A TWINING CHARACTER FORMULA FOR DEMAZURE MODULES

MASAHARU KANEDA

SATOSHI NAITO

Department of Mathematics Graduate School of Science Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558-8585, Japan kaneda@sci.osaka-cu.ac.jp Institute of Mathematics University of Tsukuba Tsukuba, Ibaraki 305-8571, Japan naito@math.tsukuba.ac.jp

To Professor Yukio Tsushima on the occasion of his sixtieth birthday

Abstract. We prove a formula for the twining characters of certain Demazure modules, over a Borel subalgebra \mathfrak{b} of a finite-dimensional complex semi-simple Lie algebra \mathfrak{g} . This formula describes the twining character of the Demazure module by the ω -Demazure operator associated to an element of the Weyl group that is fixed by the Dynkin diagram automorphism ω of \mathfrak{g} . Our result is a refinement of the twining character formula for the irreducible highest weight \mathfrak{g} -modules of symmetric dominant integral highest weights, and also of the ordinary Demazure character formula.

Introduction

Let \mathfrak{g} be a finite-dimensional complex semi-simple Lie algebra with Cartan subalgebra \mathfrak{h} and Borel subalgebra $\mathfrak{b} \supset \mathfrak{h}$. Let $\Delta \subset \mathfrak{h}^*$ be the set of roots of \mathfrak{g} relative to \mathfrak{h} . We choose a set of positive roots Δ_+ such that the roots of \mathfrak{b} are $-\Delta_+$. Let $\{\alpha_i \mid i \in I\}$ be the set of simple roots in Δ_+ , $\{h_i \mid i \in I\}$ the set of simple coroots in \mathfrak{h} , $A = (a_{ij})_{i,j \in I}$ the Cartan matrix with $a_{ij} = \alpha_j(h_i)$, and $W = \langle r_i \mid i \in I \rangle \subset GL(\mathfrak{h}^*)$ the Weyl group.

A bijection ω of the index set I such that $a_{\omega(i),\omega(j)} = a_{ij}$ for all $i, j \in I$ induces an automorphism ω (see §1.1), called a (Dynkin) diagram automorphism, of the Lie algebra \mathfrak{g} , which stabilizes $\mathfrak{h}_{\mathbb{Z}} = \sum_{i \in I} \mathbb{Z}h_i$. Note that this bijection ω of I also induces an automorphism ${}^t\omega$ of the dual Lie algebra ${}^t\mathfrak{g}$ of \mathfrak{g} in a similar way, where the dual Lie algebra ${}^t\mathfrak{g}$ is a complex semi-simple Lie algebra with the Dynkin diagram opposite to the one for \mathfrak{g} . We denote by $\langle \omega \rangle$ the cyclic subgroup (of order N) of Aut(\mathfrak{g}) generated by the diagram automorphism ω . The restriction of ω to \mathfrak{h} induces a transposed map $\omega^* \colon \mathfrak{h}^* \to$ \mathfrak{h}^* , which stabilizes the integral weight lattice $\mathfrak{h}_{\mathbb{Z}}^* = \{\lambda \in \mathfrak{h}^* \mid \lambda(h_i) \in \mathbb{Z} \text{ for all } i \in I\}$ $\simeq \mathbf{Ab}(\mathfrak{h}_{\mathbb{Z}},\mathbb{Z})$. We set $\mathfrak{h}^0 = \{h \in \mathfrak{h} \mid \omega(h) = h\}$, $W^\omega = \{w \in W \mid \omega^*w = w\omega^*\}$, $(\mathfrak{h}^*)^0 = \{\lambda \in \mathfrak{h}^* \mid \omega^*(\lambda) = \lambda\} \simeq (\mathfrak{h}^0)^*$, and $(\mathfrak{h}_{\mathbb{Z}}^*)^0 = \{\lambda \in \mathfrak{h}_{\mathbb{Z}} \mid \omega^*(\lambda) = \lambda\}$.

In [FSS] and [FRS], they introduced a certain Lie algebra $\hat{\mathfrak{g}}$, called the orbit Lie algebra, which is nothing but the dual Lie algebra ${}^{t}(({}^{t}\mathfrak{g}){}^{t}\omega)$ of the (semi-simple) fixed

Received . Accepted .

point subalgebra ${\binom{t}{\mathfrak{g}}}^{i\omega}$ of ${}^{t}\mathfrak{g}$ by the automorphism ${}^{t}\omega$ of ${}^{t}\mathfrak{g}$. Let $\widehat{\mathfrak{h}}$ be the Cartan subalgebra of $\widehat{\mathfrak{g}}$, $\widehat{\mathfrak{b}} \supset \widehat{\mathfrak{h}}$ the Borel subalgebra, and $\widehat{\Delta}_{+} \subset \widehat{\mathfrak{h}}^{*}$ the set of positive roots chosen so that the roots of $\widehat{\mathfrak{b}}$ are $-\widehat{\Delta}_{+}$. Let $\{\widehat{\alpha}_{i} \mid i \in \widehat{I}\}$ be the set of simple roots in $\widehat{\Delta}_{+}$, $\{\widehat{h}_{i} \mid i \in \widehat{I}\}$ the set of simple coroots in $\widehat{\mathfrak{h}}$, and $\widehat{W} = \langle \widehat{r}_{i} \mid i \in \widehat{I} \rangle \subset GL(\widehat{\mathfrak{h}}^{*})$ the Weyl group, where the index set \widehat{I} is a set of representatives of the ω -orbits in I. It is well-known that there exist an isomorphism of groups $\Theta: \widehat{W} \to W^{\omega}$ and a \mathbb{C} -linear isomorphism $P_{\omega}: \mathfrak{h}^{0} \to \widehat{\mathfrak{h}}$ such that if $P_{\omega}^{*}: \widehat{\mathfrak{h}}^{*} \to (\mathfrak{h}^{0})^{*} \simeq (\mathfrak{h}^{*})^{0}$ is the transposed map of P_{ω} , then $\Theta(\widehat{w})|_{(\mathfrak{h}^{*})^{0}} = P_{\omega}^{*} \circ \widehat{w} \circ (P_{\omega}^{*})^{-1}$ for all $\widehat{w} \in \widehat{W}$. We set $w_{i} = \Theta(\widehat{r}_{i}) \in W^{\omega}$ for $i \in \widehat{I}$. In particular, $(W^{\omega}, \{w_{i} \mid i \in \widehat{I}\})$ forms a Coxeter system.

For dominant $\lambda \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$, let $L(\lambda)$ be the simple \mathfrak{g} -module of highest weight λ . It admits a unique \mathbb{C} -linear $\langle \omega \rangle$ -action such that $\omega \cdot (xv) = \omega(x)(\omega \cdot v)$ for each $x \in \mathfrak{g}$, $v \in L(\lambda)$, and such that $\omega \cdot v_{\lambda} = v_{\lambda}$, where v_{λ} is a (nonzero) highest weight vector of $L(\lambda)$. So therefore does its dual module $L(\lambda)^* \simeq L(-w_0(\lambda))$ with w_0 the longest element in W. In [FSS] and [FRS], they defined the twining character $\mathrm{ch}^{\omega}(L(\lambda))$ of $L(\lambda)$ by

$$\operatorname{ch}^{\omega}(L(\lambda)) = \sum_{\mu \in (\mathfrak{h}_{\mathbb{Z}}^*)^0} \operatorname{Tr}(\omega|_{L(\lambda)\mu}) e(\mu)$$

in the group algebra $\mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$ over \mathbb{C} of $(\mathfrak{h}_{\mathbb{Z}}^*)^0$ with basis $e(\mu), \mu \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$, and they proved

$$\operatorname{ch}^{\omega}(L(\lambda)) = P_{\omega}^{*} \Big(\operatorname{ch} \widehat{L}(\widehat{\lambda}) \Big),$$

where ch $\widehat{L}(\widehat{\lambda}) \in \mathbb{C}[\widehat{\mathfrak{h}}^*]$ is the ordinary character of the simple $\widehat{\mathfrak{g}}$ -module $\widehat{L}(\widehat{\lambda})$ of dominant integral highest weight $\widehat{\lambda} = (P_{\omega}^*)^{-1}(\lambda) \in \widehat{\mathfrak{h}}^*$.

Let $\mathfrak{U}(\mathfrak{b})$ be the universal enveloping algebra of \mathfrak{b} , and for each $w \in W^{\omega}$, let $J_w(\lambda) = \mathfrak{U}(\mathfrak{b})v_{w(\lambda)}^* \subset L(\lambda)^*$ be Joseph's module of highest weight $-w(\lambda)$ in $L(\lambda)^*$, with $v_{w(\lambda)}^*$ a (nonzero) weight vector in $L(\lambda)^*$ of weight $-w(\lambda)$. In this paper we will prove a formula of Demazure type for the twining character ch^{ω}($J_w(\lambda)$) of $J_w(\lambda)$ defined by

$$\operatorname{ch}^{\omega}(J_w(\lambda)) = \sum_{\mu \in (\mathfrak{h}^*_{\mathbb{Z}})^0} \operatorname{Tr}(\omega|_{J_w(\lambda)_{\mu}}) e(\mu).$$

As a corollary, we will find a striking relation:

$$\operatorname{ch}^{\omega}(J_w(\lambda)) = P_{\omega}^* \Big(\operatorname{ch} \widehat{J}_{\widehat{w}}(\widehat{\lambda}) \Big),$$

where $\widehat{w} = \Theta^{-1}(w) \in \widehat{W}$ and $\operatorname{ch} \widehat{J}_{\widehat{w}}(\widehat{\lambda}) \in \mathbb{C}[\widehat{\mathfrak{h}}^*]$ is the ordinary character of Joseph's module $\widehat{J}_{\widehat{w}}(\widehat{\lambda})$ of highest weight $-\widehat{w}(\widehat{\lambda})$ for the orbit Lie algebra $\widehat{\mathfrak{g}}$.

To explain our result precisely, we need some more notation. Let G be a connected, simply connected semi-simple linear algebraic group over \mathbb{C} with maximal torus T and Borel subgroup $B \supset T$ such that $\text{Lie}(G) = \mathfrak{g}$, $\text{Lie}(T) = \mathfrak{h}$, and $\text{Lie}(B) = \mathfrak{b}$. We will identify the rational character group $\Lambda = \mathbf{Grp}_{\mathbb{C}}(T, GL_1)$ of T with $\mathfrak{h}_{\mathbb{Z}}^*$. The diagram automorphism ω of \mathfrak{g} lifts to an automorphism of G, which we will by abuse of notation denote by ω . We will also denote the induced action of ω on Λ by the same letter ω , and set $\Lambda^{\omega} = \{\lambda \in \Lambda \mid \omega \cdot \lambda = \lambda\}$.

For a rational $\langle \omega \rangle \ltimes T$ -module V, we define the twining character $ch^{\omega}(V) \in \mathbb{C}[\Lambda^{\omega}]$ of V to be

$$\operatorname{ch}^{\omega}(V) = \sum_{\mu \in \Lambda^{\omega}} \operatorname{Tr}(\omega|_{V_{\mu}}) e(\mu),$$

where V_{μ} is the μ -weight space of V. Here we note that the twining character $ch^{\omega}(V) \in \mathbb{C}[\Lambda^{\omega}]$ can be viewed as the trace function

$$T \ni t \mapsto \operatorname{Tr}((\omega, t); V) \in \mathbb{C}.$$

In fact, we have for each $t \in T$,

$$\operatorname{Tr}((\omega, t) ; V) = \sum_{\mu \in \Lambda^{\omega}} \operatorname{Tr}(\omega|_{V_{\mu}}) \, \mu(t) \in \mathbb{C}.$$

Fix $w \in W^{\omega}$, and let X(w) be the associated Schubert variety over \mathbb{C} , which is the Zariski closure in the flag variety G/B of the Bruhat cell $B\dot{w}B/B$, where $\dot{w} \in N_G(T)$ denotes a right coset representative of $w \in W \simeq N_G(T)/T$ fixed by $\omega \in \operatorname{Aut}(G)$. If M is a rational $\langle \omega \rangle \ltimes B$ -module, then the B-equivariant $\mathcal{O}_{X(w)}$ -module $\mathcal{L}_{X(w)}(M)$ associated to M carries a structure of $\langle \omega \rangle \ltimes B$ -equivariant sheaf (see §2.3), so that its cohomology groups $H^{\bullet}(X(w), \mathcal{L}_{X(w)}(M))$ are $\langle \omega \rangle \ltimes B$ -modules. For each $\lambda \in \Lambda^{\omega}$, we let \mathbb{C}_{λ} denote the one-dimensional $\langle \omega \rangle \ltimes B$ -module on which B acts via λ through the quotient $B \to T$ and $\langle \omega \rangle$ trivially. We call $H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))$ for dominant $\lambda \in \Lambda^{\omega}$ a Demazure module. Now Joseph's module $J_w(\lambda)$ admits a structure of $\langle \omega \rangle \ltimes B$ -module, and we have an isomorphism of $\langle \omega \rangle \ltimes B$ -modules (see §3.2)

$$J_w(\lambda)^* \simeq H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_\lambda)),$$

where $J_w(\lambda)^*$ is the dual $\langle \omega \rangle \ltimes B$ -module of $J_w(\lambda)$. We can now state our main result in this paper.

Theorem 0.1. Let M be a finite-dimensional rational $\langle \omega \rangle \ltimes B$ -module, $w \in W^{\omega}$, and let $w = w_{i_1} w_{i_2} \cdots w_{i_n}$ be a reduced expression in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$. Then we have in $\mathbb{C}[\Lambda^{\omega}]$,

$$\sum_{j\geq 0} (-1)^j \operatorname{ch}^{\omega}(H^j(X(w), \mathcal{L}_{X(w)}(M))) = \widehat{D}_{i_1} \widehat{D}_{i_2} \cdots \widehat{D}_{i_n} \Big(\operatorname{ch}^{\omega}(M) \Big),$$

where \widehat{D}_i , $i \in \widehat{I}$, is the ω -Demazure operator (see §1.4). In particular, for dominant $\lambda \in \Lambda^{\omega}$, we have

$$\mathrm{ch}^{\omega}(H^0(X(w),\mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))) = \widehat{D}_{i_1}\widehat{D}_{i_2}\cdots\widehat{D}_{i_n}(e(\lambda)).$$

Now let $\widehat{\mathfrak{h}}_{\mathbb{Z}} = \sum_{i \in \widehat{I}} \mathbb{Z} \, \widehat{h}_i$ and $\widehat{\mathfrak{h}}_{\mathbb{Z}}^* = \mathbf{Ab}(\widehat{\mathfrak{h}}_{\mathbb{Z}}, \mathbb{Z}) \subset \widehat{\mathfrak{h}}^*$. For dominant $\widehat{\lambda} \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$, let $\widehat{L}(\widehat{\lambda})$ be the simple $\widehat{\mathfrak{g}}$ -module of highest weight $\widehat{\lambda}$, and for each $\widehat{w} \in \widehat{W}$, let $\widehat{J}_{\widehat{w}}(\widehat{\lambda}) = \mathfrak{U}(\widehat{\mathfrak{b}}) \, \widehat{v}_{\widehat{w}(\widehat{\lambda})}^* \subset \widehat{L}(\widehat{\lambda})^*$ be Joseph's module of highest weight $-\widehat{w}(\widehat{\lambda})$ with $\widehat{v}_{\widehat{w}(\widehat{\lambda})}^* \in \widehat{L}(\widehat{\lambda})^*$ a (nonzero) weight vector of weight $-\widehat{w}(\widehat{\lambda})$.

Corollary 0.2. Let $\lambda \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$ be dominant and $w \in W^{\omega}$. We set $\widehat{\lambda} = (P_{\omega}^*)^{-1}(\lambda) \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$ and $\widehat{w} = \Theta^{-1}(w) \in \widehat{W}$. Then we have in $\mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$,

$$\operatorname{ch}^{\omega}(J_w(\lambda)) = P_{\omega}^*\left(\operatorname{ch}\widehat{J}_{\widehat{w}}(\widehat{\lambda})\right),$$

where P_{ω}^* is a \mathbb{C} -algebra isomorphism $\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*] \xrightarrow{\sim} \mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$ defined by $P_{\omega}^*(e(\widehat{\mu})) = e(P_{\omega}^*(\widehat{\mu}))$ for each basis element $e(\widehat{\mu}), \ \widehat{\mu} \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$, of the group algebra $\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*]$ over \mathbb{C} of $\widehat{\mathfrak{h}}_{\mathbb{Z}}^*$.

The paper is organized as follows. In §1 we assemble some definitions and properties of orbit Lie algebras and of twining characters needed later. In §2 we study the $\langle \omega \rangle \ltimes B$ -equivariant Demazure-Hansen desingularizations of the $\langle \omega \rangle$ -invariant Schubert varieties, and some $\langle \omega \rangle \ltimes B$ -equivariant sheaves on these varieties. We finish the proof of our main theorem in §3, using all the materials above and the $\langle \omega \rangle \ltimes B$ -equivariant Leray spectral sequences.

The first author is grateful to Takuro Mochizuki for a helpful comment. The second author expresses his sincere thanks to Professor Akira Ishii for consultations in algebraic geometry.

Notation. In this paper we mainly follow the notation of [Ja] except that for a category C and its objects A and B, the symbol C(A, B) will denote the set of morphisms of C from A to B. The following is a list of symbols for the categories we will be working in:

Ab the category of abelian groups

 $\mathbf{Grp}_{\mathbb{C}}$ the category of linear algebraic groups over \mathbb{C}

Var the category of varieties over \mathbb{C}

 \mathbf{Mod}_X the category of \mathcal{O}_X -modules, \mathcal{O}_X the structure sheaf of a variety X

1. Twining characters

For details about diagram automorphisms and orbit Lie algebras briefly explained in §1.1 and §1.2 below, see [FSS], [FRS], and [N1]–[N3].

1.1. Diagram automorphisms

Let \mathfrak{g} be a finite-dimensional complex semi-simple Lie algebra with Cartan subalgebra \mathfrak{h} and Borel subalgebra $\mathfrak{b} \supset \mathfrak{h}$. Let $\Delta \subset \mathfrak{h}^*$ be the set of roots of \mathfrak{g} relative to \mathfrak{h} . We choose a set of positive roots Δ_+ such that the roots of \mathfrak{b} are $-\Delta_+$. Let $\{\alpha_i \mid i \in I\}$ be the set of simple roots in Δ_+ , $\{h_i \mid i \in I\}$ the set of simple coroots in \mathfrak{h} , $A = (a_{ij})_{i,j \in I}$ the Cartan matrix with $a_{ij} = \alpha_j(h_i)$, and $W = \langle r_i \mid i \in I \rangle \subset GL(\mathfrak{h}^*)$ the Weyl group. We take and fix a Chevalley basis $\{e_\alpha, f_\alpha \mid \alpha \in \Delta_+\} \cup \{h_i \mid i \in I\}$ of \mathfrak{g} , and let $\mathfrak{h}_{\mathbb{Z}} = \sum_{i \in I} \mathbb{Z}h_i$.

We fix a bijection $\omega\colon I\to I$ of the index set I such that

$$a_{\omega(i),\omega(j)} = a_{ij}$$
 for all $i, j \in I$.

Let N be the order of ω , and N_i the number of elements of the ω -orbit of $i \in I$. This ω can be extended in a unique way to an automorphism (also denoted by ω) of order N of the Lie algebra \mathfrak{g} in such a way that

$$\begin{cases} \omega(e_i) = e_{\omega(i)}, & i \in I, \\ \omega(f_i) = f_{\omega(i)}, & i \in I, \\ \omega(h_i) = h_{\omega(i)}, & i \in I, \end{cases}$$

where $e_i = e_{\alpha_i}$ and $f_i = f_{\alpha_i}$ for $i \in I$ are the Chevalley generators. In a similar way, the bijection $\omega : I \to I$ can also be extended to an automorphism ${}^t\omega$ of the dual Lie algebra ${}^t\mathfrak{g}$ of \mathfrak{g} , where the dual Lie algebra ${}^t\mathfrak{g}$ is a complex semi-simple Lie algebra which has the Dynkin diagram opposite to that of \mathfrak{g} . Note that we have $(\omega(x)|\omega(y)) = (x|y)$ for $x, y \in \mathfrak{g}$, where $(\cdot|\cdot)$ is the suitably normalized Killing form on \mathfrak{g} (cf. [N2, §3.1]), and that the restriction of ω to the Cartan subalgebra \mathfrak{h} induces a transposed map $\omega^* \colon \mathfrak{h}^* \to \mathfrak{h}^*$ such that $\omega^*(\lambda)(h) = \lambda(\omega(h))$ for $\lambda \in \mathfrak{h}^*, h \in \mathfrak{h}$, which is also an isometry with respect to $(\cdot|\cdot)$. We set $(\mathfrak{h}^*)^0 = \{\lambda \in \mathfrak{h}^* \mid \omega^*(\lambda) = \lambda\}, \mathfrak{h}^*_{\mathbb{Z}} = \{\lambda \in \mathfrak{h}^* \mid \lambda(h_i) \in \mathbb{Z} \text{ for all } i \in I\} \cong \mathbf{Ab}(\mathfrak{h}_{\mathbb{Z}}, \mathbb{Z}), \text{ and } (\mathfrak{h}^*_{\mathbb{Z}})^0 = \{\lambda \in \mathfrak{h}^*_{\mathbb{Z}} \mid \omega^*(\lambda) = \lambda\}$. Note that the Weyl vector $\rho = (1/2) \cdot \sum_{\alpha \in \Delta_+} \alpha$ is in $(\mathfrak{h}^*_{\mathbb{Z}})^0$.

1.2. Orbit Lie algebras

We choose and fix a set \hat{I} of representatives of the ω -orbits in I, and set $\hat{A} = (\hat{a}_{ij})_{i,j\in \hat{I}}$, where \hat{a}_{ij} is given by

$$\widehat{a}_{ij} = s_j \times \sum_{k=0}^{N_j - 1} a_{i,\omega^k(j)} \quad \text{for } i, j \in \widehat{I} \quad \text{with} \quad s_j = \frac{2}{\sum_{k=0}^{N_j - 1} a_{j,\omega^k(j)}} \quad \text{for } j \in \widehat{I}.$$

Set for each $i \in \widehat{I}$, $I_i = \{\omega^k(i) \mid 0 \le k \le N_i - 1\} \subset I$. We know from [FRS, §2] that for each $i \in \widehat{I}$,

$$\sum_{k\in I_i}a_{ik}=1 \ \text{or} \ 2.$$

Moreover, there are only two possibilities:

- (a) if $\sum_{k \in I_i} a_{ik} = 1$, then N_i is even and the subgraph of the Dynkin diagram corresponding to the subset $I_i \subset I$ is of type $A_2 \times \cdots \times A_2$ (where A_2 appears $N_i/2$ times);
- (b) if $\sum_{k \in I_i} a_{ik} = 2$, then the subgraph of the Dynkin diagram corresponding to the subset $I_i \subset I$ is totally disconnected and of type $A_1 \times \cdots \times A_1$ (where A_1 appears N_i times).

The orbit Lie algebra associated to the diagram automorphism $\omega \in \operatorname{Aut}(\mathfrak{g})$ is defined to be the complex semi-simple Lie algebra $\hat{\mathfrak{g}}$ associated to the Cartan matrix $\widehat{A} = (\widehat{a}_{ij})_{i,j\in\widehat{I}}$ with the Cartan subalgebra $\hat{\mathfrak{h}}$, the Borel subalgebra $\hat{\mathfrak{b}} \supset \hat{\mathfrak{h}}$, the set of positive roots $\widehat{\Delta}_+ \subset \widehat{\mathfrak{h}}^*$ chosen so that the roots of $\hat{\mathfrak{b}}$ are $-\widehat{\Delta}_+$, the set of simple roots $\{\widehat{\alpha}_i \mid i \in \widehat{I}\} \subset \widehat{\mathfrak{h}}^*$, the set of simple coroots $\{\widehat{h}_i \mid i \in \widehat{I}\} \subset \widehat{\mathfrak{h}}$, and the Weyl group $\widehat{W} = \langle \widehat{r}_i \mid i \in \widehat{I} \rangle \subset GL(\widehat{\mathfrak{h}}^*)$.

Remark 1.2.1. The Dynkin diagram of the orbit Lie algebra $\hat{\mathfrak{g}}$ is in general disconnected, and so the $\hat{\mathfrak{g}}$ is a direct sum of simple Lie algebras. We can easily determine the explicit diagram of $\hat{\mathfrak{g}}$ from the argument in [N2, §3.2], by using the table in [FSS, §2.4] for the case where \mathfrak{g} is a simple Lie algebra. Moreover, by using the results of [Kac, 7.9–7.10] for the case where \mathfrak{g} is simple (see also [N1, §4] for a more general case), we can easily deduce that the orbit Lie algebra $\hat{\mathfrak{g}}$ is nothing but the dual Lie algebra $t(({}^t\mathfrak{g})^{t_{\omega}})$ of the (semi-simple) fixed point subalgebra $({}^t\mathfrak{g})^{t_{\omega}} = \{x \in {}^t\mathfrak{g} \mid ({}^t\omega)(x) = x\}$ of ${}^t\mathfrak{g}$ by the automorphism ${}^t\omega$ of ${}^t\mathfrak{g}$. We set $\mathfrak{h}^0 = \{h \in \mathfrak{h} \mid \omega(h) = h\}$. Then there exists a linear isomorphism $P_\omega \colon \mathfrak{h}^0 \to \widehat{\mathfrak{h}}$ given by

$$P_{\omega}\left(\sum_{k\in I_i} h_k\right) = N_i \,\widehat{h}_i \quad \text{for each } i\in\widehat{I}.$$
(1)

Since this map $P_{\omega} : \mathfrak{h}^0 \to \widehat{\mathfrak{h}}$ is an isometry with respect to the respective Killing forms on \mathfrak{g} and $\widehat{\mathfrak{g}}$, it induces a transposed map (which is also isometric) $P_{\omega}^* : \widehat{\mathfrak{h}}^* \to (\mathfrak{h}^0)^* \simeq (\mathfrak{h}^*)^0$ such that $P_{\omega}^*(\widehat{\lambda})(h) = \widehat{\lambda}(P_{\omega}(h))$ for $\widehat{\lambda} \in \widehat{\mathfrak{h}}^*$, $h \in \mathfrak{h}^0$. Note that we have for each $i \in \widehat{I}$,

$$P^*_{\omega}(\widehat{\alpha}_i) = s_i \beta_i, \tag{2}$$

where $\beta_i = \sum_{k \in I_i} \alpha_k \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$. Also, if $\widehat{\mathfrak{h}}_{\mathbb{Z}} = \sum_{i \in \widehat{I}} \mathbb{Z} \widehat{h}_i$ and $\widehat{\mathfrak{h}}_{\mathbb{Z}}^* = \mathbf{Ab}(\widehat{\mathfrak{h}}_{\mathbb{Z}}, \mathbb{Z}) \subset \widehat{\mathfrak{h}}^*$, then (see §1.6) $P_{\omega}^*(\widehat{\mathfrak{h}}_{\mathbb{Z}}^*) = (\mathfrak{h}_{\mathbb{Z}}^*)^0$.

We now define the subgroup W^{ω} of W by

$$W^{\omega} = \{ w \in W \mid \omega^* w = w \omega^* \}.$$

It is well-known (see, e.g., [FRS]) that there exists an isomorphism of groups

$$\Theta \colon \widehat{W} \to W^{\omega}$$

from the Weyl group \widehat{W} of the orbit Lie algebra $\widehat{\mathfrak{g}}$ onto the group W^{ω} such that the following diagram commutes for each $\widehat{w} \in \widehat{W}$:

$$\widehat{\mathfrak{h}}^{*} \xrightarrow{P_{\omega}^{*}} (\mathfrak{h}^{*})^{0}$$

$$\widehat{\mathfrak{h}}^{*} \xrightarrow{P_{\omega}^{*}} (\mathfrak{h}^{*})^{0}.$$

$$(3)$$

For each $i \in \widehat{I}$, set $w_i = \Theta(\widehat{r}_i) \in W^{\omega}$. Explicitly,

$$w_{i} = \begin{cases} \prod_{k=0}^{N_{i}/2-1} \left(r_{\omega^{k}(i)} r_{\omega^{k+N_{i}/2}(i)} r_{\omega^{k}(i)} \right) & \text{if } \sum_{k=0}^{N_{i}-1} a_{i,\omega^{k}(i)} = 1, \\ \prod_{k=0}^{N_{i}-1} r_{\omega^{k}(i)} & \text{if } \sum_{k=0}^{N_{i}-1} a_{i,\omega^{k}(i)} = 2. \end{cases}$$
(4)

Hence each w_i is the longest element of the subgroup W_{I_i} of the Weyl group W generated by the r_k 's for $k \in I_i$. Notice that $w_{\omega(i)} = w_i$ and $w_i^2 = 1$ for $i \in \widehat{I}$. Furthermore, $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$ forms a Coxeter system as $(\widehat{W}, \{\widehat{r}_i \mid i \in \widehat{I}\})$ does. We will denote the length function of the Coxeter system $(W, \{r_i \mid i \in I\})$ (resp. $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$) by $\ell \colon W \to \mathbb{Z}_{\geq 0}$ (resp. $\widehat{\ell} \colon W^{\omega} \to \mathbb{Z}_{\geq 0}$).

1.3. A Lemma about the length functions

Lemma 1.3.1. Let $w = w_{i_1}w_{i_2}\cdots w_{i_n} \in W^{\omega}$ be a reduced expression of $w \in W^{\omega}$ in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$, i.e., $\widehat{\ell}(w) = n$. Then $\ell(w) = \ell(w_{i_1}) + \ell(w_{i_2}) + \cdots + \ell(w_{i_n})$.

Proof. We argue by induction on n. For n = 1, the assertion is trivial. Suppose that $n \geq 2$, and set $u = w_{i_2} \cdots w_{i_n} \in W^{\omega}$. Because $u = w_{i_2} \cdots w_{i_n}$ is a reduced expression in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$, it follows from the induction hypothesis that $\ell(u) = \ell(w_{i_2}) + \cdots + \ell(w_{i_n})$. Hence we need to show that $\ell(w) = \ell(w_{i_1}) + \ell(u)$. For this purpose, we set

$$\Delta(w) = \{ \alpha \in \Delta_+ \mid w^{-1}(\alpha) \in \Delta_- \},$$
$$\Delta(u) = \{ \alpha \in \Delta_+ \mid u^{-1}(\alpha) \in \Delta_- \},$$
$$\Delta(w_{i_1}) = \{ \alpha \in \Delta_+ \mid w_{i_1}^{-1}(\alpha) \in \Delta_- \},$$

and show that

$$\Delta(w) \supset \Delta(w_{i_1}) \sqcup w_{i_1}(\Delta(u)), \tag{5}$$

which we leave to the reader as an easy exercise. Then the assertion that $\ell(w) = \ell(w_{i_1}) + \ell(u)$ immediately follows since

$$\ell(w) = \# \Delta(w) \ge \# \Delta(w_{i_1}) + \# \Delta(u)$$

= $\ell(w_{i_1}) + \ell(u),$

while the reverse inequality $\ell(w) = \ell(w_{i_1}u) \le \ell(w_{i_1}) + \ell(u)$ is obvious.

Remark 1.3.2. It is obvious that the map $\alpha \mapsto \omega^*(\alpha)$ gives a bijection from the set $\Delta(\omega^*w(\omega^*)^{-1})$ onto the set $\Delta(w)$. Hence we see that the longest element $w_0 \in W$ belongs to W^{ω} . In fact, arguing as in the proof of Lemma 1.3.1, we can easily show that the isomorphism $\Theta: \widehat{W} \to W^{\omega}$ maps the longest element $\widehat{w}_0 \in \widehat{W}$ to the longest element $w_0 \in W$.

1.4. The ω -Demazure operators

Recall the ordinary Demazure operator D_i , $i \in I$, on the group ring $\mathbb{Z}[\mathfrak{h}_{\mathbb{Z}}^*] = \coprod_{\lambda \in \mathfrak{h}_{\mathbb{Z}}^*} \mathbb{Z}e(\lambda)$:

$$D_i: e(\lambda) \mapsto \frac{e(\lambda) - e(-\alpha_i)e(r_i(\lambda))}{1 - e(-\alpha_i)}$$

Let $\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*]$ be the group algebra over \mathbb{C} of $\widehat{\mathfrak{h}}_{\mathbb{Z}}^*$ with basis $e(\widehat{\lambda}), \ \widehat{\lambda} \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$. Define likewise the Demazure operator $D_{\widehat{r}_i}, \ i \in \widehat{I}$, on $\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*]$ to be the \mathbb{C} -linear endomorphism of $\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*]$ given by

$$D_{\widehat{r}_i}(e(\widehat{\lambda})) = \frac{e(\widehat{\lambda}) - e(-\widehat{\alpha}_i)e(\widehat{r}_i(\widehat{\lambda}))}{1 - e(-\widehat{\alpha}_i)}$$

Then transfer $D_{\hat{r}_i}$ via P^*_{ω} onto the group algebra $\mathbb{C}[(\mathfrak{h}^*_{\mathbb{Z}})^0]$ to define the ω -Demazure operator

$$\widehat{D}_i = P^*_{\omega} \circ D_{\widehat{r}_i} \circ (P^*_{\omega})^{-1} \quad \text{for } i \in \widehat{I}.$$
(6)

Thus we can easily check the following.

Lemma 1.4.1. Let $i \in \widehat{I}$. For each $\lambda \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$, we have

$$\widehat{D}_i(e(\lambda)) = \frac{e(\lambda) - e(-s_i\beta_i)e(w_i(\lambda))}{1 - e(-s_i\beta_i)}$$

and moreover

$$\widehat{D}_{i}(e(\lambda)) = \begin{cases} e(\lambda) + e(\lambda - s_{i}\beta_{i}) + \dots + e(w_{i}(\lambda)) & \text{if } \lambda(h_{i}) \in \mathbb{Z}_{\geq 0}, \\ 0 & \text{if } \lambda(h_{i}) = -1, \\ -\left(e(\lambda + s_{i}\beta_{i}) + e(\lambda + 2s_{i}\beta_{i}) + \dots + e(w_{i}(\lambda + s_{i}\beta_{i}))\right) & \text{if } \lambda(h_{i}) \in \mathbb{Z}_{\leq -2}. \end{cases}$$

Remark 1.4.2. Let $w = w_{i_1}w_{i_2}\cdots w_{i_n}$ be a reduced expression of $w \in W^{\omega}$ in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$, i.e., $\widehat{\ell}(w) = n$. We set $\widehat{D}_w = \widehat{D}_{i_1}\widehat{D}_{i_2}\cdots \widehat{D}_{i_n} \in \operatorname{End}_{\mathbb{C}}(\mathbb{C}[(\mathfrak{h}_{\mathbb{X}}^*)^0])$. Then we have by the definition that

$$\widehat{D}_w = P^*_\omega \circ \left(D_{\widehat{r}_{i_1}} D_{\widehat{r}_{i_2}} \cdots D_{\widehat{r}_{i_n}} \right) \circ (P^*_\omega)^{-1}$$

Hence we see that the operator $\widehat{D}_w \in \operatorname{End}_{\mathbb{C}}(\mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0])$ defined above does not depend on the choice of the reduced expression of $w \in W^{\omega}$ as the product $D_{\widehat{r}_{i_1}} D_{\widehat{r}_{i_2}} \cdots D_{\widehat{r}_{i_n}} \in$ $\operatorname{End}_{\mathbb{C}}(\mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*])$ of the ordinary Demazure operators does not depend on the choice of the reduced expression of $\Theta^{-1}(w) = \widehat{r}_{i_1}\widehat{r}_{i_2}\cdots\widehat{r}_{i_n} \in \widehat{W}$ in the Coxeter system $(\widehat{W}, \{\widehat{r}_i \mid i \in \widehat{I}\})$.

1.5. Twining characters

Let G be a connected, simply connected semi-simple linear algebraic group over \mathbb{C} with maximal torus T and Borel subgroup $B \supset T$ such that $\operatorname{Lie}(G) = \mathfrak{g}$, $\operatorname{Lie}(T) = \mathfrak{h}$, and $\operatorname{Lie}(B) = \mathfrak{b}$. Then the character group $\Lambda = \operatorname{\mathbf{Grp}}_{\mathbb{C}}(T, GL_1)$ of T may be identified with $\mathfrak{h}_{\mathbb{Z}}^*$ by taking the differential at the identity element, i.e., by the map $\lambda \mapsto d\lambda$. For each $i \in I$ and $\lambda \in \Lambda$, we will write $\langle \lambda, \alpha_i^{\vee} \rangle = (d\lambda)(h_i)$, where $\alpha_i^{\vee} \in \operatorname{\mathbf{Grp}}_{\mathbb{C}}(GL_1, T)$ is the coroot of $\alpha_i \in \Lambda$. Let $\Lambda_+ = \{\lambda \in \Lambda \mid \langle \lambda, \alpha_i^{\vee} \rangle \geq 0 \text{ for all } i \in I\}$ be the set of dominant weights of Λ .

For each root $\alpha \in \Lambda$, let $u_{\alpha} : \mathbf{G}_a \to G$ be a morphism defining the root subgroup of G associated to α . We choose $u_{\pm \alpha_i}$ such that $(du_{\alpha_i})(1) = e_i$ and $(du_{-\alpha_i})(1) = f_i$ for each $i \in I$. There exists an automorphism of G whose differential at the identity element coincides with the diagram automorphism ω of \mathfrak{g} (cf. [Ja, II.1.13–15]). By abuse of notation, we will denote still by ω this automorphism of G and by $\langle \omega \rangle$ the cyclic subgroup (of order N) of Aut(G) generated by the ω . Thus the automorphism ω of G permutes the root subgroups in such a way that

$$\omega(u_{\pm\alpha_i}(\xi)) = u_{\pm\alpha_{\omega(i)}}(\xi) \quad \text{for all } \xi \in \mathbb{C} \text{ and } i \in I.$$

Whenever there can be ambiguity, we will write $d\omega$ for the automorphism of \mathfrak{g} .

Recall that the Weyl group $W \subset GL(\mathfrak{h}^*)$ may be identified with $N_G(T)/T$, where $N_G(T)$ is the normalizer of T in G. Each $w \in W^{\omega}$ lifts to an element of $N_G(T)$ fixed by $\omega \in \operatorname{Aut}(G)$ (cf. [Sp, 9.3]), which will be denoted by \dot{w} . We will also denote the induced

action of ω on Λ by the same letter ω , and set $\Lambda^{\omega} = \{\lambda \in \Lambda \mid \omega \cdot \lambda = \lambda\}, \Lambda^{\omega}_{+} = \Lambda^{\omega} \cap \Lambda_{+}$. Note that, under the identification $\Lambda \simeq \mathfrak{h}_{\mathbb{Z}}^* \subset \mathfrak{h}^*$, this action of ω on Λ coincides with the restriction of $((d\omega)^{-1})^* = ((d\omega)^*)^{-1}$ to $\mathfrak{h}_{\mathbb{Z}}^*$. By a $\langle \omega \rangle \ltimes G$ -module M, we will always mean a finite-dimensional rational G-module

that admits a \mathbb{C} -linear $\langle \omega \rangle$ -action such that

$$\omega \cdot (gm) = \omega(g)(\omega \cdot m)$$
 for all $g \in G, m \in M$.

Regarding the semi-direct product $\langle \omega \rangle \ltimes G$ of $\langle \omega \rangle$ and G as a linear algebraic group, this is the same as a finite-dimensional rational $\langle \omega \rangle \ltimes G$ -module. Likewise for $\langle \omega \rangle \ltimes B$ and $\langle \omega \rangle \ltimes T$ -modules. Let $\mathbb{C}[\Lambda^{\omega}]$ be the group algebra over \mathbb{C} of Λ^{ω} with basis $e(\lambda)$, $\lambda \in \Lambda^{\omega}$. Let M be a $\langle \omega \rangle \ltimes T$ -module, and let

$$M = \prod_{\lambda \in \Lambda} M_{\lambda} \quad \text{with} \quad M_{\lambda} = \{ m \in M \mid t \, m = \lambda(t) m \quad \text{for all } t \in T \}$$

be the weight space decomposition with respect to T. Now, following [FSS] and [FRS], we define the twining character $ch^{\omega}(M)$ of M to be

$$\operatorname{ch}^{\omega}(M) = \sum_{\lambda \in \Lambda^{\omega}} \operatorname{Tr}(\omega|_{M_{\lambda}}) e(\lambda) \in \mathbb{C}[\Lambda^{\omega}].$$

Remark 1.5.1. It easily follows that for each $t \in T$,

$$\operatorname{Tr}((\omega, t) ; M) = \sum_{\lambda \in \Lambda^{\omega}} \operatorname{Tr}(\omega|_{M_{\lambda}}) \lambda(t) \in \mathbb{C}$$

since $\omega \cdot M_{\lambda} = M_{\omega \cdot \lambda}$ for $\lambda \in \Lambda$. Hence the twining character $ch^{\omega}(M) \in \mathbb{C}[\Lambda^{\omega}]$ can be thought of as the trace function

$$T \ni t \mapsto \operatorname{Tr}((\omega, t) ; M) \in \mathbb{C}.$$

1.6. An example

Let $\lambda \in \Lambda^{\omega}_{+}$ and $L(\lambda)$ the simple rational G-module of highest weight λ . We can make $L(\lambda)$ into a $\langle \omega \rangle \ltimes G$ -module as follows. The G-module ${}^{\omega}L(\lambda)$ obtained from $L(\lambda)$ by twisting the G-action by ω is isomorphic to $L(\lambda)$, since ω fixes λ . If τ_{ω} is the isomorphism from ${}^{\omega}L(\lambda)$ to $L(\lambda)$, define the $\langle \omega \rangle \ltimes G$ -action on $L(\lambda)$ by

$$(\omega^r, g) \cdot v = \tau_{\omega}^{-r}(gv), \quad r \in \mathbb{Z}, \ g \in G, \ v \in L(\lambda),$$

where gv on the right-hand side is computed with respect to the original G-action (cf. [FRS]). Note that a $\langle \omega \rangle \ltimes G$ -module structure on $L(\lambda)$ such that ω fixes a highest weight vector v_{λ} of $L(\lambda)$ is unique since $L(\lambda)$ is a cyclic G-module generated by v_{λ} . Throughout the rest of this paper, by a $\langle \omega \rangle \ltimes G$ -module $L(\lambda)$ we will always mean the one defined above, i.e., such that $\omega \cdot v_{\lambda} = v_{\lambda}$.

On the other hand, for each $i \in \widehat{I}$, we have by (1),

$$(P_{\omega}^*)^{-1}(\lambda)(N_i\widehat{h}_i) = \lambda(P_{\omega}^{-1}(N_i\widehat{h}_i)) = \lambda\left(\sum_{k=0}^{N_i-1} h_{\omega^k(i)}\right) = N_i\,\lambda(h_i),$$

and hence $(P_{\omega}^*)^{-1}(\lambda)(\hat{h}_i) = \lambda(h_i)$ (which also implies that $P_{\omega}^*(\hat{\mathfrak{h}}_{\mathbb{Z}}^*) = (\mathfrak{h}_{\mathbb{Z}}^*)^0$). Thus $\hat{\lambda} = (P_{\omega}^*)^{-1}(\lambda) \in \hat{\mathfrak{h}}^*$ is dominant integral. If $\hat{L}(\hat{\lambda})$ is the simple $\hat{\mathfrak{g}}$ -module of highest weight $\hat{\lambda}$, it is shown in [FSS] and [FRS] that

$$\operatorname{ch}^{\omega}(L(\lambda)) = P_{\omega}^{*}\left(\operatorname{ch}\widehat{L}(\widehat{\lambda})\right),\tag{7}$$

where P^*_{ω} on the right-hand side is a \mathbb{C} -algebra isomorphism $\mathbb{C}[\widehat{\mathfrak{h}}^*_{\mathbb{Z}}] \xrightarrow{\sim} \mathbb{C}[(\mathfrak{h}^*_{\mathbb{Z}})^0]$ defined by

$$P^*_{\omega}(e(\widehat{\mu})) = e(P^*_{\omega}(\widehat{\mu})) \text{ for } \widehat{\mu} \in \widehat{\mathfrak{h}}^*_{\mathbb{Z}^*}$$

Assume now that $J = I_i = \{\omega^k(i) \mid 0 \le k \le N_i - 1\} \subset I$, $i \in \widehat{I}$, and let P_J be the standard parabolic subgroup of G associated to J. Let $\nu \in \Lambda^{\omega}$ with $\langle \nu, \alpha_i^{\vee} \rangle \ge 0$ (hence $\langle \nu, \alpha_j^{\vee} \rangle \ge 0$ for all $j \in J$). If $L_J(\nu)$ is the simple rational P_J -module of highest weight ν , then it remains simple as a rational module over the Levi factor L_J of P_J with the unipotent radical U_J of P_J acting trivially. We can make $L_J(\nu)$ into a $\langle \omega \rangle \ltimes P_J$ -module in the same way as $L(\lambda)$ above.

Lemma 1.6.1. With the notation and assumption as above, we have in $\mathbb{C}[\Lambda^{\omega}]$,

$$\mathrm{ch}^{\omega}(L_J(\nu)) = \widehat{D}_i(e(\nu)).$$

Proof. Let \mathfrak{g}_J be the reductive subalgebra of \mathfrak{g} generated by \mathfrak{h} and $\{e_k, f_k \mid k \in J\}$, and $\widehat{\mathfrak{g}}_J \subset \widehat{\mathfrak{g}}$ the (reductive) orbit Lie algebra of \mathfrak{g}_J . If $\widehat{\nu} = (P^*_{\omega})^{-1}(\nu) \in \widehat{\mathfrak{h}}^*_{\mathbb{Z}}$ and if $\widehat{L}_J(\widehat{\nu})$ is the simple $\widehat{\mathfrak{g}}_J$ -module with highest weight $\widehat{\nu}$, then we have

$$\operatorname{ch}^{\omega}(L_J(\nu)) = P^*_{\omega}\left(\operatorname{ch}\widehat{L}_J(\widehat{\nu})\right)$$

since the proof of (7) in [FRS] goes through also for the reductive subalgebra \mathfrak{g}_J of \mathfrak{g} . Moreover, because the (reductive) orbit Lie algebra $\widehat{\mathfrak{g}}_J$ is of type A_1 and $\widehat{\nu}(\widehat{h}_i) = \nu(h_i) \in \mathbb{Z}_{\geq 0}$, we deduce that

$$P_{\omega}^{*}(\operatorname{ch}\widehat{L}_{J}(\widehat{\nu})) = P_{\omega}^{*}\left(e(\widehat{\nu}) + e(\widehat{\nu} - \widehat{\alpha}_{i}) + \dots + e(\widehat{r}_{i}(\widehat{\nu}))\right)$$
$$= P_{\omega}^{*}\left(D_{\widehat{r}_{i}}(e(\widehat{\nu}))\right)$$
$$= \widehat{D}_{i}\left(P_{\omega}^{*}(e(\widehat{\nu}))\right) \quad \text{by (6)}$$
$$= \widehat{D}_{i}(e(\nu)).$$

This proves the lemma.

2. The Demazure-Hansen desingularizations revisited

In this section we elaborate on the $\langle \omega \rangle \ltimes B$ -equivariant Demazure-Hansen desingularizations of the $\langle \omega \rangle$ -invariant Schubert varieties and the $\langle \omega \rangle \ltimes B$ -equivariant sheaves on these varieties. For that we will desingularize the Schubert variety $X(w), w \in W^{\omega}$, by a Bott-Samelson variety $X(w_{i_1}, \ldots, w_{i_r})$ along the reduced decomposition of w in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \hat{I}\})$, and set up $\langle \omega \rangle \ltimes B$ -equivariant Leray spectral sequences. We will also verify a $\langle \omega \rangle \ltimes B$ -equivariant Serre duality. These will be our main tool to compute the twining character of the Demazure modules.

2.1. The Schubert and the Bott-Samelson varieties

For each $w \in W$, let X(w) be the Zariski closure of an affine quotient $B\dot{w}B/B$ (called a Bruhat cell) in the flag variety G/B. If $y_1, \ldots, y_n \in W$, let $X(y_1, \ldots, y_n) = \{(g_1B, \ldots, g_nB) \in (G/B)^n \mid g_{i-1}^{-1}g_i \in \overline{B\dot{y}_iB} \text{ for all } i\}$, called a Bott-Samelson variety. If M is a B-module, regard M as a B^n -module via the n-th projection $B^n \to B$ and define an $\mathcal{O}_{X(y_1,\ldots,y_n)}$ -module $\mathcal{L}(M) = \mathcal{L}_{X(y_1,\ldots,y_n)}(M)$ by setting on each open set V of $X(y_1,\ldots,y_n)$

$$\Gamma(V, \mathcal{L}(M)) = \operatorname{Var}(q^{-1}(V), M)^B$$

= { $f \in \operatorname{Var}(q^{-1}(V), M) \mid f(xb) = b^{-1}f(x)$ in M for each $x \in q^{-1}(V)$ and $b \in B$ }

where $q: \{(g_1, \ldots, g_n) \in G^n \mid g_{i-1}^{-1}g_i \in \overline{B\dot{y}_iB} \text{ for all } i\} \to X(y_1, \ldots, y_n) \text{ is the quotient.}$

If $J \subseteq I$, let P_J be the standard parabolic subgroup of G associated to J, and let z_J be the longest element of the Weyl group W_J of P_J . Then $X(z_J) = P_J/B$ is smooth, and hence also $X(z_{J_1}, \ldots, z_{J_n})$ is smooth for subsets $J_1, \ldots, J_n \subset I$ (cf. [Ja, II.13.5–6]). Due to Andersen, Ramanan-Ramanathan, and Seshadri (cf. [Ja, II.14.15.a)]), the Schubert variety $X(z_{J_1} \cdots z_{J_n})$ is normal. Put for simplicity $z_i = z_{J_i}$ for $1 \leq i \leq n$, $z = z_1 \cdots z_n$, and $X = X(z_1, \ldots, z_n)$.

Lemma 2.1.1. For each $i \in [0,n]$, let $X_i = X(z_1,\ldots,z_i)$ and $_iX = X(z_{i+1},\ldots,z_n)$ with $X_0 = X(1) = _nX$. If M is a B-module with $H^j(X(z_i), \mathcal{L}_{X(z_i)}(H^0(_iX, \mathcal{L}_{iX}(M)))) = 0$ for all $i \in [1, n]$ and $j \ge 1$, then $H^j(X, \mathcal{L}_X(M)) = 0$ for all $j \ge 1$.

Proof. Define $\pi_{ij} \in \mathbf{Var}(X_j, X_i)$ for each i, j with $0 \le i < j \le n$ by

$$(g_1B,\ldots,g_iB,g_{i+1}B,\ldots,g_jB)\mapsto (g_1B,\ldots,g_iB).$$

Thus $\pi_{i_1,i_2} \circ \pi_{i_2,i_3} = \pi_{i_1,i_3} : X_{i_3} \to X_{i_1}$ if $0 \le i_1 < i_2 < i_3 \le n$. Put $_iM = H^0(_iX, \mathcal{L}_iX(M))$ for each $i \in [0, n]$. By the hypothesis and by [Ja, II.14.1(4)] we have

$$R^{j}(\pi_{i-1,i})_{*}\mathcal{L}_{X_{i}}(_{i}M) \simeq \mathcal{L}_{X_{i-1}}(H^{j}(X(z_{i}),\mathcal{L}_{X(z_{i})}(_{i}M))) = 0 \quad \text{for all } j \ge 1,$$

hence the Leray spectral sequence $H^k(X_{i-1}, R^j(\pi_{i-1,i})_*\mathcal{L}_{X_i}(iM)) \Rightarrow H^{k+j}(X_i, \mathcal{L}_{X_i}(iM))$ degenerates to yield

$$H^j(X_{i-1}, (\pi_{i-1,i})_* \mathcal{L}_{X_i}(iM)) \simeq H^j(X_i, \mathcal{L}_{X_i}(iM))$$

Since $\mathcal{L}_{X_i}(M) \simeq (\pi_{in})_* \mathcal{L}_X(M)$ again by [Ja, II.14.1(4)], we obtain further

$$H^{j}(X_{i},(\pi_{in})_{*}\mathcal{L}_{X}(M)) \simeq H^{j}(X_{i-1},(\pi_{i-1,i})_{*}\mathcal{L}_{X_{i}}(iM)) \simeq H^{j}(X_{i-1},(\pi_{i-1,n})_{*}\mathcal{L}_{X}(M)),$$

and hence

$$H^{j}(X, \mathcal{L}_{X}(M)) \simeq H^{j}(X_{n-1}, (\pi_{n-1,n})_{*}\mathcal{L}_{X}(M)) \simeq H^{j}(X_{0}, (\pi_{0n})_{*}\mathcal{L}_{X}(M)).$$

The last term vanishes for all $j \ge 1$ by the Grothendieck vanishing theorem since $X_0 = X(1)$ is a point. This proves the lemma.

2.2. Cohomology vanishing

Keep the notation of §2.1, but assume that $\ell(z) = \ell(z_1) + \cdots + \ell(z_n)$. Let $\phi: X \to X(z)$ be the restriction to X of the *n*-th projection $(G/B)^n \to G/B$, which is a Demazure-Hansen desingularization of X(z) (cf. [Ja, II.13.5(7),(8)]). As the Schubert variety X(z) is normal, it follows from [Ja, II.14.5] that

$$\phi_* \mathcal{O}_X \simeq \mathcal{O}_{X(z)}.\tag{8}$$

Let M be a finite-dimensional B-module. We have from [Ja, Remark in I.5.17] that

$$\phi^* \mathcal{L}_{X(z)}(M) \simeq \mathcal{L}_X(M). \tag{9}$$

The sheaf $\mathcal{L}_{X(z)}(M)$ of $\mathcal{O}_{X(z)}$ -modules is locally free of finite rank (cf. [Ja, I.5.16(2)]), and hence

$$R^{\bullet}\phi_{*}\mathcal{L}_{X}(M) \simeq R^{\bullet}\phi_{*}(\phi^{*}\mathcal{L}_{X(z)}(M)) \quad \text{by (9)}$$

$$\simeq (R^{\bullet}\phi_{*}\mathcal{O}_{X}) \otimes_{X(z)} \mathcal{L}_{X(z)}(M) \quad \text{by the projection formula [Ja, II.14.6(2)]}.$$

In particular, we obtain that

$$\phi_* \mathcal{L}_X(M) \simeq (\phi_* \mathcal{O}_X) \otimes_{X(z)} \mathcal{L}_{X(z)}(M)$$

$$\simeq \mathcal{L}_{X(z)}(M) \quad \text{by (8).}$$
(10)

Taking the global sections of these yields

$$H^0(X, \mathcal{L}_X(M)) \simeq H^0(X(z), \mathcal{L}_{X(z)}(M)), \tag{11}$$

which is finite-dimensional over \mathbb{C} by Serre's theorem.

For $\lambda \in \Lambda$, we let \mathbb{C}_{λ} denote the one-dimensional *B*-module over \mathbb{C} on which *B* acts via λ through the quotient $B \to T$. Note that if $\lambda \in \Lambda^{\omega}$, then by letting $\langle \omega \rangle$ act trivially on \mathbb{C}_{λ} we have $\omega \cdot (bv) = bv = \omega(b)v = \omega(b)(\omega \cdot v)$ on \mathbb{C}_{λ} for each $b \in B$ and $v \in \mathbb{C}_{\lambda}$. Now [Ja, II.14.15] generalizes as follows.

Theorem 2.2.1. Let $z = z_1 \cdots z_n$ with $\ell(z) = \ell(z_1) + \cdots + \ell(z_n)$ and $X = X(z_1, \dots, z_n)$. (i) $R^j \phi_* \mathcal{O}_X = 0$ for all $j \ge 1$.

- (ii) If $\lambda \in \Lambda_+$, then $H^j(X, \mathcal{L}_X(\mathbb{C}_\lambda)) = 0$ for all $j \ge 1$.
- (iii) If \mathcal{M} is a locally free $\mathcal{O}_{X(z)}$ -module of finite rank, then we have $H^{\bullet}(X(z), \mathcal{M}) \simeq H^{\bullet}(X, \phi^* \mathcal{M})$.

Proof. We will argue only for (ii). The rest follow just as in [Ja, II.14.15]. By Lemma 2.1.1 we have only to check that all $H^j(X(z_i), \mathcal{L}(H^0(_iX, \mathcal{L}(\mathbb{C}_{\lambda}))))$ vanish for $i \in [1, n]$ and $j \geq 1$. We will suppress the obvious subscript from \mathcal{L} . Let $z_i = r_{i(1)} \cdots r_{i(a)}$ (resp. $z_{i+1} \cdots z_n = r_{i(a+1)} \cdots r_{i(b)}$) be a reduced expression of z_i (resp. $z_{i+1} \cdots z_n$) in the Coxeter system $(W, \{r_k \mid k \in I\})$. If $\phi_i : X(r_{i(1)}, \ldots, r_{i(a)}) \to X(z_i)$ is the desingularization, then

$$H^{j}(X(z_{i}), \mathcal{L}(H^{0}(_{i}X, \mathcal{L}(\mathbb{C}_{\lambda})))) \simeq H^{j}(X(z_{i}), \mathcal{L}(H^{0}(X(z_{i+1}\cdots z_{n}), \mathcal{L}(\mathbb{C}_{\lambda})))) \quad \text{by (11)}$$

$$\simeq H^{j}(X(r_{i(1)}, \dots, r_{i(a)}), \phi_{i}^{*}\mathcal{L}(H^{0}(X(z_{i+1}\cdots z_{n}), \mathcal{L}(\mathbb{C}_{\lambda})))) \quad \text{by [Ja, II.14.15.c)]}$$

$$\simeq H^{j}(X(r_{i(1)}, \dots, r_{i(a)}), \mathcal{L}(H^{0}(X(z_{i+1}\cdots z_{n}), \mathcal{L}(\mathbb{C}_{\lambda})))) \quad \text{by (9)}$$

$$\simeq H^{j}(X(r_{i(1)}, \dots, r_{i(a)}), \mathcal{L}(H^{0}(X(r_{i(a+1)}, \dots, r_{i(b)}), \mathcal{L}(\mathbb{C}_{\lambda})))) \quad \text{by (11) again}$$

$$\simeq H^{j}(X(r_{i(1)}, \dots, r_{i(a)}), (\pi_{ab})_{*}\mathcal{L}_{X(r_{i(1)}, \dots, r_{i(b)})}(\mathbb{C}_{\lambda})) \quad \text{by [Ja, II.14.1(4)],}$$

the last term of which belongs to the setup of [Ja, II.14.15], and hence vanishes for all $j \ge 1$.

Going back to the setup of §1, let $w = w_{i_1} \cdots w_{i_n}$ be a reduced expression of $w \in W^{\omega}$ in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$. Since $\ell(w) = \ell(w_{i_1}) + \cdots + \ell(w_{i_n})$ by Lemma 1.3.1, we obtain

Corollary 2.2.2. If M is a finite-dimensional rational B-module, then

$$H^{\bullet}(X(w),\mathcal{L}_{X(w)}(M)) \simeq H^{\bullet}(X(w_{i_1},\ldots,w_{i_n}),\mathcal{L}_{X(w_{i_1},\ldots,w_{i_n})}(M)).$$

2.3. $\langle \omega \rangle \ltimes B$ -equivariant spectral sequences

If M is a $\langle \omega \rangle \ltimes B$ -module, then $\mathcal{L}(M) = \mathcal{L}_{G/B}(M)$ carries a structure of $\langle \omega \rangle$ -equivariant $\mathcal{O}_{G/B}$ -module given by $\theta_{\omega} \in \mathbf{Mod}_{G/B}(\mathcal{L}(M), \omega_*\mathcal{L}(M))$ such that

$$f \mapsto \omega^{-1} \circ f \circ \omega, \quad f \in \mathcal{L}(M)(V) = \mathbf{Var}(q^{-1}(V), M)^B$$
 (12)

for each open V of G/B, where $q: G \to G/B$ is the quotient. On the other hand, $\mathcal{L}(M)$ has the standard G-equivariant structure $\psi \in \mathbf{Mod}_{G \times G/B}(a^*\mathcal{L}(M), p^*\mathcal{L}(M))$, where $a: G \times G/B \to G/B$ is the G-action on G/B given by the multiplication from the left and $p: G \times G/B \to G/B$ is the projection. If $\psi' \in \mathbf{Mod}_{G/B}(\mathcal{L}(M), a_*p^*\mathcal{L}(M))$ is the adjoint of ψ , the two structures are intertwined by the commutative diagram

$$\begin{array}{cccc} \mathcal{L}(M) & & \psi' & & & a_*p^*\mathcal{L}(M) = & a_*(\mathcal{O}_G \boxtimes_{\mathbb{C}} \mathcal{L}(M)) \\ & & & & \downarrow & & \\ \theta_{\omega} & & & \downarrow & & \downarrow \\ \phi_{\omega_*}(M) & & & \downarrow & a_*(\omega^{\#} \boxtimes_{\mathbb{C}} \theta_{\omega}) \\ & & & & \omega_*\mathcal{L}(M) \xrightarrow{} & \omega_* \omega_* p^*\mathcal{L}(M) \xrightarrow{} & a_*(\omega \times \omega)_* p^*\mathcal{L}(M) \xrightarrow{} & a_*(\omega_*\mathcal{O}_G \boxtimes_{\mathbb{C}} \omega_*\mathcal{L}(M)). \end{array}$$

Thus, regarding $\langle \omega \rangle$ as a reduced algebraic group over \mathbb{C} and forming a semi-direct product $\langle \omega \rangle \ltimes G$ of algebraic groups, $\mathcal{L}(M)$ comes equipped with a structure of $\langle \omega \rangle \ltimes G$ -equivariant $\mathcal{O}_{G/B}$ -module (cf. [MFK, 1.3]).

Now let $w \in W^{\omega}$ and let $w = w_{i_1} \cdots w_{i_n}$ be a reduced expression in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$. Put for simplicity $z_j = w_{i_j}, 1 \leq j \leq n$. By Lemma 1.3.1 we have $\ell(w) = \ell(z_1) + \cdots + \ell(z_n)$, so that we may apply the results of §2.2. By our choice of a lift of each z_j in $N_G(T)^{\omega}$, the Bott-Samelson variety $X = X(z_1, \ldots, z_n)$ admits a $\langle \omega \rangle$ -action, and the desingularization $\phi \colon X(z_1, \ldots, z_n) \to X(w)$ is $\langle \omega \rangle \ltimes B$ -equivariant. Let M be a $\langle \omega \rangle \ltimes B$ -module. Then the isomorphisms $\phi^* \mathcal{L}_{X(w)}(M) \simeq \mathcal{L}_X(M)$ from (9) and $\phi_* \mathcal{L}_X(M) \simeq \mathcal{L}_{X(w)}(M)$ from (10) are both $\langle \omega \rangle \ltimes B$ -equivariant. By the $\langle \omega \rangle \ltimes B$ equivariance of the Leray spectral sequence induced by ϕ , the isomorphism of Corollary 2.2.2

$$H^{\bullet}(X(w), \mathcal{L}_{X(w)}(M)) \simeq H^{\bullet}(X(z_1, \dots, z_n), \mathcal{L}_{X(z_1, \dots, z_n)}(M))$$
(13)

is $\langle \omega \rangle \ltimes B$ -equivariant.

If $\pi_1 : X(z_1, \ldots, z_n) \to X(z_1)$ is the projection onto the first factor, since π_1 is $\langle \omega \rangle \ltimes B$ -equivariant, the Leray spectral sequence

$$H^{i}(X(z_{1}), R^{j}\pi_{1*}\mathcal{L}_{X(z_{1},...,z_{n})}(M)) \Rightarrow H^{i+j}(X(z_{1},...,z_{n}), \mathcal{L}_{X(z_{1},...,z_{n})}(M))$$
(14)

is $\langle \omega \rangle \ltimes B$ -equivariant. Also, if we make $\mathcal{L}_{X(z_1)}(H^0(X(z_2,\ldots,z_n),\mathcal{L}_{X(z_2,\ldots,z_n)}(M)))$ into a $\langle \omega \rangle \ltimes B$ -equivariant sheaf as in (12) by using the $\langle \omega \rangle \ltimes B$ -module structure on $H^0(X(z_2,\ldots,z_n),\mathcal{L}_{X(z_2,\ldots,z_n)}(M))$, then the isomorphism (cf. [Ja, II.14.1(4)])

$$\mathcal{L}_{X(z_1)}(H^0(X(z_2,\ldots,z_n),\mathcal{L}_{X(z_2,\ldots,z_n)}(M))) \simeq \pi_{1*}\mathcal{L}_{X(z_1,\ldots,z_n)}(M)$$
(15)

is $\langle \omega \rangle \ltimes B$ -equivariant via the correspondence

$$f \mapsto \hat{f} \quad \text{with} \quad \hat{f}(x, y) = f(x)(y),$$
(16)

where $f \in \mathbf{Var}(q^{-1}(V), H^0(X(z_2, \ldots, z_n), \mathcal{L}_{X(z_2, \ldots, z_n)}(M)))^B$ with $q: P_{I_{i_1}}(\mathbb{C}) \to X(z_1)$ the quotient and V an open of $X(z_1)$, and $\tilde{f} \in \mathbf{Var}(q^{-1}(V) \times_{\mathbb{C}} V(z_2, \ldots, z_n), M)^{B \times_{\mathbb{C}} B^{r-1}}$ with $V(z_2, \ldots, z_n) = \{(g_2, \ldots, g_n) \in G^{n-1} \mid g_{i-1}^{-1}g_i \in B\dot{z}_i B$ for all $i\}$. Taking the derived functors, we obtain a $\langle \omega \rangle \ltimes B$ -equivariant isomorphism

$$R^{\bullet}\pi_{1*}\mathcal{L}_{X(z_1,\ldots,z_n)}(M) \simeq \mathcal{L}_{X(z_1)}(H^{\bullet}(X(z_2,\ldots,z_n),\mathcal{L}_{X(z_2,\ldots,z_n)}(M))),$$

and hence a $\langle \omega \rangle \ltimes B$ -equivariant spectral sequence

$$H^{i}(X(z_{1}), \mathcal{L}(H^{j}(X(z_{2}, \ldots, z_{n}), \mathcal{L}(M)))) \Rightarrow H^{i+j}(X(z_{1}, \ldots, z_{n}), \mathcal{L}(M)).$$
(17)

2.4. $\langle \omega \rangle \ltimes B$ -equivaraint Serre duality

Now let $P = P_J$ be a standard parabolic subgroup of G with J an ω -invariant subset of I. Let $\Omega^1_{P/B}$ be the $\mathcal{O}_{P/B}$ -module of the 1-differentials over \mathbb{C} and $\Omega^n_{P/B} = \bigwedge^n_{P/B} \Omega^1_{P/B}$ with $n = \dim_{\mathbb{C}}(P/B)$. The $\langle \omega \rangle \ltimes P$ -action on P/B makes $\Omega^n_{P/B}$ into a $\langle \omega \rangle \ltimes P$ -equivariant, a fortiori, $\langle \omega \rangle \ltimes B$ -equivariant $\mathcal{O}_{P/B}$ -module. If \mathcal{M} is a $\langle \omega \rangle \ltimes B$ -equivariant $\mathcal{O}_{P/B}$ -module that is locally free of finite rank over $\mathcal{O}_{P/B}$, we will need a $\langle \omega \rangle \ltimes B$ -equivariant Serre duality

$$H^{i}(P/B, \mathcal{M}^{\vee} \otimes_{P/B} \Omega^{n}_{P/B}) \simeq H^{n-i}(P/B, \mathcal{M})^{*} \quad \text{for all } i \in [0, n],$$
(18)

where $\mathcal{M}^{\vee} = \mathcal{M}od_{P/B}(\mathcal{M}, \mathcal{O}_{P/B})$ and $H^{n-i}(P/B, \mathcal{M})^*$ is the dual $\langle \omega \rangle \ltimes B$ -module of $H^{n-i}(P/B, \mathcal{M})$.

Put for simplicity X = P/B. The plain (nonequivariant) Serre duality asserts that the Yoneda-Cartier pairing (cf. [AK, IV, Th. (1.1)], [Iv, I.8])

$$\operatorname{Ext}_X^i(\mathcal{M},\Omega_X^n) \times H^{n-i}(X,\mathcal{M}) \to H^n(X,\Omega_X^n)$$

is perfect. The standard argument verifies the pairing to be $\langle \omega \rangle \ltimes B$ -equivariant, which yields a $\langle \omega \rangle \ltimes B$ -equivariant isomorphism $H^{n-i}(X, \mathcal{M}) \simeq H^i(X, \mathcal{M}^{\vee} \otimes_X \Omega_X^n)^* \otimes_{\mathbb{C}} H^n(X, \Omega_X^n)$. Thus the $\langle \omega \rangle \ltimes B$ -equivariance of (18) will be a consequence of the triviality of the $\langle \omega \rangle \ltimes B$ -action on $H^n(X, \Omega_X^n)$. Note that the ω -action on Ω_X^n is not trivial (cf. (19) and (27) below).

To see the triviality of the action on $H^n(X, \Omega^n_X)$, take a $\langle \omega \rangle \ltimes P$ -module V and a $\langle \omega \rangle \ltimes P$ -equivariant closed immersion $i: X \to \mathbb{P}(V)$; for example, a simple rational P-module of a sufficiently dominant ω -fixed highest weight will do. Set $\mathbb{P} = \mathbb{P}(V)$, $v = \dim_{\mathbb{C}} \mathbb{P}$, and $\Omega^v_{\mathbb{P}} = \bigwedge^v_{\mathbb{P}} \Omega^1_{\mathbb{P}}$. Since $\operatorname{Var}(\mathbb{P}, \mathbb{P})^{\times} \simeq PGL(V)$ (cf. [Ha, II, Example

7.1]) and since $H^{v}(\mathbb{P}, \Omega_{\mathbb{P}}^{v})$ is one-dimensional, PGL(V) acts trivially on $H^{v}(\mathbb{P}, \Omega_{\mathbb{P}}^{v})$, so therefore does $\langle \omega \rangle \ltimes P$. On the other hand, the isomorphism of \mathcal{O}_{X} -modules (cf. [AK, I, Th. (4.6)])

$$\Omega^n_X \simeq i^* \mathcal{E}xt^r_{\mathbb{P}}(i_* \mathcal{O}_X, \Omega^v_{\mathbb{P}}) \quad \text{with } r = v - n$$

is $\langle \omega \rangle \ltimes P$ -equivariant, and the \mathbb{C} -linear isomorphism (cf. [Ha, III, Lemma 7.4])

$$\varepsilon \colon \mathbf{Mod}_X(\Omega^n_X, \imath^* \mathcal{E}xt^r_{\mathbb{P}}(\imath_* \mathcal{O}_X, \Omega^v_{\mathbb{P}})) \to \mathrm{Ext}^r_{\mathbb{P}}(\imath_* \Omega^n_X, \Omega^v_{\mathbb{P}})$$

is $\langle \omega \rangle \ltimes P$ -equivariant. In the commutative diagram

we have $\dim_{\mathbb{C}} H^{v}(\mathbb{P}, \Omega_{\mathbb{P}}^{v}) = 1 = \dim_{\mathbb{C}} H^{n}(\mathbb{P}, i_{*}\Omega_{X}^{n})$ and the top horizontal map is a perfect pairing, hence the right vertical map is bijective. Since $\mathrm{id}_{\Omega_{X}^{n}}$ is obviously $\langle \omega \rangle \ltimes P$ -equivariant, its image in $\mathrm{Ext}_{\mathbb{P}}^{r}(i_{*}\Omega_{X}^{n}, \Omega_{\mathbb{P}}^{v})$ is fixed under $\langle \omega \rangle \ltimes P$, and hence the right vertical isomorphism is $\langle \omega \rangle \ltimes P$ -equivariant. It follows that $H^{n}(X, \Omega_{X}^{n}) \simeq H^{n}(\mathbb{P}, i_{*}\Omega_{X}^{n})$ must be a trivial $\langle \omega \rangle \ltimes P$ -module, as desired.

Note finally that we have an isomorphism of $\langle \omega \rangle \ltimes P$ -equivariant $\mathcal{O}_{P/B}$ -modules

$$\Omega^1_{P/B} \simeq \mathcal{L}_{P/B}((\operatorname{Lie}(P)/\operatorname{Lie}(B))^*), \tag{19}$$

and hence the $\langle \omega \rangle \ltimes B$ -equivariant Serre duality (18) reads, for each $i \in [0, n]$, as

$$H^{i}(P/B, \mathcal{M}^{\vee} \otimes_{P/B} \mathcal{L}_{P/B}(\bigwedge_{\mathbb{C}}^{n}(\operatorname{Lie}(P)/\operatorname{Lie}(B))^{*})) \simeq H^{n-i}(P/B, \mathcal{M})^{*}.$$
 (20)

3. Twining character formula for Demazure modules

Resume the setup of §2. Fix $w \in W^{\omega}$ and let X(w) be the associated Schubert variety over \mathbb{C} . For a $\langle \omega \rangle \ltimes B$ -module M, the ω -Euler characteristic $\chi^{\omega}_{w}(M)$ is defined to be

$$\chi_w^{\omega}(M) = \sum_{j \ge 0} (-1)^j \operatorname{ch}^{\omega}(H^j(X(w), \mathcal{L}_{X(w)}(M))) \in \mathbb{C}[\Lambda^{\omega}]$$

Let $w = w_{i_1} \cdots w_{i_n}$ be a reduced expression of $w \in W^{\omega}$ in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$. We will show in this section that

$$\chi_w^{\omega}(M) = \widehat{D}_{i_1} \cdots \widehat{D}_{i_n}(\operatorname{ch}^{\omega}(M)),$$

where \widehat{D}_j for $j = i_1, \ldots, i_n$ is the ω -Demazure operator defined in §1.4. In particular, we will obtain a twining character formula of the Demazure module $H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))$ for $\lambda \in \Lambda^{\omega}_+$, where \mathbb{C}_{λ} is the one-dimensional $\langle \omega \rangle \ltimes B$ -module on which B acts by the weight λ through the quotient $B \to T$ and $\langle \omega \rangle$ trivially.

3.1. Formula for the ω -Euler characteristics

Set $\widehat{D}_w = \widehat{D}_{i_1} \cdots \widehat{D}_{i_n}$. Then we are to show

$$\chi_w^{\omega}(M) = D_w(\operatorname{ch}^{\omega}(M)). \tag{21}$$

Let us first make some reductions. Since both sides of (21) are additive in M, replacing M by $M^U = \{m \in M \mid u m = m \text{ for all } u \in U\}$, we may assume that the unipotent radical U of the Borel subgroup $B = T \ltimes U$ acts trivially on M. Consider the T-weight space decomposition $M = \coprod_{\nu \in \Lambda} M_{\nu}$. Let us denote by $\Lambda/\langle \omega \rangle$ a complete set of representatives of the $\langle \omega \rangle$ -orbits in Λ , and set for each $\mu \in \Lambda/\langle \omega \rangle$,

$$M^{(\mu)} = \coprod_{\nu \in \langle \omega \rangle \cdot \mu} M_{\nu}$$

Then we have a direct sum decomposition of ${\cal M}$

$$M = \coprod_{\mu \in \Lambda / \langle \omega \rangle} M^{(\mu)}$$

Note that each $M^{(\mu)}$ is a $\langle \omega \rangle \ltimes B$ -submodule of M, and that both sides of (21) vanish on $M^{(\mu)}$ unless $\mu \in \Lambda^{\omega}$ (in which case $M^{(\mu)} = M_{\mu}$). Moreover, since $\omega^N = 1$, the action of ω on M_{μ} for $\mu \in \Lambda^{\omega}$ is semi-simple. Hence, by the additivity in M of both sides of (21), we may assume that M is one-dimensional of weight $\mu \in \Lambda^{\omega}$ on which ω is acting by a scalar ζ^k for a primitive N-th root of unity ζ in \mathbb{C} and $k \in \mathbb{Z}$. We will denote such M by $\mathbb{C}_{\mu,k}$. Thus we are reduced to showing that

$$\chi_w^{\omega}(\mathbb{C}_{\mu,k}) = \widehat{D}_w(\mathrm{ch}^{\omega}(\mathbb{C}_{\mu,k})), \qquad (22)$$

where $\operatorname{ch}^{\omega}(\mathbb{C}_{\mu,k}) = \zeta^k e(\mu).$

Put for simplicity $z_j = w_{i_j}$, $1 \le j \le n$. From §2.3 we have an isomorphism (13) of $\langle \omega \rangle \ltimes B$ -modules

$$H^{\bullet}(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\mu,k})) \simeq H^{\bullet}(X(z_1, \dots, z_n), \mathcal{L}_{X(z_1, \dots, z_n)}(\mathbb{C}_{\mu,k})),$$
(23)
and for each $s \in [1, n-1]$, a $\langle \omega \rangle \ltimes B$ -equivariant spectral sequence (17)

 $H^{i}(X(z_{s}), \mathcal{L}(H^{j}(X(z_{s+1}, \dots, z_{n}), \mathcal{L}(\mathbb{C}_{\mu,k})))) \Rightarrow H^{i+j}(X(z_{s}, \dots, z_{n}), \mathcal{L}(\mathbb{C}_{\mu,k})).$ (24) It follows that

$$\chi_{w}^{\omega}(\mathbb{C}_{\mu,k}) = \sum_{j\geq 0}^{\infty} (-1)^{j} \operatorname{ch}^{\omega}(H^{j}(X(z_{1},\ldots,z_{n}),\mathcal{L}_{X(z_{1},\ldots,z_{n})}(\mathbb{C}_{\mu,k}))) \quad \text{by (23)}$$

$$= \sum_{j\geq 0}^{\infty} (-1)^{j} \left(\sum_{i\geq 0}^{\infty} (-1)^{i} \operatorname{ch}^{\omega}(H^{i}(X(z_{1}),\mathcal{L}(H^{j}(X(z_{2},\ldots,z_{n}),\mathcal{L}(\mathbb{C}_{\mu,k}))))) \right) \quad \text{by (24)}$$

$$= \sum_{j\geq 0}^{\infty} (-1)^{j} \chi_{z_{1}}^{\omega}(H^{j}(X(z_{2},\ldots,z_{n}),\mathcal{L}_{X(z_{2},\ldots,z_{n})}(\mathbb{C}_{\mu,k}))). \quad (25)$$

We will prove (22) by induction on n. Now assume that n = 1 and that $w = w_i$ for some $i \in \hat{I}$. So put $J = I_i$ and let $P = P_J$ be the standard parabolic subgroup of Gassociated to J. We are to show

$$\chi_{w_i}^{\omega}(\mathbb{C}_{\mu,k}) = \widehat{D}_i(\zeta^k e(\mu)).$$
(26)

Assume first that $\langle \mu, \alpha_i^{\vee} \rangle \geq 0$ (and hence that $\langle \mu, \alpha_k^{\vee} \rangle \geq 0$ for all $k \in J$). Let $L_J(\mu)$ be the simple rational P_J -module of highest weight μ admitting a $\langle \omega \rangle$ -action as in §1.6, and let ζ^k be the one-dimensional trivial P_J -module with ω acting by the scalar ζ^k .

Lemma 3.1.1. Let the notation and assumption be as above. Then we have the following isomorphism of $\langle \omega \rangle \ltimes P_J$ -modules.

$$H^0(P_J/B, \mathcal{L}_{P_J/B}(\mathbb{C}_{\mu,k})) \simeq L_J(\mu) \otimes_{\mathbb{C}} \zeta^k.$$

Proof. The left-hand side realizes a simple rational P_J -module of highest weight μ (cf. [Ja, I.6.11 and II.4.6]). Since ω acts on its (nonzero) highest weight vector by the scalar ζ^k (cf. [Ja, II.2.6]), the assertion follows.

Now we deduce that

$$\chi_{w_i}^{\omega}(\mathbb{C}_{\mu,k}) = \operatorname{ch}^{\omega}(H^0(P/B, \mathcal{L}_{P/B}(\mathbb{C}_{\mu,k}))) \quad \text{by Kempf's vanishing theorem [Ja, II.4.5]}$$
$$= \operatorname{ch}^{\omega}(L_J(\mu) \otimes_{\mathbb{C}} \zeta^k) \quad \text{by Lemma 3.1.1}$$
$$= \zeta^k \operatorname{ch}^{\omega}(L_J(\mu))$$
$$= \zeta^k \widehat{D}_i(e(\mu)) \quad \text{by Lemma 1.6.1}$$
$$= \widehat{D}_i(\zeta^k e(\mu)).$$

If $\langle \mu, \alpha_i^{\vee} \rangle = -1$ (and hence $\langle \mu, \alpha_k^{\vee} \rangle = -1$ for all $k \in J$), then both sides of (26) vanish (cf. [Ja, II.5.5]).

Assume finally that $\langle \mu, \alpha_i^{\vee} \rangle \leq -2$ (and hence that $\langle \mu, \alpha_k^{\vee} \rangle \leq -2$ for all $k \in J$). Set $\rho_J = \frac{1}{2} \sum_{\alpha \in \Delta_J^+} \alpha$ with $\Delta_J^+ = \Delta_+ \cap \sum_{k \in J} \mathbb{Z} \alpha_k$ the positive root system of P_J . By direct checking (see the proof of [N3, Prop. 3.2.2]), using the $\langle \omega \rangle \ltimes T$ -module isomorphism $(\text{Lie}(P)/\text{Lie}(B))^* \simeq \bigoplus_{\alpha \in \Delta_+^+} \mathbb{C} f_{\alpha}$, we see that as $\langle \omega \rangle \ltimes B$ -modules,

$$\bigwedge_{\mathbb{C}}^{\ell(w_i)}(\operatorname{Lie}(P)/\operatorname{Lie}(B))^* \simeq \mathbb{C}_{-2\rho_J,0} \otimes_{\mathbb{C}} (-1)^{\ell(w_i)-1},$$
(27)

where $\ell(w_i) = \dim_{\mathbb{C}}(P/B)$ and $(-1)^{\ell(w_i)-1}$ is the one-dimensional $\langle \omega \rangle \ltimes B$ -module with B acting trivially and ω by the scalar $(-1)^{\ell(w_i)-1}$. Then the $\langle \omega \rangle \ltimes B$ -equivariant Serre duality (20) reads

$$H^{j}(P/B, \mathcal{L}_{P/B}(\mathbb{C}_{\mu,k}))^{*} \simeq H^{\ell(w_{i})-j}(P/B, \mathcal{L}_{P/B}(\mathbb{C}_{-\mu-2\rho_{J},-k} \otimes_{\mathbb{C}} (-1)^{\ell(w_{i})-1}))$$

$$\simeq \begin{cases} H^{0}(P/B, \mathcal{L}_{P/B}(\mathbb{C}_{-\mu-2\rho_{J},-k})) \otimes_{\mathbb{C}} (-1)^{\ell(w_{i})-1} & \text{if } j = \ell(w_{i}), \\ 0 & \text{otherwise (by Kempf).} \end{cases}$$

$$(28)$$

Lemma 3.1.2. Let J be an ω -invariant subset of I, w_J the longest element of the Weyl group W_J of P_J , and let $\nu \in \Lambda^{\omega}$ be such that $\langle \nu, \alpha_k^{\vee} \rangle \geq 0$ for all $k \in J$. Then we have the following isomorphism of $\langle \omega \rangle \ltimes P_J$ -modules.

$$L_J(\nu)^* \simeq L_J(-w_J(\nu)).$$

Proof. Note that a (nonzero) highest weight vector v_{+}^{*} of the dual module $L_{J}(\nu)^{*}$ is the dual element of a lowest weight vector $\dot{w}_{J} v_{+}$ of $L_{J}(\nu)$, with v_{+} a (nonzero) highest weight vector of $L_{J}(\nu)$. Since $w_{J} \in W^{\omega}$ is fixed by ω (cf. Remark 1.3.2), so is $\dot{w}_{J} v_{+}$, and hence also $v_{+}^{*} \in L_{J}(\nu)^{*}$. This proves the lemma.

The isomorphism (28) together with Lemmas 3.1.1 and 3.1.2 implies that, as $\langle\omega\rangle\ltimes B$ -modules,

$$H^{\ell(w_i)}(P/B, \mathcal{L}_{P/B}(\mathbb{C}_{\mu,k})) \simeq \left(L_J(-\mu - 2\rho_J)^* \otimes_{\mathbb{C}} \zeta^k \right) \otimes_{\mathbb{C}} (-1)^{\ell(w_i) - 1}$$
$$\simeq L_J(w_i(\mu + 2\rho_J)) \otimes_{\mathbb{C}} \zeta^k \otimes_{\mathbb{C}} (-1)^{\ell(w_i) - 1}.$$
(29)

Then, setting $\widehat{\mu} = (P_{\omega}^*)^{-1}(\mu)$,

$$\begin{aligned} \chi_{w_i}^{\omega}(\mathbb{C}_{\mu,k}) &= (-1)^{\ell(w_i)} \operatorname{ch}^{\omega}(L_J(w_i(\mu+2\rho_J)) \otimes_{\mathbb{C}} \zeta^k \otimes_{\mathbb{C}} (-1)^{\ell(w_i)-1}) & \text{by (29)} \\ &= -\zeta^k \operatorname{ch}^{\omega}(L_J(w_i(\mu+2\rho_J))) \\ &= -\zeta^k \left(D_i^* \circ D_{\widehat{r}_i} \circ (P_{\omega}^*)^{-1} \right) (e(w_i(\mu+2\rho_J))) & \text{by (6)} \\ &= -\zeta^k \left(P_{\omega}^* \circ D_{\widehat{r}_i} \right) (e(\widehat{r}_i(\widehat{\mu} + \widehat{\alpha}_i))) & \text{since } (P_{\omega}^*)^{-1}(2\rho_J) = \widehat{\alpha}_i \\ &= -\zeta^k P_{\omega}^*(-D_{\widehat{r}_i}(e(\widehat{\mu}))) \\ &= \zeta^k \left(\widehat{D}_i \circ P_{\omega}^* \right) (e(\widehat{\mu})) & \text{by (6)} \\ &= \zeta^k \widehat{D}_i(e(\mu)) \\ &= \widehat{D}_i(\zeta^k e(\mu)). \end{aligned}$$

Thus in all cases (26) holds, and hence

$$\chi^{\omega}_{w_i}(M) = \widehat{D}_i(\operatorname{ch}^{\omega}(M)) \tag{30}$$

holds for any $\langle \omega \rangle \ltimes B$ -module M.

Now let us return to the original setup, and let $w = w_{i_1} \cdots w_{i_n}$ be a reduced expression of $w \in W^{\omega}$ in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$. Then we get that

$$\chi_{w}^{\omega}(\mathbb{C}_{\mu,k}) = \sum_{j\geq 0} (-1)^{j} \chi_{w_{i_{1}}}^{\omega}(H^{j}(X(w_{i_{2}},\ldots,w_{i_{n}}),\mathcal{L}_{X(w_{i_{2}},\ldots,w_{i_{n}})}(\mathbb{C}_{\mu,k}))) \quad \text{by (25)}$$

$$= \sum_{j\geq 0} (-1)^{j} \widehat{D}_{i_{1}} \left(\operatorname{ch}^{\omega}(H^{j}(X(w_{i_{2}},\ldots,w_{i_{n}}),\mathcal{L}_{X(w_{i_{2}},\ldots,w_{i_{n}})}(\mathbb{C}_{\mu,k}))) \right) \quad \text{by (30)}$$

$$= \widehat{D}_{i_{1}} \left(\sum_{j\geq 0} (-1)^{j} \operatorname{ch}^{\omega}(H_{j}(X(w_{i_{2}},\ldots,w_{i_{n}}),\mathcal{L}_{X(w_{i_{2}},\ldots,w_{i_{n}})}(\mathbb{C}_{\mu,k}))) \right)$$

$$= \widehat{D}_{i_{1}} \left(\chi_{w_{i_{2}}\cdots w_{i_{n}}}^{\omega}(\mathbb{C}_{\mu,k}) \right).$$

Here, since $\hat{\ell}(w_{i_2}\cdots w_{i_n}) = n-1$, we have by the induction hypothesis that

$$\chi^{\omega}_{w_{i_2}\cdots w_{i_n}}(\mathbb{C}_{\mu,k}) = \widehat{D}_{i_2}\cdots \widehat{D}_{i_n}(\mathrm{ch}^{\omega}(\mathbb{C}_{\mu,k})).$$

18

Therefore, we finally obtain that

$$\chi_w^{\omega}(\mathbb{C}_{\mu,k}) = \widehat{D}_{i_1}\widehat{D}_{i_2}\cdots\widehat{D}_{i_n}(\mathrm{ch}^{\omega}(\mathbb{C}_{\mu,k})),$$

proving (22) and hence (21).

If $\lambda \in \Lambda^{\omega}_{+}$, then for any Schubert variety X(w),

$$H^{j}(X(w), \mathcal{L}_{X(w)}(\lambda)) = 0 \text{ for all } j \ge 1$$

by the Demazure vanishing theorem [Ja, II.14.15] of Andersen, Mehta-Ramanathan, Ramanan-Ramanathan, and Seshadri (cf. also [Kan]). Hence we have obtained

$$\chi_w^{\omega}(M) = \sum_{j \ge 0} (-1)^j \operatorname{ch}^{\omega}(H^j(X(w), \mathcal{L}_{X(w)}(M))) = \widehat{D}_w(\operatorname{ch}^{\omega}(M)) \in \mathbb{C}[\Lambda^{\omega}]$$

for a finite-dimensional rational $\langle \omega \rangle \ltimes B$ -module M and $w \in W^{\omega}$, and in particular,

$$ch^{\omega}(H^0(X(w),\mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))) = D_w(e(\lambda))$$

for $\lambda \in \Lambda_{\pm}^{\omega}$. Namely, we have proved Theorem 0.1 in the introduction.

Theorem 0.1 reveals that there exists a striking relation between the ω -Euler characteristic $\chi^{\omega}_{w}(\mathbb{C}_{\lambda}) \in \mathbb{C}[(\mathfrak{h}^{*}_{\mathbb{Z}})^{0}]$ for \mathfrak{g} and the ordinary Euler characteristic for the orbit Lie algebra $\widehat{\mathfrak{g}}$. To state the relation, we need some notation. Recall from Remark 1.2.1 that the orbit Lie algebra $\widehat{\mathfrak{g}}$ is the dual Lie algebra ${}^{t}(({}^{t}\mathfrak{g})^{t_{\omega}})$ of the (semi-simple) fixed point subalgebra $({}^{t}\mathfrak{g})^{t_{\omega}} = \{x \in {}^{t}\mathfrak{g} \mid ({}^{t}\omega)(x) = x\}$ of ${}^{t}\mathfrak{g}$ by ${}^{t}\omega \in \operatorname{Aut}({}^{t}\mathfrak{g})$. Let \widehat{G} be a connected, simply connected semi-simple linear algebraic group over \mathbb{C} with maximal torus \widehat{T} and Borel subgroup $\widehat{B} \supset \widehat{T}$ such that $\operatorname{Lie}(\widehat{G}) = \widehat{\mathfrak{g}}$, $\operatorname{Lie}(\widehat{T}) = \widehat{\mathfrak{h}}$, and $\operatorname{Lie}(\widehat{B}) = \widehat{\mathfrak{b}}$. For $\widehat{w} \in \widehat{W} \simeq N_{\widehat{G}}(\widehat{T})/\widehat{T}$, we take a right coset representative $\widehat{w} \in N_{\widehat{G}}(\widehat{T})$ of \widehat{w} , and define the Schubert variety $\widehat{X}(\widehat{w})$ over \mathbb{C} by

$$\widehat{X}(\widehat{w}) = \widehat{B}\dot{\widehat{w}}\widehat{B}/\widehat{B} = \widehat{B}\dot{\widehat{w}}\widehat{B}/\widehat{B} \subset \widehat{G}/\widehat{B}.$$

For each $\widehat{\lambda} \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$, we denote by $\mathcal{L}_{\widehat{X}(\widehat{w})}(\mathbb{C}_{\widehat{\lambda}})$ the (locally free) \widehat{B} -equivariant sheaf of $\mathcal{O}_{\widehat{X}(\widehat{w})}$ -modules associated to the one-dimensional \widehat{B} -module $\mathbb{C}_{\widehat{\lambda}}$ on which \widehat{B} acts by the weight $\widehat{\lambda}$ through the quotient $\widehat{B} \to \widehat{T}$.

Now we are ready to state the following

Corollary 3.1.3. Let $\lambda \in (\mathfrak{h}_{\mathbb{Z}}^*)^0$ and $w \in W^{\omega}$. We set $\widehat{\lambda} = (P_{\omega}^*)^{-1}(\lambda) \in \widehat{\mathfrak{h}}_{\mathbb{Z}}^*$ and $\widehat{w} = \Theta^{-1}(w) \in \widehat{W}$. Then we have in the algebra $\mathbb{C}[(\mathfrak{h}_{\mathbb{Z}}^*)^0]$,

$$\chi_w^{\omega}(\mathbb{C}_{\lambda}) = \sum_{j \ge 0} (-1)^j \operatorname{ch}^{\omega}(H^j(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda})))$$
$$= P_{\omega}^* \left(\sum_{j \ge 0} (-1)^j \operatorname{ch} H^j(\widehat{X}(\widehat{w}), \mathcal{L}_{\widehat{X}(\widehat{w})}(\mathbb{C}_{\widehat{\lambda}})) \right)$$

where $\operatorname{ch} H^j(\widehat{X}(\widehat{w}), \mathcal{L}_{\widehat{X}(\widehat{w})}(\mathbb{C}_{\widehat{\lambda}})) \in \mathbb{C}[\widehat{\mathfrak{h}}_{\mathbb{Z}}^*]$ for $j \in \mathbb{Z}_{\geq 0}$ is the ordinary character of the *j*-th cohomology group $H^j(\widehat{X}(\widehat{w}), \mathcal{L}_{\widehat{X}(\widehat{w})}(\mathbb{C}_{\widehat{\lambda}}))$ of $\widehat{X}(\widehat{w})$.

MASAHARU KANEDA AND SATOSHI NAITO

Proof. Let $w = w_{i_1}w_{i_2}\cdots w_{i_n}$ be a reduced expression of $w \in W^{\omega}$ in the Coxeter system $(W^{\omega}, \{w_i \mid i \in \widehat{I}\})$. Then $\widehat{w} = \Theta^{-1}(w) = \widehat{r}_{i_1}\widehat{r}_{i_2}\cdots \widehat{r}_{i_n}$ is a reduced expression of $\widehat{w} \in \widehat{W}$ in the Coxeter system $(\widehat{W}, \{\widehat{r}_i \mid i \in \widehat{I}\})$. Hence, by the ordinary Demazure character formula [Ja, II.14.18] for the orbit Lie algebra $\widehat{\mathfrak{g}}$, we have in the algebra $\mathbb{C}[\widehat{\mathfrak{h}}_{\pi}^*]$,

$$\sum_{j\geq 0} (-1)^j \operatorname{ch} H^j(\widehat{X}(\widehat{w}), \mathcal{L}_{\widehat{X}(\widehat{w})}(\mathbb{C}_{\widehat{\lambda}})) = D_{\widehat{r}_{i_1}} D_{\widehat{r}_{i_2}} \cdots D_{\widehat{r}_{i_n}}(e(\widehat{\lambda})).$$
(31)

By applying P^*_{ω} to both sides of the equality (31), we obtain in the algebra $\mathbb{C}[(\mathfrak{h}^*_{\mathbb{Z}})^0]$,

$$P_{\omega}^{*}\left(\sum_{j\geq 0}(-1)^{j}\operatorname{ch} H^{j}(\widehat{X}(\widehat{w}),\mathcal{L}_{\widehat{X}(\widehat{w})}(\mathbb{C}_{\widehat{\lambda}}))\right) = P_{\omega}^{*}\left(D_{\widehat{r}_{i_{1}}}D_{\widehat{r}_{i_{2}}}\cdots D_{\widehat{r}_{i_{n}}}(e(\widehat{\lambda}))\right) \quad \text{by (31)}$$
$$= \widehat{D}_{i_{1}}\widehat{D}_{i_{2}}\cdots \widehat{D}_{i_{n}}(P_{\omega}^{*}(e(\widehat{\lambda}))) \quad \text{by (6)}$$
$$= \widehat{D}_{i_{1}}\widehat{D}_{i_{2}}\cdots \widehat{D}_{i_{n}}(e(\lambda))$$
$$= \sum_{j\geq 0}(-1)^{j}\operatorname{ch}^{\omega}(H^{j}(X(w),\mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))),$$

where the last equality is by Theorem 0.1. This proves the corollary.

3.2. Joseph's modules

Let us finally return to Joseph's module $J_w(\lambda)$ with $w \in W^{\omega}$ and $\lambda \in \Lambda_+^{\omega}$. Thus let v_{λ}^* be a (nonzero) lowest weight vector of the dual module $L(\lambda)^*$ (which is the dual element of a (nonzero) highest weight vector v_{λ} of $L(\lambda)$), and let $\dot{w} \in N_G(T)^{\omega}$ be a representative of $w \in W^{\omega}$. Since v_{λ}^* is fixed by ω , so is $\dot{w} v_{\lambda}^*$. Joseph's module $J_w(\lambda)$ of highest weight $-w(\lambda)$ in $L(\lambda)^*$ is defined to be

$$J_w(\lambda) = \mathfrak{U}(\mathfrak{b}) \left(\dot{w} \, v_\lambda^* \right) \subset L(\lambda)^*,$$

where $\mathfrak{U}(\mathfrak{b})$ is the universal enveloping algebra of $\mathfrak{b} = \operatorname{Lie}(B)$. Note that, since $\omega \cdot (\dot{w} v_{\lambda}^*) = \dot{w} v_{\lambda}^*$, Joseph's module $J_w(\lambda)$ is a $\langle \omega \rangle \ltimes B$ -submodule of $L(\lambda)^*$. Moreover, since $\dot{w}_0 v_{\lambda}^*$ is a (nonzero) highest weight vector of $L(\lambda)^*$ fixed by ω , there is an isomorphism of $\langle \omega \rangle \ltimes G$ -modules

$$L(\lambda)^* \simeq L(-w_0(\lambda)),\tag{32}$$

which enables us to regard $J_w(\lambda)$ as a $\langle \omega \rangle \ltimes B$ -submodule of $L(-w_0(\lambda))$. Then we obtain a short exact sequence of $\langle \omega \rangle \ltimes B$ -modules

$$0 \leftarrow J_w(\lambda)^* \leftarrow L(-w_0(\lambda))^* \leftarrow J_w(\lambda)^{\perp} \leftarrow 0,$$

with $J_w(\lambda)^{\perp} = \{\phi \in L(-w_0(\lambda))^* \mid \phi(J_w(\lambda)) = 0\}$. On the other hand, Lemma 3.1.1 for the case J = I combined with (32) yields an isomorphism of $\langle \omega \rangle \ltimes G$ -modules

$$H^0(G/B, \mathcal{L}_{G/B}(\mathbb{C}_{\lambda})) \simeq L(-w_0(\lambda))^*.$$

Since the restriction map

 $H^0(G/B, \mathcal{L}_{G/B}(\mathbb{C}_{\lambda})) \to H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))$

is a $\langle \omega \rangle \ltimes B$ -equivariant surjection by [Ja, II.14.19], we obtain from [Ja, II.14.19(2)] a commutative diagram of short exact sequences of $\langle \omega \rangle \ltimes B$ -modules

and hence an isomorphism of $\langle \omega \rangle \ltimes B$ -modules

$$J_w(\lambda)^* \simeq H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_\lambda)),$$

or equivalently

$$J_w(\lambda) \simeq H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_\lambda))^*.$$
(33)

Here we employ an elementary lemma from linear algebra.

Lemma 3.2.1. Let $S \in M(m, \mathbb{C})$ be an $m \times m$ complex matrix such that $\operatorname{Tr}(S) \in \mathbb{R}$. Suppose that $S^k = I_m$ for some $k \in \mathbb{Z}_{\geq 1}$, where I_m is the identity matrix. Then we have that $\operatorname{Tr}(S^{-1}) = \operatorname{Tr}(S)$.

We now define a \mathbb{C} -linear conjugation $\bar{}: \mathbb{C}[\Lambda^{\omega}] \to \mathbb{C}[\Lambda^{\omega}]$ by

$$\overline{\sum_{\mu \in \Lambda^{\omega}} a_{\mu} e(\mu)} = \sum_{\mu \in \Lambda^{\omega}} a_{\mu} e(-\mu) \quad \text{with } a_{\mu} \in \mathbb{C} \text{ for } \mu \in \Lambda^{\omega}.$$

Theorem 3.2.2. Let $\lambda \in \Lambda^{\omega}_+$ and $w \in W^{\omega}$. Then we have in $\mathbb{C}[\Lambda^{\omega}]$,

$$\operatorname{ch}^{\omega}(J_w(\lambda)) = \overline{\operatorname{ch}^{\omega}(H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))))}.$$

Proof. By (33), we get that

$$\operatorname{ch}^{\omega}(J_w(\lambda)) = \sum_{\mu \in \Lambda^{\omega}} \operatorname{Tr}((\omega^{-1})^*|_{(H^0(X(w),\mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))^*)_{\mu}}) e(\mu),$$

where the linear operator $(\omega^{-1})^* \in GL(H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))^*)$ is the transposed operator of $\omega^{-1} \in GL(H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda})))$, which represents $\omega \in \langle \omega \rangle$ via the contragredient representation of $\langle \omega \rangle$ on the dual space $H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))^*$. Here, by Corollary 3.1.3, we see that

$$\operatorname{Tr}(\omega|_{H^0(X(w),\mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))_{\mu}}) \in \mathbb{Z}_{\geq 0}$$
 for all $\mu \in \Lambda^{\omega}$.

In addition, for each $\mu \in \Lambda^{\omega}$, the μ -weight space of $H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))^*$ is naturally identified with the dual space $\left(H^0(X(w), \mathcal{L}_{X(w)}(\mathbb{C}_{\lambda}))_{-\mu}\right)^*$. Hence the assertion immediately follows from Lemma 3.2.1 since $\omega^N = 1$. This completes the proof. \Box

By combining Theorems 0.1 and 3.2.2, we obtain the following

Corollary 3.2.3. Let $\lambda \in \Lambda^{\omega}_{+}$ and $w \in W^{\omega}$. Then we have in $\mathbb{C}[\Lambda^{\omega}]$,

$$\mathrm{ch}^{\omega}(J_w(\lambda)) = \widehat{D}_w(e(\lambda)).$$

Finally, by combining Corollary 3.1.3 and Theorem 3.2.2, we obtain a remarkable relation between the twining character $ch^{\omega}(J_w(\lambda))$ of Joseph's module $J_w(\lambda)$ for \mathfrak{g} and the ordinary character of Joseph's module for the orbit Lie algebra $\hat{\mathfrak{g}}$. Namely, we have Corollary 0.2 in the introduction.

References

- [AK] A. Altman and S. Kleiman, Introduction to Grothendieck Duality Theory, Lecture Notes in Math. Vol. 146, Springer-Verlag, Berlin, 1970.
- [An] H. H. Andersen, Schubert varieties and Demazure's character formula, Invent. Math. 79 (1985), 611–618.
- [De] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. 7 (1974), 53–88.
- [FRS] J. Fuchs, U. Ray, and C. Schweigert, Some automorphisms of generalized Kac-Moody algebras, J. Algebra 191 (1997), 518–540.
- [FSS] J. Fuchs, B. Schellekens, and C. Schweigert, From Dynkin diagram symmetries to fixed point structures, Comm. Math. Phys. 180 (1996), 39–97.
- [Ha] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. Vol. 52, Springer-Verlag, Berlin, 1977.
- [Iv] B. Iversen, Cohomology of Sheaves, Universitext, Springer-Verlag, Berlin, 1986.
- [Ja] J. C. Jantzen, Representations of Algebraic Groups, Pure and applied mathematics Vol. 131, Academic Press, Boston, 1987.
- [Jo] A. Joseph, On the Demazure character formula, Ann. Sci. École Norm. Sup. 18 (1985), 389–419.
- [Kac] V. G. Kac, Infinite Dimensional Lie Algebras (3rd edition), Cambridge Univ. Press, Cambridge, 1990.
- [Kan] M. Kaneda, The Frobenius morphism of Schubert varieties, J. Algebra 174 (1995), 473–488.
- [Kas] M. Kashiwara, The crystal base and Littlemann's refined Demazure character formula, Duke Math. J. 71 (1993), 839–858.
- [Ku] S. Kumar, Demazure character formula in arbitrary Kac-Moody setting, Invent. Math. 89 (1987), 395–423.
- [Ma] O. Mathieu, Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque **159–160** (1988).
- [MFK] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory (3rd enlarged edition), Springer-Verlag, Berlin, 1994.
- [MR] V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. 122 (1985), 27–40.

TWINING CHARACTER FORMULA

- [N1] S. Naito, Embedding into Kac-Moody algebras and construction of folding subalgebras for generalized Kac-Moody algebras, Japan. J. Math. (New Series) 18 (1992), 155– 171.
- [N2] S. Naito, Twining character formula of Kac-Wakimoto type for affine Lie algebras, preprint.
- [N3] S. Naito, Twining characters and Kostant's homology formula, preprint.
- [RR] S. Ramanan and A. Ramanathan, Projective normality of flag varieties and Schubert varieties, Invent. Math. 79 (1985), 217–224.
- [Sp] T. A. Springer, Linear Algebraic Groups (2nd edition), Progress in Math. Vol. 9, Birkhäuser, Boston, 1998.