be called equivariant �rst Chern class of �, and will be denoted by cT1 (�). Its image

c1(�) in H2(�) = H2
T
(�)=H2(BT ) is called �rst Chern of �. Let N > 1 be an integer.

The �rst Chern class c1(�) is divisible by N if and only if cT1 (�) is of the form

cT1 (�) = Nx + u; x 2 H2
T
(�); u 2 H2(BT ):

We set uI = i�
I
(cT1 (�)) =

P
i2I u

I

i
2 H2(BT ).

Lemma 3.1. The following three conditions are equivalent:

(1) the �rst Chern class c1(�) is divisible by N ,

(2) uI mod N is independent of I 2 �(n),

(3) there is an element u 2 H2(BT ) such that hu; vii = 1 mod N for all i 2 �(1).

Proof. Suppose cT1 (�) is of the form

cT1 (�) = Nx + u; x 2 H2
T
(�); u 2 H2(BT ):

Then uI = i�
I
(cT1 (�)) mod N is equal to i�

I
(u) = u, and hence is independent of I. Thus

(1) implies (2).

Suppose that u mod N is equal to uI mod N for any I 2 �(n). Then hu; vii =

huI; vii mod N , and hence hu; vii =
P

j2Ihu
I

j
; vii = 1 mod N for i 2 I. Thus (2) im-

plies (3).

Suppose hu; vii = 1 mod N for any i 2 �(1). Then, by (1),

cT1 (�)� u =
X
i2�(1)

(1� hu; vii)xi = 0 mod N:

Hence cT1 (�) is of the form cT1 (�) = Nx + u because H2
T
(�) is a free module. Thus (3)

implies (1).

Remark. Let Ĥ2
T
(M) = H2

T
(M)=H�(BT )-torsion. In [M] it was shown that, if M is a

torus manifold and �(M) is its associated multi-fan, then there is a canonical identi�-

cation of H2
T
(�(M)) with Ĥ2

T
(M), and, in case M is a unitary torus manifold, cT1 (M) 2

H2
T
(M) descends to cT1 (�). It follows that, if M is a unitary torus manifold and c1(M)

is divisible by N , then c1(�(M)) is also divisible by N .
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Let v 2 H2(BT ) be a generic integral vector. If we �x I and write

v =
X
i2I

mivi;

then mi = huI
i
; vi. Since uI =

P
i2I u

I

i
, we have huI ; vi =

P
i
mi. Let m � 1 be an

integer. Fixing a generic integral vector v and m, we put

I(m) := fi 2 I j m does not divide mig

for I 2 �(n). It will be called modm face of I.

Lemma 3.2. Let v;m and I be as above, and let K = I(m) be the modm face of I.

If I 0 2 �(n) contains K, then K is also the modm face of I 0. Moreover, huI
0

i
; vi =

huI
i
; vi mod m for i 2 K.

Proof. We put mi = huI
i
; vi and m0

i0
= huI

0

i0
; vi. Then we have

v =
X
i2I

mivi =
X
i02I0

m0
i0
vi0 :

By assumption mi = 0 mod m for i =2 K. HenceX
i2K

mivi =
X
i02I0

m0
i0
vi0 mod m:

or X
i2K

(m0
i
�mi)vi +

X
i02I0; i0 =2K

m0
i0
vi0 = 0 mod m:

Since fvi0 j i
0
2 I 0g is a basis of the free module H2(BT ), we see that m

0
i0
= 0 mod m for

i0 2 I 0; i0 =2 K and m0
i
= mi mod m for i 2 K.

We shall say that I and I 0 are (v;m)-equivalent and write I � I 0 if I(m) = I 0(m). This

de�nes an equivalence relation � in �(n). Lemma 3.2 implies that its equivalence class

X forms a projected multi-fan �K = (�K; CK; w
�
K
) where K is the common modm face

of the members of X. We shall call this K the core of the equivalence class X.

Lemma 3.3. Let X be an equivalence class of (v;m)-equivalence relation. For x 2

H2
T
(�) the value hi�

I
(x); vi mod m does not depend on the choice of I in X.

Proof. Write x =
P

i2�(1) aixi. Let K denote the common mod m face of I 2 X. Then

hi�
I
(x); vi =

X
i2K

aihu
I

i
; vi+

X
i2I;=2K

aihu
I

i
; vi:

Since huI
i
; vi = 0 mod m for i =2 K and huI

i
; vi mod m does not depend on I in X by

Lemma 3.2, hi�
I
(x); vi mod m does not depend on the choice of I in X.

Corollary 3.4. Assume that c1(�) is divisible by N , and write cT1 (�) = Nx + u; u 2
H2(BT ). Let v and m be as above. If we write huI

i
; vi in the form

huI
i
; vi = mhi + ri with 0 � ri < m;

then the sum
P

i2I hi mod N depends only on the (v;m)-equivalence class X of I.
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Proof. We put hI =
P

i2I hi and rI =
P

i2I ri. Then hu
I; vi = mhI + rI. By Lemma 3.3

hi�
I
(x); vi is of the form

hi�
I
(x); vi = mh0

I
+ r0;

for I 2 X, where r0 is independent of I. Therefore, if we write hu; vi = r00, then

huI; vi = Nmh0
I
+Nr0 + r00:

If we compare this with

huI; vi = mhI + rI ;

we see that Nr0 + r00 is of the form Nr0 + r00 = mh0 + rI and hI = Nh0
I
+ h0. This shows

that hI mod N depends only on X.

Under the situation of Corollary 3.4, the modN value of
P

i2I hi will be called (v;m)-

type ofX and will be denoted by h(v;m;X). Similarly the mod N value of huI; vi (which

is independent of I 2 �(n) by Lemma 3.1) will be called v-type and will be denoted by

h(v).

Lemma 3.5. Assume c1(�) is divisible by N . Any non-zero b 2 Z=N can occur as v-type
when v varies over generic vectors in H2(BT ).

Proof. This follows readily from the fact that fuI
i
j i 2 Ig is a basis of H2(BT ).

4. Elliptic genus of level N

We de�ne the equivariant elliptic genus of a multi-fan. For that purpose we �rst

consider the theta function

�y(�) = (1 + y�)

1Y
n=1

(1 + yqn�)(1 + y�1qn��1):

It is de�ned for y 2 C � and q 2 C with jqj < 1. For q 6= 0 we have

�y(q�) = y�1��1�y(�):(3)

We de�ne

�y(�) =
�y(�)

��1(�)
:

It transforms by

�y(q�) = �y�1�y(�) or �y(q
�1�) = �y�y(�);(4)

by virtue of (3). We exclude the case y = �1. It follows that, if (�y)N = 1, then �y is

the pull-back of a rational function on the torus C �=qN . In this case we shall regard �y
as the function on that torus.

Let � = (�; C; w�) be a complete non-singular multi-fan. We set formally

'y(t) =
X

I2�(n)

w(I)
Y
i2I

�y(t
�uI

i );

and call it the equivariant elliptic genus of the multi-fan �.

Lemma 4.1. Let 'y(t) =
P1

n=0 'y;n(t)q
n be the expansion into power series, then 'y;n(t)

belongs to R(T )
 Z[y; y�1] where Z[y; y�1] denotes the ring of Laurent polynomials over
Z.
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Proof. 'y;n(t) is a linear combination with coe�cients in Z[y; y�1] of the expression of

the following form: X
I2�(n)

w(I)
t�
IQ

i2I(1� t�u
I

i )
;

where � 2 O as was introduced in Section 2. Therefore it belongs to R(T )
Z[y; y�1] by
Corollary 2.5.

Let v 2 H2(BT ) be a generic vector. We set

'v

y
(t) =

X
I2�(n)

w(I)
Y
i2I

�y(t
�huI

i
;vi):

If (�y)N = 1, then 'v

y
(t) is an elliptic function on C �=qN , because �y(t) is such a function.

In this case 'v

y
(t) is called elliptic genus of level N . We have furthermore

Lemma 4.2. Suppose that c1(�) is divisible by N . Let v 2 H2(BT ) be a generic vector
and h(v) the v-type. Then the elliptic genus 'v

y
(t) of level N transfoms by

'v

y
(qt) = �h(v)'v

y
(t);

where � = �y.

Proof. Y
i2I

�y((qt)
�huI

i
;vi) = �

P
i2I

huI
i
;viY

i2I
�y(t

�huI
i
;vi)

by (4). But
P

i2Ihu
I

i
; vi = h(v) mod N which is independent of I. Hence we obtain

'v

y
(qt) = �h(v)'v

y
(t):

The following theorem and corollary are versions of rigidity theorem and vanishing

theorem for multi-fans.

Theorem 4.3. Let � be a non-singular complete multi-fan and v 2 H2(BT ) a generic
vector. Assume that c1(�) is divisible by an integer N > 1. Then the equivariant elliptic
genus 'v

y
(t) ((�y)N = 1) of level N is rigid, i.e. 'v

y
(t) is constant.

Corollary 4.4. Under the same situation as in Theorem 4.3 the equivariant elliptic
genus 'y(t) ((�y)

N = 1) of level N constantly vanishes.

Proof. We postpone the proof of Theorem 4.3. As to Corollary 4.4, we take a generic

vector v such that �h(v) 6= 1, which is possible by Lemma 3.5. Since 'v

y
(t) is constant by

Theorem 4.3 for any v, 'y(t) is also constant, which we denote by 'y. Since 'y = �h(v)'y

by Lemma 4.2, 'y must be equal to 0.

The degree 0 term 'y;0(t) in the expansion in Lemma 4.1 reduces to the Ty-genus Ty[�]

(cf. [HM]). We obtain

Corollary 4.5. If c1(�) is divisible by N , then the Ty-genus Ty[�] vanishes for (�y)N =

1.

For N = 2 and y = 1 the Ty-genus equals the signature Sign(�). Hence

Corollary 4.6. The signature Sign(�) of a spin multi-fan vanishes.



ELLIPTIC GENERA, TORUS MANIFOLDS AND MULTI-FANS 9

Remark. If M is a torus manifold, we de�ne its elliptic genus to be that of its associated

multi-fan �(M). If c1(M) is divisible by N , c1(�(M)) is also divisible by N as was

remarked in Section 3, and hence its equivariant elliptic genus of level N vanishes for

(�y)N = 1. In case N = 2 we have the following conclusion. The equivariant Stiefel-

Whitney class wT

2 (M) 2 H2
T
(M ;Z=2) is de�ned and descends to cT1 (�(M)) mod 2. If

M is a spin torus manifold, then wT

2 (M) lies in H2(BT ;Z=2). Therfore cT1 (�(M)) is

divisible by 2. It follows from Corollary 4.6 that the signature Sign(M) of M vanishes.

This can be also deduced from Corollary in 1.5 of [HS].

The rest of this section is devoted to the proof of Theorem 4.3. We assume throughout

that c1(�) is divisible by N . It su�ces to show that 'v

y
(t) has no poles since it is an

elliptic function. It is clear that possible poles � satisfy �mq�s = 1 for some integers

m � 1 and s. Hence it su�ces to show that 'v

y
(tq

s

m ) has no poles � with �m = 1. Let

�(n) = t�X�

be the decomposition into (v;m)-equivalence classes. Let K� denote the core of X�. We

�x a class X� and write

huI
i
; vi = mi = mhi + ri; 0 � ri < m;

for I 2 X�. From the de�nition of core it follows that

ri = 0 , i =2 K�:

We decompose K� into a disjoint union K� = t
m�1
r=1 K

r

�
where

Kr

�
= fi 2 K� j ri = rg:

Note that
P

i2I hi = h(v;m;X�) mod N . With these understandings a straightforworard

calculation yields

Lemma 4.7.

'v

y
(tq

s

m ) =
X
�

�sh(v;m;X�)'v

y
(tq

s

m )�;

where

'v

y
(tq

s

m )� =
X
I2X�

w(I)Q
i2InK�

(1� t�hu
I

i
;vi)

�

Y
i2InK�

 
(1 + yt�hu

I

i
;vi)

1Y
n=1

(1 + yqnt�hu
I

i
;vi)(1 + y�1qnthu

I

i
;vi)

(1� qnt�hu
I

i
;vi)(1� qnthu

I

i
;vi)

!

�

m�1Y
r=1

Y
i2Kr

�

 
1 + yq�

s

m
rt�hu

I

i
;vi

1� q�
s

m
rt�hu

I

i
;vi

1Y
n=1

(1 + yqnq�
s

m
rt�hu

I

i
;vi)(1 + y�1qnq

s

m
rthu

I

i
;vi)

(1� qnq�
s

m
rt�hu

I

i
;vi)(1� qnq

s

m
rthu

I

i
;vi)

:

!

Lemma 4.8. Fix �. Let

'v

y
(tq

s

m )� =

1X
n=0

�'n(t)q
n

m

be the expansion of 'v

y
(tq

s

m )� into power series in q
1
m . Then each �'n(t) is in R(S1)
 C .
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Proof. The proof is similar to that of Lemma 4.1. �'n(t) is a linear combination with

complex coe�cients of the expression of the form:

X
I2�(n�k� )

K�

w(I)
t
h�;vi
IQ

i2InK�
(1� t�hu

I

i
;vi)

where k� is the dimension of C(K�), � 2 O is as in Section 2, and t
h�;vi
I

=
P

l2� t
hl;vi.

Thus �'n(t) is in R(S1)
 C by Corollary 2.4.

We shall show that each 'v

y
(tq

s

m )� has no poles at �m = 1. Let � be a possible pole

with �m = 1. Let �'n;I(t) be the contribution from I in �'n(t). There is an open set

U containing � such that �'n;I(t) is holomorphic in U n f�g for each I.
P1

n=0 �'n;I(t)q
n

m

converges uniformly in any compact set in U � f�g. Note that
P

I
�'n;I(t) = �'n(t) is

holomorphic in U because it is a �nite Laurent series by Lemma 4.8. We now quote a

lemma from [H].

Lemma 4.9 (Hirzebruch). Let bn;j be meromorphic functions on U with j running over
some �nite set J. Suppose that they satisfy the following properties:

(1) bn;j is holomorphic in U n f�g,
(2) bn =

P
j
bn;j is holomorphic in U ,

(3)
P1

n=0 bn;j converges uniformly in any compact set in U n f�g.

Then
P1

n=0 bn converges uniformly in any compact set in U and is a holomophic extension
of
P

j2J
P1

n=0 bn;j j U n f�g.

We apply this Lemma to �'n;I(t)q
n

m and �'n(t)q
n

m . It follows that 'v

y
(tq

s

m )� and hence

'v

y
(tq

s

m ) has no pole at t = �. Hence 'v

y
(t) has no poles and it is a constant. This proves

Theorem 4.3.

Remark. In case s = 0, we can use Lemma 4.1 instead of Lemma 4.8,

5. Applications

Let � be a complete simplicial multi-fan of dimension n. If I is in �(n) and v is a

generic vector, one can write v in the form v =
P

i2I aivi with non zero real numbers ai.
Fixing a generic vector v, we set

�(I) = #fi 2 I j ai > 0; g

and de�ne

hq(�) :=
X

I2�(n); �(I)=q

w(I);

for each integer q with 0 � q � n. We also de�ne

ek :=
X

K2�(k)

T0[�K];

where �K is the projected multi-fan associated with K. If the Todd genus T0[�] equals

1 and w(I) = 1 for all I 2 �(n), then

hq(�) = #fI 2 �(n)
j �(I) = qg;(5)
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and

ek = #�(k):(6)

Remark. Note that these conditions are always satis�ed for complete simplicial ordinary

fans. In particular, if M is a complete toric variety, the fan �(M) associated with M
satis�es these conditions. It is known that T�t[�(M)] is equal to the Poincar�e polynomial

P (t) of M if M is a non-singular projective toric variety, see e.g. [F].

The following Lemma was proved in [HM].

Lemma 5.1.

Ty[�] =

nX
q=0

hq(�)(�y)q

=

nX
m=0

en�m(�)(�1� y)m:

Moreover h0 = hn and they are the Todd genus of the multi-fan �.

It was also proved there that the equivariant Ty-genus of a torus manifoldM is always

rigid, and hence reduces to the ordinary Ty-genus Ty[M ]. The proof given there can also

be applicable in the case of complete non-singular multi-fan.

Proposition 5.2. Let � be a complete non-singular multi-fan with Todd genus T0[�] 6=

0. If c1(�) is divisible by a positive integer N , then N is equal to or less than n+ 1. In
the cases N = n+ 1 and N = n the Ty- genus must be of the following forms

Ty[�] = T0[�]

nX
q=0

(�y)q (N = n+ 1);(7)

and

Ty[�] = T0[�](1� y)

n�1X
q=0

(�y)q (N = n):(8)

Proof. Suppose that c1(�) is divisible by N . Then, by Corollary 4.5 Ty[�] considered as

a polynomial in �y has roots at all N -th roots of unity other than 1. Hence it must be

divisible by
P

N�1
q=0 (�y)

q. On the other hand it is a polynomial of degree n with constant

term T0[�] by Lemma 5.1 since T0[�] 6= 0. Therefore we must have N + 1 � n.
Suppose that N = n + 1. Then the same reasoning as above proves (7). If N = n,

then Ty[�] is divisible by
P

n�1
q=0 (�y)

q. Since the constant term and the coe�cient (as

a polynomial of �y) of the highest term do not vanish by assumption and Lemma 5.1,

Ty[�] must be of the form (8).

Lemma 5.3. Let � be a complete non-singular multi-fan with T0[�] = 1 and w(I) = 1

for all I 2 �(n). If Ty[�] is of the form (7), then

#�(1) = n+ 1 and #�(n) = n+ 1:

If Ty[�] is of the form (8), then

#�(1) = n+ 2 and #�(n) = 2n:

Moreover, in case n � 3, #�(2) = 1
2
n(n + 3).



12 AKIO HATTORI AND MIKIYA MASUDA

Proof. The equality (7) with T0[�] = 1 means that hq = 1 for all q with 0 � q � n. This

implies that #�(n) = n + 1 by (5). Putting the above values of hq in Lemma 5.1 and

using (6) we see that #�(1) = e1 = n + 1.

Similarly the equality (8) with T0[�] implies that hq = 1 for q = 0; n and hq = 2 for

1 � q � n�1. This implies that #�(n) = 2n by (5), and yields, together with Lemma 5.1

and (6), the equalities #�(1) = e1 = n+2 and #�(2) = e2 =
1
2
n(n+3) in case n � 3.

Corollary 5.4. Let M be a complete toric variety of dimension n. If c1(M) is divisible

by n+ 1, then M is isomorphic to the projective space Pn as a toric variety.

Proof. By Proposition 5.2 and Lemma 5.3 the fan associated with M has n + 1 1-

dimensional cones and n + 1 n-dimensional cones. Such a fan is unique (up to auto-

morphisms of the lattice L) and coincides with the fan associated with Pn. Since a toric

variety is determined by its fan, M must be Pn.

In order to handle the case N = n we investigate the fan associated with a projective

space bundle over a projective space. Let � denote the hyperplane bundle (dual of the

tautological line bundle) over Pr. Let 1 � r < n and set � = (
P

n

i=r+1 �
ki) � 1 where ki

are integers and 1 denotes the trivial line bundle. The associated projective space bundle

of � will be denoted by M . It is a complex manifold. A point of M is expressed in

homogeneous coordinate

[z0; z1; : : : ; zr; wr+1; : : : ; wn; wn+1](9)

where zi; wj 2 C ; (z0; z1; : : : ; zr) 6= (0; 0; : : : ; 0); (wr+1; : : : ; wn; wn+1) 6= (0; : : : ; 0; 0),
and if, � 2 C � , then

[�z0; �z1; : : : ; �zr; �
kr+1wr+1; : : : ; �

knwn; wn+1]

and

[z0; z1; : : : ; zr; �wr+1; : : : ; �wn; �wn+1]

are identi�ed with (9).

Let (n + 1)-dimensional torus T n+1 = S1
� � � � � S1 act on M by

(t0; t1; : : : ; tn)[z0; z1; : : : ; zr; wr+1; : : : ; wn; wn+1]

= [t0z0; t1z1; : : : ; trzr; tr+1wr+1; : : : ; tnwn; wn+1]

The action is a holomorphic action. The subgroupD0 = f(t; : : : ; t; tkr+1; : : : ; tkn) j t 2 S1
g

of T n+1 acts trivially on M . Hence the quotient T = T n+1=D0 acts on M . Put

Mi =

�
f[z0; z1; : : : ; zr; wr+1; : : : ; wn; wn+1] j zi = 0g for 0 � i � r

f[z0; z1; : : : ; zr; wr+1; : : : ; wn; wn+1] j wi = 0g for r + 1 � i � n+ 1:

We also put

Si = f(1; : : : ; 1; ti; 1; : : : ; 1) 2 T n+1
g for 0 � i � n

and

Sn+1 = f(1; 1; : : : ; 1; tr+1; : : : ; tn) 2 T n+1
j tr+1 = � � � = tng:

We shall denote by the same letter the image of Si in T . It is easy to see that Si pointwise
�xes Mi, and there are no other circle subgroups of T which have (complex) codimension

1 �xed point set components.
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Let ~vi 2 Hom(S1; T n+1) denote the inclusion homomorphism of S1 into the i-th factor

of T n+1 for 0 � i � n. Put vi = ��(~vi) 2 Hom(S1; T ) where �� is the homomophism

induced by the projection � : T n+1
! T . >From the de�nition it follows that there is a

relation

v0 + v1 + � � �+ vr + kr+1vr+1 + � � �+ knvn = 0:(10)

We also put

vn+1 = �(vr+1 + � � �+ vn) 2 Hom(S1; T ):(11)

Then Si is the image of vi : S
1
! T . Moreover S1 acts via vi on each �ber of the normal

bundle of Mi in M by standard complex multiplication. Thus fvi j i = 0; : : : ; n; n + 1g

coincides with the set of primitive edge vectors of 1-dimensional cones of the multi-fan

�(M) = (�(M); C(M); w(M)�) associated with the torus manifold M , and we have

�(M)(1) = f0; 1; : : : ; n; n+ 1g, cf. [HM].

To determine the whole augmented simplicial set �(M), we need to look at the �xed

point set MT . For i 2 f0; 1; : : : rg, put Ii = f0; 1; : : : rgnfig, and for j 2 fr+1; : : : n+1g,

put Jj = fr + 1; : : : n+ 1g n fjg. It is not di�cult to see that MT consists of points

MIi
\MJj

; i 2 f0; 1; : : : rg; j 2 fr + 1; : : : n+ 1g;

where MIi
= \k2IiMk and MJj

= \l2JjMl. This implies that

�(M)(n) = fIi [ Jj j i 2 f0; 1; : : : rg; j 2 fr + 1; : : : n+ 1gg:

In particular

#�(M)(n) = (r + 1)(n� r + 1):

It follows that

#�(M)(n) � 2n and #�(M)(n) = 2n if and only if r = 1 or n� 1:

Let � be the tautological line bundle over the projective space bundle M . Its dual � �

restricts to the hyperplane bundle on each �ber of � : M ! Pr. Let ! 2 H2(M) be

the �rst Chern class of � �. Then, by the Leray-Hirsch theorem, H�(M) is a free H�(Pr)-
module over generators 1; !; !2; : : : ; !n�r. In particular, H2(M) is a free module over

!; !0, where !0 is the image of the canonical generator of H2(Pr) by ��. We have

Lemma 5.5.

c1(M) = (n� r + 1)! + (

nX
i=r+1

ki + r + 1)!0:

Proof. The tautological line bundle � is a subbundle of ���, and the tangent bundle along

the �bers TfM of � : M ! Pr is isomorphic to Hom(�; ���=�) = � � 
 (���=�). Hence

c1(TfM) = (n� r)c1(�
�) + c1(�

��=�)

= (n� r)! + c1(�
��)� c1(�)

= (n� r)! + (
X
i

ki)!
0 + !

= (n� r + 1)! + (
X
i

ki)!
0:
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Since the tangent bundle TM is isomorphic to ��TPr�TfM , and c1(�
�TPr) = (r+1)!0,

we have

c1(M) = (n� r + 1)! + (
X
i

ki + r + 1)!0:

As an immediate consequence of Lemma 5.5 we obtain

Corollary 5.6. Let M = P(�) be as above. Then c1(M) is divisible by n if and only if
r = 1 and

P
n

i=r+1 ki + 2 is divisible by n.

We now consider complete non-singular multi-fans having �rst Chern class divisible by

n.

Lemma 5.7. Let � = (�; C; w�) be a complete non-singular multi-fan of dimension n
such that

T0(�) = 1; w(I) = 1 for all I 2 �(n);

#�(1) = n + 2; #�(n) = 2n; and #�(2) =
1

2
n(n + 3) in case n � 3:

Then it is equivalent to the multi-fan of a Pn�1 bundle over P1 or a P1-bundle over Pn�1.

Proof. Let fvig
n+1
i=0 be the primitive edge vectors of the 1-dimensional cones. In view

of (10) and (11) it su�ces to show that, under a suitable numbering, they satisfy the

relations

v1 + v2 + � � �+ vn = 0; v0 + vn+1 +

nX
i=2

kivi = 0;(12)

or

v1 + v2 + � � �+ vn + kvn+1 = 0; v0 + vn+1 = 0:(13)

We �rst deal with the case n � 3. From the completeness we see that each 1-dimensional

cone is a face of at least n 2-dimensional cones, and it is a face of at most n + 1 2-

dimensional cones because the number of 1-dimensional cones are n+2. Since the number

of 2-dimensional cones is 1
2
n(n+3), we conclude that there are two edge vectors, say v0 and

vn+1 such that v0 (vn+1 respectively) spans 2-dimensional cones with each of remaining

vectors v1; v2; : : : ; vn, and each vi; 1 � i � n; spans 2-dimensional cones with vj; j 6= i.
Thus the projected multi-fan �f0g has exactly n 1-dimensional cones. It is complete and

non-singular as a projected multi-fan of a complete non-singular multi-fan �. It follows

that �f0g is equivalent to the fan of Pn�1, and the projected edge vectors �vi; 1 � i � n;
satisfy the relation

�v1 + �v2 + � � �+ �vn = 0:

This implies the relation

v1 + v2 + � � �+ vn = kv0:

Similarly we have

v1 + v2 + � � �+ vn = k0vn+1:
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If k = 0 then k0 = 0 since vn+1 6= 0, and v1; v2; : : : ; vn lie on a hyperplane v1+v2+� � �+vn =
0. Since the multi-fan � is complete and non-singular, the primitive vectors v0 and vn+1
lie on the di�erent sides of that hyperplane and must satisfy a relation as (12).

If k 6= 0 then k0 6= 0 and v0 and vn+1 are linearly dependent primitive vectors. Therefore

we must have v0 + vn+1 = 0. Thus (13) holds. This proves Lemma 5.7 in the case n � 3.

The case n = 2 is similar and easier. We see that there are four primitive edge vectors

v0; v1; v2; v3 in 2-dimensional vector space V = L
 R such that

v1 + v2 = kv0 = k0v3:

By the same reasoning as above we derive

v1 + v2 = 0; v0 + v3 + kv2 = 0 or v1 + v2 + kv3 = 0; v0 + v3 = 0:

Corollary 5.8. Let M be a complete non-singular toric variety of dimension n. If c1(M)

is divisible by n, then M is isomorphic to an (n� 1)-dimensional projective space bundle

over P1 of the form described in Corollary 5.6 as a toric variety.

Proof. By Proposition 5.2 and Lemma 5.3 the fan �(M) associated with M has n + 2

1-dimensional cones and 2n n-dimensional cones. Moreover the number of 2-dimensional

cones is 1
2
n(n + 3) in case n � 3. By Lemma 5.7 �(M) is equivalent to that of a Pn�1-

bundle over P1 or P1- bundle over Pn�1. Among such manifolds those with c1 divisible

by n are of the form given in Corollary 5.6.

6. Remarks on singular case

So far we de�ned equivariant elliptic genus for complete non-singular multi-fans, and

proved its rigidity and vanishing. We can de�ne equivariant elliptic genus for general

complete simplicial multi-fan eqipped with a set of edge vectors for 1-dimensional cones.

However it seems rigiditiy property can not be expected in general case. In the sequel we

shall briey discuss these phenomena.

Using the � function in Section 4 we set

��;y(�) =
��y(�)

���(�)
:

Similarly to (4) we have

��;y(q�) = �y�1��;y(�) or ��;y(q
�1�) = �y��;y(�):(14)

Let � = (�; C; w�) be a complete simplicial multi-fan, and V = fvi j i 2 �(1)
g a set

of prescribed edge vectors. We do not assume that vi's are primitive. For I 2 �(n) we

de�ne LI to be the submodule of L generated by fvi j i 2 Ig. Let L�
I
be the dual lattice

of LI . We identify L�
I
with the lattice in V � = L�


 Q given by

L� = fu 2 V �
j hv; ui 2 Z; for any v 2 LIg:

For g 2 L=LI and u 2 L�
I
we de�ne

�I(u; g) = e2�
p�1hv;ui;
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where v 2 L is a representative of g. If one �xes u, g 7! �I(u; g) gives a character of the

group L=LI . We set

'y(t) =
X

I2�(n)

w(I)

jL=LI j

X
g2L=LI

Y
i2I

��I(uIi ;g)�1;y(t
�uI

i );(15)

and call it the equivariant elliptic genus of the pair (�;V) of multi-fan and prescribed

edge vectors. Let v 2 H2(BT ) be a generic vector such that huI
i
; vi 2 Z for all i 2 I and

I 2 �(n). We set

'v

y
(t) =

X
I2�(n)

w(I)

jL=LI j

X
g2L=LI

Y
i2I

��I(uIi ;g)�1;y(t
�huI

i
;vi):

If (�y)N = 1; �y 6= 1, then 'v

y
(t) is an elliptic function on C �=qN , because ��;y(t) is such

a function by (14). In this case 'v

y
(t) is called elliptic genus of level N .

The folloing proposition is a generalization of Lemma 4.1.

Proposition 6.1. Let 'y(t) =
P1

n=0 'y;n(t)q
n be the expansion into power series, then

'y;n(t) belongs to R(T )
 C .

The proof of Proposition 6.1 goes in a way similar to that of Lemma 4.1. We de�ne the

equivariant cohomology with real coe�cients H�
T
(�;R) of a complete simplicial multi-

fan � as the face ring of the simplicial complex � with real coe�cients as in Section

2. We regard H2(BT ;R) as a subspace of H2
T
(�;R) by the formula (1). Note that this

de�nition depends not only on � but on V. We also de�ne the restriction homomorphism

i�
I
: H�

T
(�;R) ! H�(BT ;R) for each I 2 �(n) by (2). Instead of Lemma 2.1 we use

Lemma 6.2. For any x =
P

i2�(1) cixi 2 H2
T
(�;R); ci 2 Z, the element

X
I2�(n)

w(I)

jL=LI j

X
g2L=LI

�I(i
�
I
(x); g)ti

�

I
(x)Q

i2I(1� �I(u
I

i
; g)�1t�u

I

i )

in a fractional ring containing R(T ) actually belongs to R(T ).

This was proved in Lemma 7.4 of [HM] with a further assumption that i�
I
(x) 2

H2(BT ;Z). The general case can be proved in a similar way. The formula was also

given in Corollary 12.10 of [HM] when � is the multi-fan associated with a torus orb-

ifold.

Let O be as in Section 2. Let � be in O. If I is in �(n), then � is an orbit of the action

of permutation group of I on linear forms over uI
i
. We set

�I(�; g)t
�

I
=
X
l2�

�I(l; g)t
l:

We can deduce the following corollary from Lemma 6.2 just like we deduced Lemma 2.5

from Lemma 2.1.

Corollary 6.3. For any � 2 O the expressionX
I2�(n)

w(I)

jL=LI j

X
g2N=NI

�I(�; g)t
�

IQ
i2I(1� �I(u

I

i
; g)�1t�u

I

i )
(16)

belongs to R(T ).
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We are now ready to prove Proposition 6.1. We see that 'y;n(t) is a linear combination
with complex coe�cients of the expression of the form (16). Hence it belongs to R(T )
C
by Corollary 6.3. This proves Proposition 6.1.

It would seem reasonable to de�ne H2
T
(�;Z) to be the submodule of H2

T
(�;Q) gen-

erated by V = fvi j i 2 �(1)
g. Then H2(BT ;Z) is contained in H2

T
(�;Z). It would

be possible to de�ne divisibility by N of the �rst Chern class as in Section 3. However

Theorem 4.3 and Corollary 4.4 do not hold in this general setting. In fact Lemma 3.1

has no meaning as it is, because uI
i
's do not lie in H2(BT ;Z) in general. Also the proof

of Lemma 3.2 breaks down in general setting, and one can not de�ne (v;m)-equivalence

relation. However in the following favorable case we get rigidity and vanishing results.

We assume that the submodules LI � L = H2(BT ;Z) are independent of I 2 �(n).

We write ~L = LI . It coincides with a submodule of L generated by V. The dual lattice
~L� is contained in H2

T
(�;Z) as is seen from (1). The identi�cation of L with H2(BT ;Z)

can be explained as follows. We interpret T as V=L where V = L
 R. Then

L = �1(T ) = �2(BT ) = H2(BT : Z):

We put ~V = ~L 
 R and ~T = ~V =~L. This determines the identi�caction ~L = H2(B ~T ;Z)

and ~L� = H2(B ~T ;Z). Let p : ~V ! V and p : ~T ! T denote the map induced by

the inclusion ~L ! L. Then the kernel of p : ~T ! T is identi�ed with H = L=~L. To

distinguish we denote by ~vi the vector vi when we consider it as lying in ~V so that we

have p(~vi) = vi. We de�ne a new multi-fan ~� = (~�; ~C; ~w�) by setting ~� = �; ~w� = w�

and letting ~C(i) to be the cone generated by ~vi. Since f~vi j i 2 Ig is a basis of ~L for any

I 2 �(n), ~� is non-singular.

Let ~'y(t) =
P1

n=0 ~'y;n(t)q
n be the equivariant elliptic genus of ~�. We have

~'y(t) =
X

I2�(n)

w(I)
Y
i2I

�y(t
�uI

i )(17)

By Lemma 4.1 ~'y;n(t) is of the form

~'y;n(t) =
X
u2~L�

aut
u

where au 2 Z[y; y�1]. Compairing (17) with (15) we obtain

'y;n(t) =
1

jL=~Lj

X
u2~L�

au
X
g2L=~L

�(u; g)tu:

Since �(u; ) is a character of L=~L,

X
g2L=~L

�(u; g)tu =

(
tu if u 2 L�

0 if u 62 L�;

we see that

'y;n(t) =
X
u2L�

aut
u:(18)

As a byproduct we obtain
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Proposition 6.4. Let � be a complete simplicial multi-fan and V a set of prescribed
edge vectors such that LI is independent of I 2 �(1). Assume that c1(�) is divisible by
N in the sense that cT1 (�) =

P
i2�(1) xi 2 H2

T
(�;Z) is written in the form

cT1 (�) = Nx + u; x 2 H2
T
(�); u 2 ~L�;

then the equivariant elliptic genus 'y of the pair (�;V) vanishes for (�y)N = 1; �y 6= 1.

In particular the Ty-genus Ty(�) vanishes for (�y)N = 1; 6= 1.

Proof. The divisibility of c1(�) by N eventually means that c1( ~�) is divisible by N . By

Corollary 4.4 all the au vanish for (�y)N = 1;�y 6= 1. Hence, by (18), 'y of the pair

(�;V) vanishes for (�y)N = 1; �y 6= 1.

Remark. In the situation of Proposition 6.4 we constructed a new non-singular multi-fan

from the pair (�;V). We may call it the (rami�ed) covering of � with respect to V.

Conversely given a complete non-singular multi-fan ~� = (~�; ~C; ~w�) with ~C : ~�(1)
!

H2(B ~T ;R) and a sublattice L of H2(B ~T ;R) such that H2(B ~T ;Z) � L we can construct

in an obvious way a new complete simplicial multi-fan � and a set of edge vectors V

such that the covering of � with respect to V coincides with �. Geometric picture of

this construction is making quotient torus orbifold M=H of a torus manifold M by a

subgroup H of the torus T acting on M .

References

[BT] R. Bott and C. Taubes, On the rigidity theorem of Witten, J. Amer. Math. Soc., 2 (1989), 137{186.
[F] W. Fulton, Introduction to Toric Varieties, Annals Math. Studies, No.131, Princeton UP, 1993.
[HM] A. Hattori and M. Masuda, Theory of multi-fans, Mathematical Preprint Series, Osaka City Uni-

versity, 2001.
[H] F. Hirzebruch, Elliptic genera of level N for complex manifolds, Di�erential Geometrical Meth-

ods in Theoretical Phisics, Kluwer, 1988, pp. 37{63; also reproduced with corrections and im-
provements in F. Hirzebruch, T. Berger and R. Jung, Manifolds and Modular Forms, Aspects of
Mathematics, vol. E20, Vieweg, 1992.

[HS] F. Hirzebruch and P. Slodowy, Elliptic Genera, involutions, and homogenious spin manifolds,
Geometriae Dedicata, 35 (1990), 309{343.

[M] M. Masuda, Unitary toric manifolds, multi-fans and equivariant index, TohokuMath. J., 51 (1999),
237{265.

[W] E. Witten, The index of the Dirac operator in loop space, Elliptic Curves and Modular Forms in
Algebraic Geometry, Lecture Notes in Math., Springer, 1988, pp.161{181.

Graduate School of Mathematical Science, University of Tokyo, Tokyo, Japan; De-

partment of Mathematics, Osaka city University, Osaka, Japan

E-mail address : hattori@math.meiji.ac.jp; masuda@sci.osaka-cu.ac.jp


