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Abstract. We prove a formula for the twining characters of certain Demazure modules, over
a Borel subalgebra b of a finite-dimensional complex semi-simple Lie algebra g. This formula
describes the twining character of the Demazure module by the ω-Demazure operator associated
to an element of the Weyl group that is fixed by the Dynkin diagram automorphism ω of g.
Our result is a refinement of the twining character formula for the irreducible highest weight
g-modules of symmetric dominant integral highest weights, and also of the ordinary Demazure
character formula.

Introduction

Let g be a finite-dimensional complex semi-simple Lie algebra with Cartan subalgebra
h and Borel subalgebra b ⊃ h. Let ∆ ⊂ h∗ be the set of roots of g relative to h. We
choose a set of positive roots ∆+ such that the roots of b are −∆+. Let {αi | i ∈ I} be
the set of simple roots in ∆+, {hi | i ∈ I} the set of simple coroots in h, A = (aij)i,j∈I

the Cartan matrix with aij = αj(hi), and W = 〈ri | i ∈ I〉 ⊂ GL(h∗) the Weyl group.
A bijection ω of the index set I such that aω(i),ω(j) = aij for all i, j ∈ I induces

an automorphism ω (see §1.1), called a (Dynkin) diagram automorphism, of the Lie
algebra g, which stabilizes hZ =

∑
i∈I Zhi. Note that this bijection ω of I also induces

an automorphism tω of the dual Lie algebra tg of g in a similar way, where the dual Lie
algebra tg is a complex semi-simple Lie algebra with the Dynkin diagram opposite to the
one for g. We denote by 〈ω〉 the cyclic subgroup (of order N) of Aut(g) generated by the
diagram automorphism ω. The restriction of ω to h induces a transposed map ω∗ : h∗ →
h∗, which stabilizes the integral weight lattice h∗

Z
= {λ ∈ h∗ | λ(hi) ∈ Z for all i ∈ I}

� Ab(hZ, Z). We set h0 = {h ∈ h | ω(h) = h}, Wω = {w ∈ W | ω∗w = wω∗},
(h∗)0 = {λ ∈ h∗ | ω∗(λ) = λ} � (h0)∗, and (h∗

Z
)0 = {λ ∈ h∗

Z
| ω∗(λ) = λ}.

In [FSS] and [FRS], they introduced a certain Lie algebra ĝ, called the orbit Lie
algebra, which is nothing but the dual Lie algebra t

(
(tg)

tω
)

of the (semi-simple) fixed
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point subalgebra (tg)
tω of tg by the automorphism tω of tg. Let ĥ be the Cartan

subalgebra of ĝ, b̂ ⊃ ĥ the Borel subalgebra, and ∆̂+ ⊂ ĥ∗ the set of positive roots
chosen so that the roots of b̂ are −∆̂+. Let {α̂i | i ∈ Î} be the set of simple roots in
∆̂+, {ĥi | i ∈ Î} the set of simple coroots in ĥ, and Ŵ = 〈r̂i | i ∈ Î〉 ⊂ GL(ĥ∗) the
Weyl group, where the index set Î is a set of representatives of the ω-orbits in I. It
is well-known that there exist an isomorphism of groups Θ : Ŵ → Wω and a C-linear
isomorphism Pω : h0 → ĥ such that if P ∗

ω : ĥ∗→̃(h0)∗ � (h∗)0 is the transposed map of
Pω, then Θ(ŵ)|(h∗)0 = P ∗

ω ◦ ŵ ◦ (P ∗
ω)−1 for all ŵ ∈ Ŵ . We set wi = Θ(r̂i) ∈ Wω for

i ∈ Î. In particular, (Wω, {wi | i ∈ Î}) forms a Coxeter system.
For dominant λ ∈ (h∗

Z
)0, let L(λ) be the simple g-module of highest weight λ. It

admits a unique C-linear 〈ω〉-action such that ω · (xv) = ω(x)(ω · v) for each x ∈ g,
v ∈ L(λ), and such that ω · vλ = vλ, where vλ is a (nonzero) highest weight vector
of L(λ). So therefore does its dual module L(λ)∗ � L(−w0(λ)) with w0 the longest
element in W . In [FSS] and [FRS], they defined the twining character chω(L(λ)) of
L(λ) by

chω(L(λ)) =
∑

µ∈(h∗
Z
)0

Tr(ω|L(λ)µ
) e(µ)

in the group algebra C[(h∗
Z
)0] over C of (h∗

Z
)0 with basis e(µ), µ ∈ (h∗

Z
)0, and they proved

chω(L(λ)) = P ∗
ω

(
ch L̂(λ̂)

)
,

where ch L̂(λ̂) ∈ C[ĥ∗] is the ordinary character of the simple ĝ-module L̂(λ̂) of dominant
integral highest weight λ̂ = (P ∗

ω)−1(λ) ∈ ĥ∗.
Let U(b) be the universal enveloping algebra of b, and for each w ∈ Wω, let Jw(λ) =

U(b)v∗w(λ) ⊂ L(λ)∗ be Joseph’s module of highest weight −w(λ) in L(λ)∗, with v∗w(λ) a
(nonzero) weight vector in L(λ)∗ of weight −w(λ). In this paper we will prove a formula
of Demazure type for the twining character chω(Jw(λ)) of Jw(λ) defined by

chω(Jw(λ)) =
∑

µ∈(h∗
Z
)0

Tr(ω|Jw(λ)µ
) e(µ).

As a corollary, we will find a striking relation:

chω(Jw(λ)) = P ∗
ω

(
ch Ĵŵ(λ̂)

)
,

where ŵ = Θ−1(w) ∈ Ŵ and ch Ĵŵ(λ̂) ∈ C[ĥ∗] is the ordinary character of Joseph’s
module Ĵŵ(λ̂) of highest weight −ŵ(λ̂) for the orbit Lie algebra ĝ.

To explain our result precisely, we need some more notation. Let G be a connected,
simply connected semi-simple linear algebraic group over C with maximal torus T and
Borel subgroup B ⊃ T such that Lie(G) = g, Lie(T ) = h, and Lie(B) = b. We will
identify the rational character group Λ = GrpC(T, GL1) of T with h∗

Z
. The diagram

automorphism ω of g lifts to an automorphism of G, which we will by abuse of notation
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denote by ω. We will also denote the induced action of ω on Λ by the same letter ω,
and set Λω = {λ ∈ Λ | ω · λ = λ}.

For a rational 〈ω〉� T -module V , we define the twining character chω(V ) ∈ C[Λω] of
V to be

chω(V ) =
∑

µ∈Λω

Tr(ω|Vµ
) e(µ),

where Vµ is the µ-weight space of V . Here we note that the twining character chω(V ) ∈
C[Λω] can be viewed as the trace function

T 	 t 
→ Tr((ω, t) ; V ) ∈ C.

In fact, we have for each t ∈ T ,

Tr((ω, t) ; V ) =
∑

µ∈Λω

Tr(ω|Vµ) µ(t) ∈ C.

Fix w ∈ Wω, and let X(w) be the associated Schubert variety over C, which is the
Zariski closure in the flag variety G/B of the Bruhat cell BẇB/B, where ẇ ∈ NG(T )
denotes a right coset representative of w ∈ W � NG(T )/T fixed by ω ∈ Aut(G).
If M is a rational 〈ω〉 � B-module, then the B-equivariant OX(w)-module LX(w)(M)
associated to M carries a structure of 〈ω〉 � B-equivariant sheaf (see §2.3), so that its
cohomology groups H•(X(w),LX(w)(M)) are 〈ω〉 � B-modules. For each λ ∈ Λω, we
let Cλ denote the one-dimensional 〈ω〉 � B-module on which B acts via λ through the
quotient B → T and 〈ω〉 trivially. We call H0(X(w),LX(w)(Cλ)) for dominant λ ∈ Λω

a Demazure module. Now Joseph’s module Jw(λ) admits a structure of 〈ω〉�B-module,
and we have an isomorphism of 〈ω〉 � B-modules (see §3.2)

Jw(λ)∗ � H0(X(w),LX(w)(Cλ)),

where Jw(λ)∗ is the dual 〈ω〉 � B-module of Jw(λ). We can now state our main result
in this paper.

Theorem 0.1. Let M be a finite-dimensional rational 〈ω〉 � B-module, w ∈ Wω, and
let w = wi1wi2 · · ·win be a reduced expression in the Coxeter system (Wω, {wi | i ∈ Î}).
Then we have in C[Λω],∑

j≥0

(−1)j chω(Hj(X(w),LX(w)(M))) = D̂i1D̂i2 · · · D̂in

(
chω(M)

)
,

where D̂i, i ∈ Î, is the ω-Demazure operator (see §1.4). In particular, for dominant
λ ∈ Λω, we have

chω(H0(X(w),LX(w)(Cλ))) = D̂i1D̂i2 · · · D̂in(e(λ)).

Now let ĥZ =
∑

i∈Î Z ĥi and ĥ∗
Z

= Ab(ĥZ, Z) ⊂ ĥ∗. For dominant λ̂ ∈ ĥ∗
Z
, let L̂(λ̂) be

the simple ĝ-module of highest weight λ̂, and for each ŵ ∈ Ŵ , let Ĵŵ(λ̂) = U(b̂) v̂∗
ŵ(λ̂)

⊂
L̂(λ̂)∗ be Joseph’s module of highest weight −ŵ(λ̂) with v̂∗

ŵ(λ̂)
∈ L̂(λ̂)∗ a (nonzero)

weight vector of weight −ŵ(λ̂).
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Corollary 0.2. Let λ ∈ (h∗
Z
)0 be dominant and w ∈ Wω. We set λ̂ = (P ∗

ω)−1(λ) ∈ ĥ∗
Z

and ŵ = Θ−1(w) ∈ Ŵ . Then we have in C[(h∗
Z
)0],

chω(Jw(λ)) = P ∗
ω

(
ch Ĵŵ(λ̂)

)
,

where P ∗
ω is a C-algebra isomorphism C[ĥ∗

Z
]→̃C[(h∗

Z
)0] defined by P ∗

ω(e(µ̂)) = e(P ∗
ω(µ̂))

for each basis element e(µ̂), µ̂ ∈ ĥ∗
Z
, of the group algebra C[ĥ∗

Z
] over C of ĥ∗

Z
.

The paper is organized as follows. In §1 we assemble some definitions and properties
of orbit Lie algebras and of twining characters needed later. In §2 we study the 〈ω〉�B-
equivariant Demazure-Hansen desingularizations of the 〈ω〉-invariant Schubert varieties,
and some 〈ω〉�B-equivariant sheaves on these varieties. We finish the proof of our main
theorem in §3, using all the materials above and the 〈ω〉� B-equivariant Leray spectral
sequences.

The first author is grateful to Takuro Mochizuki for a helpful comment. The second
author expresses his sincere thanks to Professor Akira Ishii for consultations in algebraic
geometry.

Notation. In this paper we mainly follow the notation of [Ja] except that for a category
C and its objects A and B, the symbol C(A, B) will denote the set of morphisms of C
from A to B. The following is a list of symbols for the categories we will be working in:

Ab the category of abelian groups
GrpC the category of linear algebraic groups over C

Var the category of varieties over C

ModX the category of OX -modules, OX the structure sheaf of a variety X

1. Twining characters

For details about diagram automorphisms and orbit Lie algebras briefly explained in
§1.1 and §1.2 below, see [FSS], [FRS], and [N1]–[N3].

1.1. Diagram automorphisms
Let g be a finite-dimensional complex semi-simple Lie algebra with Cartan subalgebra h

and Borel subalgebra b ⊃ h. Let ∆ ⊂ h∗ be the set of roots of g relative to h. We choose
a set of positive roots ∆+ such that the roots of b are −∆+. Let {αi | i ∈ I} be the set of
simple roots in ∆+, {hi | i ∈ I} the set of simple coroots in h, A = (aij)i,j∈I the Cartan
matrix with aij = αj(hi), and W = 〈ri | i ∈ I〉 ⊂ GL(h∗) the Weyl group. We take and
fix a Chevalley basis {eα, fα | α ∈ ∆+} ∪ {hi | i ∈ I} of g, and let hZ =

∑
i∈I Zhi.

We fix a bijection ω : I → I of the index set I such that

aω(i),ω(j) = aij for all i, j ∈ I.

Let N be the order of ω, and Ni the number of elements of the ω-orbit of i ∈ I. This ω
can be extended in a unique way to an automorphism (also denoted by ω) of order N
of the Lie algebra g in such a way that

ω(ei) = eω(i), i ∈ I,

ω(fi) = fω(i), i ∈ I,

ω(hi) = hω(i), i ∈ I,
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where ei = eαi
and fi = fαi

for i ∈ I are the Chevalley generators. In a similar way, the
bijection ω : I → I can also be extended to an automorphism tω of the dual Lie algebra
tg of g, where the dual Lie algebra tg is a complex semi-simple Lie algebra which has
the Dynkin diagram opposite to that of g. Note that we have (ω(x)|ω(y)) = (x|y) for
x, y ∈ g, where (·|·) is the suitably normalized Killing form on g (cf. [N2, §3.1]), and that
the restriction of ω to the Cartan subalgebra h induces a transposed map ω∗ : h∗ → h∗

such that ω∗(λ)(h) = λ(ω(h)) for λ ∈ h∗, h ∈ h, which is also an isometry with respect
to (·|·). We set (h∗)0 = {λ ∈ h∗ | ω∗(λ) = λ}, h∗

Z
= {λ ∈ h∗ | λ(hi) ∈ Z for all i ∈ I}

� Ab(hZ, Z), and (h∗
Z
)0 = {λ ∈ h∗

Z
| ω∗(λ) = λ}. Note that the Weyl vector ρ =

(1/2) ·
∑

α∈∆+
α is in (h∗

Z
)0.

1.2. Orbit Lie algebras

We choose and fix a set Î of representatives of the ω-orbits in I, and set Â = (âij)i,j∈Î ,
where âij is given by

âij = sj ×
Nj−1∑
k=0

ai,ωk(j) for i, j ∈ Î with sj =
2∑Nj−1

k=0 aj,ωk(j)

for j ∈ Î .

Set for each i ∈ Î, Ii = {ωk(i) | 0 ≤ k ≤ Ni − 1} ⊂ I. We know from [FRS, §2] that for
each i ∈ Î, ∑

k∈Ii

aik = 1 or 2.

Moreover, there are only two possibilities:
(a) if

∑
k∈Ii

aik = 1, then Ni is even and the subgraph of the Dynkin diagram
corresponding to the subset Ii ⊂ I is of type A2 × · · · × A2 (where A2 appears
Ni/2 times);

(b) if
∑

k∈Ii
aik = 2, then the subgraph of the Dynkin diagram corresponding to

the subset Ii ⊂ I is totally disconnected and of type A1 × · · · × A1 (where A1

appears Ni times).
The orbit Lie algebra associated to the diagram automorphism ω ∈ Aut(g) is defined to
be the complex semi-simple Lie algebra ĝ associated to the Cartan matrix Â = (âij)i,j∈Î

with the Cartan subalgebra ĥ, the Borel subalgebra b̂ ⊃ ĥ, the set of positive roots ∆̂+ ⊂
ĥ∗ chosen so that the roots of b̂ are −∆̂+, the set of simple roots {α̂i | i ∈ Î} ⊂ ĥ∗, the
set of simple coroots {ĥi | i ∈ Î} ⊂ ĥ, and the Weyl group Ŵ = 〈r̂i | i ∈ Î〉 ⊂ GL(ĥ∗).

Remark 1.2.1. The Dynkin diagram of the orbit Lie algebra ĝ is in general disconnected,
and so the ĝ is a direct sum of simple Lie algebras. We can easily determine the explicit
diagram of ĝ from the argument in [N2, §3.2], by using the table in [FSS, §2.4] for the
case where g is a simple Lie algebra. Moreover, by using the results of [Kac, 7.9–7.10]
for the case where g is simple (see also [N1, §4] for a more general case), we can easily
deduce that the orbit Lie algebra ĝ is nothing but the dual Lie algebra t

(
(tg)

tω
)

of
the (semi-simple) fixed point subalgebra (tg)

tω = {x ∈ tg | (tω)(x) = x} of tg by the
automorphism tω of tg.
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We set h0 = {h ∈ h | ω(h) = h}. Then there exists a linear isomorphism Pω : h0 → ĥ

given by

Pω

(∑
k∈Ii

hk

)
= Ni ĥi for each i ∈ Î . (1)

Since this map Pω : h0→̃ĥ is an isometry with respect to the respective Killing forms on
g and ĝ, it induces a transposed map (which is also isometric) P ∗

ω : ĥ∗→̃(h0)∗ � (h∗)0

such that P ∗
ω(λ̂)(h) = λ̂(Pω(h)) for λ̂ ∈ ĥ∗, h ∈ h0. Note that we have for each i ∈ Î,

P ∗
ω(α̂i) = siβi, (2)

where βi =
∑

k∈Ii
αk ∈ (h∗

Z
)0. Also, if ĥZ =

∑
i∈Î Z ĥi and ĥ∗

Z
= Ab(ĥZ, Z) ⊂ ĥ∗, then

(see §1.6) P ∗
ω(ĥ∗

Z
) = (h∗

Z
)0.

We now define the subgroup Wω of W by

Wω = {w ∈ W | ω∗w = wω∗}.

It is well-known (see, e.g., [FRS]) that there exists an isomorphism of groups

Θ: Ŵ → Wω

from the Weyl group Ŵ of the orbit Lie algebra ĝ onto the group Wω such that the
following diagram commutes for each ŵ ∈ Ŵ :

ĥ∗ P∗
ω−−−−→ (h∗)0

ŵ

� �Θ(ŵ)|(h∗)0

ĥ∗ −−−−→
P∗

ω

(h∗)0.

(3)

For each i ∈ Î, set wi = Θ(r̂i) ∈ Wω. Explicitly,

wi =



Ni/2−1∏
k=0

(
rωk(i) rωk+Ni/2(i) rωk(i)

)
if

Ni−1∑
k=0

ai,ωk(i) = 1,

Ni−1∏
k=0

rωk(i) if
Ni−1∑
k=0

ai,ωk(i) = 2.

(4)

Hence each wi is the longest element of the subgroup WIi of the Weyl group W generated
by the rk’s for k ∈ Ii. Notice that wω(i) = wi and w2

i = 1 for i ∈ Î. Furthermore,
(Wω, {wi | i ∈ Î}) forms a Coxeter system as (Ŵ , {r̂i | i ∈ Î}) does. We will denote
the length function of the Coxeter system (W, {ri | i ∈ I}) (resp. (Wω, {wi | i ∈ Î})) by
� : W → Z≥0 (resp. �̂ : Wω → Z≥0).
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1.3. A Lemma about the length functions
Lemma 1.3.1. Let w = wi1wi2 · · ·win ∈ Wω be a reduced expression of w ∈ Wω in the
Coxeter system (Wω, {wi | i ∈ Î}), i.e., �̂(w) = n. Then �(w) = �(wi1) + �(wi2) + · · · +
�(win).

Proof. We argue by induction on n. For n = 1, the assertion is trivial. Suppose that
n ≥ 2, and set u = wi2 · · ·win ∈ Wω. Because u = wi2 · · ·win is a reduced expression
in the Coxeter system (Wω, {wi | i ∈ Î}), it follows from the induction hypothesis that
�(u) = �(wi2) + · · ·+ �(win

). Hence we need to show that �(w) = �(wi1) + �(u). For this
purpose, we set

∆(w) = {α ∈ ∆+ | w−1(α) ∈ ∆−},

∆(u) = {α ∈ ∆+ | u−1(α) ∈ ∆−},

∆(wi1) = {α ∈ ∆+ | w−1
i1

(α) ∈ ∆−},
and show that

∆(w) ⊃ ∆(wi1) � wi1(∆(u)), (5)

which we leave to the reader as an easy exercise. Then the assertion that �(w) =
�(wi1) + �(u) immediately follows since

�(w) = # ∆(w) ≥ # ∆(wi1) + # ∆(u)
= �(wi1) + �(u),

while the reverse inequality �(w) = �(wi1u) ≤ �(wi1) + �(u) is obvious.

Remark 1.3.2. It is obvious that the map α 
→ ω∗(α) gives a bijection from the set
∆(ω∗w(ω∗)−1) onto the set ∆(w). Hence we see that the longest element w0 ∈ W
belongs to Wω. In fact, arguing as in the proof of Lemma 1.3.1, we can easily show that
the isomorphism Θ: Ŵ→̃Wω maps the longest element ŵ0 ∈ Ŵ to the longest element
w0 ∈ W .

1.4. The ω-Demazure operators
Recall the ordinary Demazure operator Di, i ∈ I, on the group ring Z[h∗

Z
] =

∐
λ∈h∗

Z

Ze(λ):

Di : e(λ) 
→ e(λ) − e(−αi)e(ri(λ))
1 − e(−αi)

.

Let C[ĥ∗
Z
] be the group algebra over C of ĥ∗

Z
with basis e(λ̂), λ̂ ∈ ĥ∗

Z
. Define likewise

the Demazure operator Dr̂i
, i ∈ Î, on C[ĥ∗

Z
] to be the C-linear endomorphism of C[ĥ∗

Z
]

given by

Dr̂i
(e(λ̂)) =

e(λ̂) − e(−α̂i)e(r̂i(λ̂))
1 − e(−α̂i)

.

Then transfer Dr̂i
via P ∗

ω onto the group algebra C[(h∗
Z
)0] to define the ω-Demazure

operator

D̂i = P ∗
ω ◦ Dr̂i

◦ (P ∗
ω)−1 for i ∈ Î . (6)

Thus we can easily check the following.
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Lemma 1.4.1. Let i ∈ Î. For each λ ∈ (h∗
Z
)0, we have

D̂i(e(λ)) =
e(λ) − e(−siβi)e(wi(λ))

1 − e(−siβi)
,

and moreover

D̂i(e(λ)) =


e(λ) + e(λ − siβi) + · · · + e(wi(λ)) if λ(hi) ∈ Z≥0,

0 if λ(hi) = −1,

−
(
e(λ + siβi) + e(λ + 2siβi) + · · · + e(wi(λ + siβi))

)
if λ(hi) ∈ Z≤−2.

Remark 1.4.2. Let w = wi1wi2 · · ·win be a reduced expression of w ∈ Wω in the
Coxeter system (Wω, {wi | i ∈ Î}), i.e., �̂(w) = n. We set D̂w = D̂i1D̂i2 · · · D̂in ∈
EndC(C[(h∗

Z
)0]). Then we have by the definition that

D̂w = P ∗
ω ◦

(
Dr̂i1

Dr̂i2
· · ·Dr̂in

)
◦ (P ∗

ω)−1.

Hence we see that the operator D̂w ∈ EndC(C[(h∗
Z
)0]) defined above does not depend

on the choice of the reduced expression of w ∈ Wω as the product Dr̂i1
Dr̂i2

· · ·Dr̂in
∈

EndC(C[ĥ∗
Z
]) of the ordinary Demazure operators does not depend on the choice of the

reduced expression of Θ−1(w) = r̂i1 r̂i2 · · · r̂in ∈ Ŵ in the Coxeter system (Ŵ , {r̂i | i ∈
Î}).
1.5. Twining characters
Let G be a connected, simply connected semi-simple linear algebraic group over C with
maximal torus T and Borel subgroup B ⊃ T such that Lie(G) = g, Lie(T ) = h, and
Lie(B) = b. Then the character group Λ = GrpC(T, GL1) of T may be identified with
h∗

Z
by taking the differential at the identity element, i.e., by the map λ 
→ dλ. For each

i ∈ I and λ ∈ Λ, we will write 〈λ, α∨
i 〉 = (dλ)(hi), where α∨

i ∈ GrpC(GL1, T ) is the
coroot of αi ∈ Λ. Let Λ+ = {λ ∈ Λ | 〈λ, α∨

i 〉 ≥ 0 for all i ∈ I} be the set of dominant
weights of Λ.

For each root α ∈ Λ, let uα : Ga → G be a morphism defining the root subgroup
of G associated to α. We choose u±αi

such that (duαi
)(1) = ei and (du−αi

)(1) = fi

for each i ∈ I. There exists an automorphism of G whose differential at the identity
element coincides with the diagram automorphism ω of g (cf. [Ja, II.1.13–15]). By
abuse of notation, we will denote still by ω this automorphism of G and by 〈ω〉 the
cyclic subgroup (of order N) of Aut(G) generated by the ω. Thus the automorphism ω
of G permutes the root subgroups in such a way that

ω(u±αi(ξ)) = u±αω(i)(ξ) for all ξ ∈ C and i ∈ I.

Whenever there can be ambiguity, we will write dω for the automorphism of g.
Recall that the Weyl group W ⊂ GL(h∗) may be identified with NG(T )/T , where

NG(T ) is the normalizer of T in G. Each w ∈ Wω lifts to an element of NG(T ) fixed by
ω ∈ Aut(G) (cf. [Sp, 9.3]), which will be denoted by ẇ. We will also denote the induced
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action of ω on Λ by the same letter ω, and set Λω = {λ ∈ Λ | ω ·λ = λ}, Λω
+ = Λω ∩Λ+.

Note that, under the identification Λ � h∗
Z
⊂ h∗, this action of ω on Λ coincides with

the restriction of ((dω)−1)∗ = ((dω)∗)−1 to h∗
Z
.

By a 〈ω〉�G-module M , we will always mean a finite-dimensional rational G-module
that admits a C-linear 〈ω〉-action such that

ω · (g m) = ω(g)(ω · m) for all g ∈ G, m ∈ M.

Regarding the semi-direct product 〈ω〉 � G of 〈ω〉 and G as a linear algebraic group,
this is the same as a finite-dimensional rational 〈ω〉 � G-module. Likewise for 〈ω〉 � B-
and 〈ω〉 � T -modules. Let C[Λω] be the group algebra over C of Λω with basis e(λ),
λ ∈ Λω. Let M be a 〈ω〉 � T -module, and let

M =
∐
λ∈Λ

Mλ with Mλ = {m ∈ M | t m = λ(t)m for all t ∈ T}

be the weight space decomposition with respect to T . Now, following [FSS] and [FRS],
we define the twining character chω(M) of M to be

chω(M) =
∑

λ∈Λω

Tr(ω|Mλ
) e(λ) ∈ C[Λω].

Remark 1.5.1. It easily follows that for each t ∈ T ,

Tr((ω, t) ; M) =
∑

λ∈Λω

Tr(ω|Mλ
)λ(t) ∈ C

since ω · Mλ = Mω·λ for λ ∈ Λ. Hence the twining character chω(M) ∈ C[Λω] can be
thought of as the trace function

T 	 t 
→ Tr((ω, t) ; M) ∈ C.

1.6. An example
Let λ ∈ Λω

+ and L(λ) the simple rational G-module of highest weight λ. We can make
L(λ) into a 〈ω〉 � G-module as follows. The G-module ωL(λ) obtained from L(λ) by
twisting the G-action by ω is isomorphic to L(λ), since ω fixes λ. If τω is the isomorphism
from ωL(λ) to L(λ), define the 〈ω〉 � G-action on L(λ) by

(ωr, g) · v = τ−r
ω (gv), r ∈ Z, g ∈ G, v ∈ L(λ),

where gv on the right-hand side is computed with respect to the original G-action (cf.
[FRS]). Note that a 〈ω〉 � G-module structure on L(λ) such that ω fixes a highest
weight vector vλ of L(λ) is unique since L(λ) is a cyclic G-module generated by vλ.
Throughout the rest of this paper, by a 〈ω〉 � G-module L(λ) we will always mean the
one defined above, i.e., such that ω · vλ = vλ.

On the other hand, for each i ∈ Î, we have by (1),

(P ∗
ω)−1(λ)(Niĥi) = λ(P−1

ω (Niĥi)) = λ

(
Ni−1∑
k=0

hωk(i)

)
= Ni λ(hi),
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and hence (P ∗
ω)−1(λ)(ĥi) = λ(hi) (which also implies that P ∗

ω(ĥ∗
Z
) = (h∗

Z
)0). Thus

λ̂ = (P ∗
ω)−1(λ) ∈ ĥ∗ is dominant integral. If L̂(λ̂) is the simple ĝ-module of highest

weight λ̂, it is shown in [FSS] and [FRS] that

chω(L(λ)) = P ∗
ω

(
ch L̂(λ̂)

)
, (7)

where P ∗
ω on the right-hand side is a C-algebra isomorphism C[ĥ∗

Z
]→̃C[(h∗

Z
)0] defined by

P ∗
ω(e(µ̂)) = e(P ∗

ω(µ̂)) for µ̂ ∈ ĥ∗
Z.

Assume now that J = Ii = {ωk(i) | 0 ≤ k ≤ Ni − 1} ⊂ I, i ∈ Î, and let PJ be the
standard parabolic subgroup of G associated to J . Let ν ∈ Λω with 〈ν, α∨

i 〉 ≥ 0 (hence
〈ν, α∨

j 〉 ≥ 0 for all j ∈ J). If LJ(ν) is the simple rational PJ -module of highest weight
ν, then it remains simple as a rational module over the Levi factor LJ of PJ with the
unipotent radical UJ of PJ acting trivially. We can make LJ(ν) into a 〈ω〉�PJ -module
in the same way as L(λ) above.

Lemma 1.6.1. With the notation and assumption as above, we have in C[Λω],

chω(LJ(ν)) = D̂i(e(ν)).

Proof. Let gJ be the reductive subalgebra of g generated by h and {ek, fk | k ∈ J}, and
ĝJ ⊂ ĝ the (reductive) orbit Lie algebra of gJ . If ν̂ = (P ∗

ω)−1(ν) ∈ ĥ∗
Z

and if L̂J(ν̂) is
the simple ĝJ -module with highest weight ν̂, then we have

chω(LJ(ν)) = P ∗
ω

(
ch L̂J(ν̂)

)
since the proof of (7) in [FRS] goes through also for the reductive subalgebra gJ of
g. Moreover, because the (reductive) orbit Lie algebra ĝJ is of type A1 and ν̂(ĥi) =
ν(hi) ∈ Z≥0, we deduce that

P ∗
ω(ch L̂J(ν̂)) = P ∗

ω

(
e(ν̂) + e(ν̂ − α̂i) + · · · + e(r̂i(ν̂))

)
= P ∗

ω

(
Dr̂i

(e(ν̂))
)

= D̂i

(
P ∗

ω(e(ν̂))
)

by (6)

= D̂i(e(ν)).

This proves the lemma.

2. The Demazure-Hansen desingularizations revisited

In this section we elaborate on the 〈ω〉 � B-equivariant Demazure-Hansen desingu-
larizations of the 〈ω〉-invariant Schubert varieties and the 〈ω〉 � B-equivariant sheaves
on these varieties. For that we will desingularize the Schubert variety X(w), w ∈ Wω,
by a Bott-Samelson variety X(wi1 , . . . , wir ) along the reduced decomposition of w in
the Coxeter system (Wω, {wi | i ∈ Î}), and set up 〈ω〉 � B-equivariant Leray spectral
sequences. We will also verify a 〈ω〉 � B-equivariant Serre duality. These will be our
main tool to compute the twining character of the Demazure modules.
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2.1. The Schubert and the Bott-Samelson varieties

For each w ∈ W , let X(w) be the Zariski closure of an affine quotient BẇB/B
(called a Bruhat cell) in the flag variety G/B. If y1, . . . , yn ∈ W , let X(y1, . . . , yn) =
{(g1B, . . . , gnB) ∈ (G/B)n | g−1

i−1gi ∈ BẏiB for all i}, called a Bott-Samelson variety.
If M is a B-module, regard M as a Bn-module via the n-th projection Bn → B and

define an OX(y1,...,yn)-module L(M) = LX(y1,...,yn)(M) by setting on each open set V
of X(y1, . . . , yn)

Γ(V,L(M)) = Var(q−1(V ), M)B

= {f ∈ Var(q−1(V ), M) | f(xb) = b−1f(x) in M for each x ∈ q−1(V ) and b ∈ B}

where q : {(g1, . . . , gn) ∈ Gn | g−1
i−1gi ∈ BẏiB for all i} → X(y1, . . . , yn) is the quotient.

If J ⊆ I, let PJ be the standard parabolic subgroup of G associated to J , and let zJ

be the longest element of the Weyl group WJ of PJ . Then X(zJ) = PJ/B is smooth,
and hence also X(zJ1 , . . . , zJn) is smooth for subsets J1, . . . , Jn ⊂ I (cf. [Ja, II.13.5–
6]). Due to Andersen, Ramanan-Ramanathan, and Seshadri (cf. [Ja, II.14.15.a)]), the
Schubert variety X(zJ1 · · · zJn

) is normal. Put for simplicity zi = zJi
for 1 ≤ i ≤ n,

z = z1 · · · zn, and X = X(z1, . . . , zn).

Lemma 2.1.1. For each i ∈ [0, n], let Xi = X(z1, . . . , zi) and iX = X(zi+1, . . . , zn)
with X0 = X(1) = nX. If M is a B-module with Hj(X(zi),LX(zi)(H

0(iX,LiX(M)))) =
0 for all i ∈ [1, n] and j ≥ 1, then Hj(X,LX(M)) = 0 for all j ≥ 1.

Proof. Define πij ∈ Var(Xj , Xi) for each i, j with 0 ≤ i < j ≤ n by

(g1B, . . . , giB, gi+1B, . . . , gjB) 
→ (g1B, . . . , giB).

Thus πi1,i2 ◦ πi2,i3 = πi1,i3 : Xi3 → Xi1 if 0 ≤ i1 < i2 < i3 ≤ n. Put iM =
H0(iX,LiX(M)) for each i ∈ [0, n]. By the hypothesis and by [Ja, II.14.1(4)] we have

Rj(πi−1,i)∗LXi(iM) � LXi−1(H
j(X(zi),LX(zi)(iM))) = 0 for all j ≥ 1,

hence the Leray spectral sequence Hk(Xi−1, R
j(πi−1,i)∗LXi(iM)) ⇒ Hk+j(Xi,LXi(iM))

degenerates to yield

Hj(Xi−1, (πi−1,i)∗LXi(iM)) � Hj(Xi,LXi(iM)).

Since LXi(iM) � (πin)∗LX(M) again by [Ja, II.14.1(4)], we obtain further

Hj(Xi, (πin)∗LX(M)) � Hj(Xi−1, (πi−1,i)∗LXi(iM)) � Hj(Xi−1, (πi−1,n)∗LX(M)),

and hence

Hj(X,LX(M)) � Hj(Xn−1, (πn−1,n)∗LX(M)) � Hj(X0, (π0n)∗LX(M)).

The last term vanishes for all j ≥ 1 by the Grothendieck vanishing theorem since
X0 = X(1) is a point. This proves the lemma.
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2.2. Cohomology vanishing
Keep the notation of §2.1, but assume that �(z) = �(z1)+ · · ·+ �(zn). Let φ : X → X(z)
be the restriction to X of the n-th projection (G/B)n → G/B, which is a Demazure-
Hansen desingularization of X(z) (cf. [Ja, II.13.5(7),(8)]). As the Schubert variety X(z)
is normal, it follows from [Ja, II.14.5] that

φ∗OX � OX(z). (8)

Let M be a finite-dimensional B-module. We have from [Ja, Remark in I.5.17] that

φ∗LX(z)(M) � LX(M). (9)

The sheaf LX(z)(M) of OX(z)-modules is locally free of finite rank (cf. [Ja, I.5.16(2)]),
and hence

R•φ∗LX(M) � R•φ∗(φ∗LX(z)(M)) by (9)
� (R•φ∗OX) ⊗X(z) LX(z)(M) by the projection formula [Ja, II.14.6(2)].

In particular, we obtain that

φ∗LX(M) � (φ∗OX) ⊗X(z) LX(z)(M)
� LX(z)(M) by (8). (10)

Taking the global sections of these yields

H0(X,LX(M)) � H0(X(z),LX(z)(M)), (11)

which is finite-dimensional over C by Serre’s theorem.
For λ ∈ Λ, we let Cλ denote the one-dimensional B-module over C on which B acts

via λ through the quotient B → T . Note that if λ ∈ Λω, then by letting 〈ω〉 act trivially
on Cλ we have ω · (b v) = b v = ω(b)v = ω(b)(ω · v) on Cλ for each b ∈ B and v ∈ Cλ.
Now [Ja, II.14.15] generalizes as follows.

Theorem 2.2.1. Let z = z1 · · · zn with �(z) = �(z1)+· · ·+�(zn) and X = X(z1, . . . , zn).
(i) Rjφ∗OX = 0 for all j ≥ 1.
(ii) If λ ∈ Λ+, then Hj(X,LX(Cλ)) = 0 for all j ≥ 1.
(iii) If M is a locally free OX(z)-module of finite rank, then we have H•(X(z),M) �

H•(X, φ∗M).

Proof. We will argue only for (ii). The rest follow just as in [Ja, II.14.15]. By Lemma
2.1.1 we have only to check that all Hj(X(zi),L(H0(iX,L(Cλ)))) vanish for i ∈ [1, n]
and j ≥ 1. We will suppress the obvious subscript from L. Let zi = ri(1) · · · ri(a)

(resp. zi+1 · · · zn = ri(a+1) · · · ri(b)) be a reduced expression of zi (resp. zi+1 · · · zn)
in the Coxeter system (W, {rk | k ∈ I}). If φi : X(ri(1), . . . , ri(a)) → X(zi) is the
desingularization, then

Hj(X(zi),L(H0(iX,L(Cλ)))) � Hj(X(zi),L(H0(X(zi+1 · · · zn),L(Cλ)))) by (11)

� Hj(X(ri(1), . . . , ri(a)), φ∗
iL(H0(X(zi+1 · · · zn),L(Cλ)))) by [Ja, II.14.15.c)]

� Hj(X(ri(1), . . . , ri(a)),L(H0(X(zi+1 · · · zn),L(Cλ)))) by (9)

� Hj(X(ri(1), . . . , ri(a)),L(H0(X(ri(a+1), . . . , ri(b)),L(Cλ)))) by (11) again

� Hj(X(ri(1), . . . , ri(a)), (πab)∗LX(ri(1),...,ri(b))(Cλ)) by [Ja, II.14.1(4)],

the last term of which belongs to the setup of [Ja, II.14.15], and hence vanishes for all
j ≥ 1.
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Going back to the setup of §1, let w = wi1 · · ·win
be a reduced expression of w ∈ Wω

in the Coxeter system (Wω, {wi | i ∈ Î}). Since �(w) = �(wi1) + · · ·+ �(win
) by Lemma

1.3.1, we obtain

Corollary 2.2.2. If M is a finite-dimensional rational B-module, then

H•(X(w),LX(w)(M)) � H•(X(wi1 , . . . , win
),LX(wi1 ,...,win )(M)).

2.3. 〈ω〉 � B-equivariant spectral sequences

If M is a 〈ω〉�B-module, then L(M) = LG/B(M) carries a structure of 〈ω〉-equivariant
OG/B-module given by θω ∈ ModG/B(L(M), ω∗L(M)) such that

f 
→ ω−1 ◦ f ◦ ω, f ∈ L(M)(V ) = Var(q−1(V ), M)B (12)

for each open V of G/B, where q : G → G/B is the quotient. On the other hand, L(M)
has the standard G-equivariant structure ψ ∈ ModG×G/B(a∗L(M), p∗L(M)), where
a : G × G/B → G/B is the G-action on G/B given by the multiplication from the left
and p : G × G/B → G/B is the projection. If ψ′ ∈ ModG/B(L(M), a∗p∗L(M)) is the
adjoint of ψ, the two structures are intertwined by the commutative diagram

L(M)

θω

��

ψ′
�� a∗p∗L(M) a∗(OG �C L(M))

a∗(ω#�Cθω)

��
ω∗L(M)

ω∗ψ′
�� ω∗a∗p∗L(M) ∼ a∗(ω × ω)∗p∗L(M) ∼ a∗(ω∗OG �C ω∗L(M)).

Thus, regarding 〈ω〉 as a reduced algebraic group over C and forming a semi-direct
product 〈ω〉�G of algebraic groups, L(M) comes equipped with a structure of 〈ω〉�G-
equivariant OG/B-module (cf. [MFK, 1.3]).

Now let w ∈ Wω and let w = wi1 · · ·win
be a reduced expression in the Coxeter

system (Wω, {wi | i ∈ Î}). Put for simplicity zj = wij
, 1 ≤ j ≤ n. By Lemma 1.3.1 we

have �(w) = �(z1) + · · ·+ �(zn), so that we may apply the results of §2.2. By our choice
of a lift of each zj in NG(T )ω, the Bott-Samelson variety X = X(z1, . . . , zn) admits a
〈ω〉-action, and the desingularization φ : X(z1, . . . , zn) → X(w) is 〈ω〉 � B-equivariant.
Let M be a 〈ω〉 � B-module. Then the isomorphisms φ∗LX(w)(M) � LX(M) from (9)
and φ∗LX(M) � LX(w)(M) from (10) are both 〈ω〉 � B-equivariant. By the 〈ω〉 � B-
equivariance of the Leray spectral sequence induced by φ, the isomorphism of Corollary
2.2.2

H•(X(w),LX(w)(M)) � H•(X(z1, . . . , zn),LX(z1,...,zn)(M)) (13)

is 〈ω〉 � B-equivariant.
If π1 : X(z1, . . . , zn) → X(z1) is the projection onto the first factor, since π1 is

〈ω〉 � B-equivariant, the Leray spectral sequence

Hi(X(z1), Rjπ1∗LX(z1,...,zn)(M)) ⇒ Hi+j(X(z1, . . . , zn),LX(z1,...,zn)(M)) (14)
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is 〈ω〉 � B-equivariant. Also, if we make LX(z1)(H
0(X(z2, . . . , zn),LX(z2,... ,zn)(M)))

into a 〈ω〉 � B-equivariant sheaf as in (12) by using the 〈ω〉 � B-module structure on
H0(X(z2, . . . , zn),LX(z2,... ,zn)(M)), then the isomorphism (cf. [Ja, II.14.1(4)])

LX(z1)(H
0(X(z2, . . . , zn),LX(z2,... ,zn)(M))) � π1∗LX(z1,... ,zn)(M) (15)

is 〈ω〉 � B-equivariant via the correspondence

f 
→ f̃ with f̃(x, y) = f(x)(y), (16)

where f ∈ Var(q−1(V ), H0(X(z2, . . . , zn),LX(z2,... ,zn)(M)))B with q : PIi1
(C) → X(z1)

the quotient and V an open of X(z1), and f̃ ∈ Var(q−1(V )×CV (z2, . . . , zn), M)B×CBr−1

with V (z2, . . . , zn) = {(g2, . . . , gn) ∈ Gn−1 | g−1
i−1gi ∈ BżiB for all i}. Taking the

derived functors, we obtain a 〈ω〉 � B-equivariant isomorphism

R•π1∗LX(z1,... ,zn)(M) � LX(z1)(H
•(X(z2, . . . , zn),LX(z2,... ,zn)(M))),

and hence a 〈ω〉 � B-equivariant spectral sequence

Hi(X(z1),L(Hj(X(z2, . . . , zn),L(M)))) ⇒ Hi+j(X(z1, . . . , zn),L(M)). (17)

2.4. 〈ω〉 � B-equivaraint Serre duality
Now let P = PJ be a standard parabolic subgroup of G with J an ω-invariant subset of
I. Let Ω1

P/B be the OP/B-module of the 1-differentials over C and Ωn
P/B =

∧n
P/B Ω1

P/B

with n = dimC(P/B). The 〈ω〉 � P -action on P/B makes Ωn
P/B into a 〈ω〉 � P -

equivariant, a fortiori, 〈ω〉�B-equivariant OP/B-module. If M is a 〈ω〉�B-equivariant
OP/B-module that is locally free of finite rank over OP/B , we will need a 〈ω〉 � B-
equivariant Serre duality

Hi(P/B,M∨ ⊗P/B Ωn
P/B) � Hn−i(P/B,M)∗ for all i ∈ [0, n], (18)

where M∨ = ModP/B(M,OP/B) and Hn−i(P/B,M)∗ is the dual 〈ω〉 � B-module of
Hn−i(P/B,M).

Put for simplicity X = P/B. The plain (nonequivariant) Serre duality asserts that
the Yoneda-Cartier pairing (cf. [AK, IV, Th. (1.1)], [Iv, I.8])

Exti
X(M,Ωn

X) × Hn−i(X,M) → Hn(X, Ωn
X)

is perfect. The standard argument verifies the pairing to be 〈ω〉� B-equivariant, which
yields a 〈ω〉 � B-equivariant isomorphism Hn−i(X,M) � Hi(X,M∨ ⊗X Ωn

X)∗ ⊗C

Hn(X, Ωn
X). Thus the 〈ω〉 � B-equivariance of (18) will be a consequence of the trivi-

ality of the 〈ω〉 � B-action on Hn(X, Ωn
X). Note that the ω-action on Ωn

X is not trivial
(cf. (19) and (27) below).

To see the triviality of the action on Hn(X, Ωn
X), take a 〈ω〉 � P -module V and a

〈ω〉 � P -equivariant closed immersion ı : X → P(V ); for example, a simple rational
P -module of a sufficiently dominant ω-fixed highest weight will do. Set P = P(V ),
v = dimC P, and Ωv

P
=

∧v
P

Ω1
P
. Since Var(P, P)× � PGL(V ) (cf. [Ha, II, Example
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7.1]) and since Hv(P,Ωv
P
) is one-dimensional, PGL(V ) acts trivially on Hv(P,Ωv

P
), so

therefore does 〈ω〉 � P . On the other hand, the isomorphism of OX -modules (cf. [AK,
I, Th. (4.6)])

Ωn
X � ı∗ExtrP(ı∗OX ,Ωv

P) with r = v − n

is 〈ω〉 � P -equivariant, and the C-linear isomorphism (cf. [Ha, III, Lemma 7.4])

ε : ModX(Ωn
X , ı∗ExtrP(ı∗OX ,Ωv

P)) → Extr
P(ı∗Ωn

X ,Ωv
P)

is 〈ω〉 � P -equivariant. In the commutative diagram

Extr
P(ı∗Ωn

X ,Ωv
P
) × Hn(P, ı∗Ωn

X) �� Hv(P,Ωv
P
)

ModX(Ωn
X , ı∗Extr

P
(ı∗OX ,Ωv

P
)) × Hn(P, ı∗Ωn

X)

ε×Hn(P,ı∗Ωn
X)

��

ModX(Ωn
X ,Ωn

X) × Hn(P, ı∗Ωn
X)

∼

��

Hn(P, ı∗Ωn
X),

idΩn
X
×Hn(P,ı∗Ωn

X)
��

��

we have dimC Hv(P,Ωv
P
) = 1 = dimC Hn(P, ı∗Ωn

X) and the top horizontal map is a
perfect pairing, hence the right vertical map is bijective. Since idΩn

X
is obviously 〈ω〉�P -

equivariant, its image in Extr
P(ı∗Ωn

X ,Ωv
P
) is fixed under 〈ω〉 � P , and hence the right

vertical isomorphism is 〈ω〉� P -equivariant. It follows that Hn(X, Ωn
X) � Hn(P, ı∗Ωn

X)
must be a trivial 〈ω〉 � P -module, as desired.

Note finally that we have an isomorphism of 〈ω〉 � P -equivariant OP/B-modules

Ω1
P/B � LP/B((Lie(P )/Lie(B))∗), (19)

and hence the 〈ω〉 � B-equivariant Serre duality (18) reads, for each i ∈ [0, n], as

Hi(P/B,M∨ ⊗P/B LP/B(
∧n

C
(Lie(P )/Lie(B))∗)) � Hn−i(P/B,M)∗. (20)

3. Twining character formula for Demazure modules

Resume the setup of §2. Fix w ∈ Wω and let X(w) be the associated Schubert
variety over C. For a 〈ω〉 � B-module M , the ω-Euler characteristic χω

w(M) is defined
to be

χω
w(M) =

∑
j≥0

(−1)j chω(Hj(X(w),LX(w)(M))) ∈ C[Λω].

Let w = wi1 · · ·win be a reduced expression of w ∈ Wω in the Coxeter system (Wω, {wi |
i ∈ Î}). We will show in this section that

χω
w(M) = D̂i1 · · · D̂in

(chω(M)),

where D̂j for j = i1, . . . , in is the ω-Demazure operator defined in §1.4. In particular, we
will obtain a twining character formula of the Demazure module H0(X(w),LX(w)(Cλ))
for λ ∈ Λω

+, where Cλ is the one-dimensional 〈ω〉 � B-module on which B acts by the
weight λ through the quotient B → T and 〈ω〉 trivially.
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3.1. Formula for the ω-Euler characteristics
Set D̂w = D̂i1 · · · D̂in . Then we are to show

χω
w(M) = D̂w(chω(M)). (21)

Let us first make some reductions. Since both sides of (21) are additive in M , replacing
M by MU = {m ∈ M | u m = m for all u ∈ U}, we may assume that the unipotent
radical U of the Borel subgroup B = T � U acts trivially on M . Consider the T -
weight space decomposition M =

∐
ν∈Λ Mν . Let us denote by Λ/〈ω〉 a complete set of

representatives of the 〈ω〉-orbits in Λ, and set for each µ ∈ Λ/〈ω〉,
M (µ) =

∐
ν∈〈ω〉·µ

Mν .

Then we have a direct sum decomposition of M

M =
∐

µ∈Λ/〈ω〉
M (µ).

Note that each M (µ) is a 〈ω〉 � B-submodule of M , and that both sides of (21) vanish
on M (µ) unless µ ∈ Λω (in which case M (µ) = Mµ). Moreover, since ωN = 1, the action
of ω on Mµ for µ ∈ Λω is semi-simple. Hence, by the additivity in M of both sides of
(21), we may assume that M is one-dimensional of weight µ ∈ Λω on which ω is acting
by a scalar ζk for a primitive N -th root of unity ζ in C and k ∈ Z. We will denote such
M by Cµ,k. Thus we are reduced to showing that

χω
w(Cµ,k) = D̂w(chω(Cµ,k)), (22)

where chω(Cµ,k) = ζk e(µ).
Put for simplicity zj = wij

, 1 ≤ j ≤ n. From §2.3 we have an isomorphism (13) of
〈ω〉 � B-modules

H•(X(w),LX(w)(Cµ,k)) � H•(X(z1, . . . , zn),LX(z1,... ,zn)(Cµ,k)), (23)
and for each s ∈ [1, n − 1], a 〈ω〉 � B-equivariant spectral sequence (17)

Hi(X(zs),L(Hj(X(zs+1, . . . , zn),L(Cµ,k)))) ⇒ Hi+j(X(zs, . . . , zn),L(Cµ,k)). (24)
It follows that
χω

w(Cµ,k) =
∑
j≥0

(−1)j chω(Hj(X(z1, . . . , zn),LX(z1,... ,zn)(Cµ,k))) by (23)

=
∑
j≥0

(−1)j

∑
i≥0

(−1)i chω(Hi(X(z1),L(Hj(X(z2, . . . , zn),L(Cµ,k)))))

 by (24)

=
∑
j≥0

(−1)j χω
z1

(Hj(X(z2, . . . , zn),LX(z2,... ,zn)(Cµ,k))). (25)

We will prove (22) by induction on n. Now assume that n = 1 and that w = wi for
some i ∈ Î. So put J = Ii and let P = PJ be the standard parabolic subgroup of G
associated to J . We are to show

χω
wi

(Cµ,k) = D̂i(ζke(µ)). (26)
Assume first that 〈µ, α∨

i 〉 ≥ 0 (and hence that 〈µ, α∨
k 〉 ≥ 0 for all k ∈ J). Let LJ(µ)

be the simple rational PJ -module of highest weight µ admitting a 〈ω〉-action as in §1.6,
and let ζk be the one-dimensional trivial PJ -module with ω acting by the scalar ζk.
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Lemma 3.1.1. Let the notation and assumption be as above. Then we have the follow-
ing isomorphism of 〈ω〉 � PJ -modules.

H0(PJ/B,LPJ/B(Cµ,k)) � LJ(µ) ⊗C ζk.

Proof. The left-hand side realizes a simple rational PJ -module of highest weight µ (cf.
[Ja, I.6.11 and II.4.6]). Since ω acts on its (nonzero) highest weight vector by the scalar
ζk (cf. [Ja, II.2.6]), the assertion follows.

Now we deduce that

χω
wi

(Cµ,k) = chω(H0(P/B,LP/B(Cµ,k))) by Kempf’s vanishing theorem [Ja, II.4.5]

= chω(LJ(µ) ⊗C ζk) by Lemma 3.1.1

= ζkchω(LJ(µ))

= ζk D̂i(e(µ)) by Lemma 1.6.1

= D̂i(ζke(µ)).

If 〈µ, α∨
i 〉 = −1 (and hence 〈µ, α∨

k 〉 = −1 for all k ∈ J), then both sides of (26) vanish
(cf. [Ja, II.5.5]).

Assume finally that 〈µ, α∨
i 〉 ≤ −2 (and hence that 〈µ, α∨

k 〉 ≤ −2 for all k ∈ J). Set
ρJ = 1

2

∑
α∈∆+

J
α with ∆+

J = ∆+∩
∑

k∈J Zαk the positive root system of PJ . By direct
checking (see the proof of [N3, Prop. 3.2.2]), using the 〈ω〉 � T -module isomorphism
(Lie(P )/Lie(B))∗ �

⊕
α∈∆+

J
Cfα, we see that as 〈ω〉 � B-modules,

∧�(wi)
C

(Lie(P )/Lie(B))∗ � C−2ρJ ,0 ⊗C (−1)�(wi)−1, (27)

where �(wi) = dimC(P/B) and (−1)�(wi)−1 is the one-dimensional 〈ω〉�B-module with
B acting trivially and ω by the scalar (−1)�(wi)−1. Then the 〈ω〉 � B-equivariant Serre
duality (20) reads

Hj(P/B,LP/B(Cµ,k))∗ � H�(wi)−j(P/B,LP/B(C−µ−2ρJ ,−k ⊗C (−1)�(wi)−1))

�
{

H0(P/B,LP/B(C−µ−2ρJ ,−k)) ⊗C (−1)�(wi)−1 if j = �(wi),
0 otherwise (by Kempf).

(28)

Lemma 3.1.2. Let J be an ω-invariant subset of I, wJ the longest element of the Weyl
group WJ of PJ , and let ν ∈ Λω be such that 〈ν, α∨

k 〉 ≥ 0 for all k ∈ J . Then we have
the following isomorphism of 〈ω〉 � PJ -modules.

LJ(ν)∗ � LJ(−wJ(ν)).

Proof. Note that a (nonzero) highest weight vector v∗+ of the dual module LJ(ν)∗ is
the dual element of a lowest weight vector ẇJ v+ of LJ(ν), with v+ a (nonzero) highest
weight vector of LJ(ν). Since wJ ∈ Wω is fixed by ω (cf. Remark 1.3.2), so is ẇJ v+,
and hence also v∗+ ∈ LJ(ν)∗. This proves the lemma.
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The isomorphism (28) together with Lemmas 3.1.1 and 3.1.2 implies that, as 〈ω〉�B-
modules,

H�(wi)(P/B,LP/B(Cµ,k)) �
(
LJ(−µ − 2ρJ)∗ ⊗C ζk

)
⊗C (−1)�(wi)−1

� LJ(wi(µ + 2ρJ)) ⊗C ζk ⊗C (−1)�(wi)−1. (29)

Then, setting µ̂ = (P ∗
ω)−1(µ),

χω
wi

(Cµ,k) = (−1)�(wi) chω(LJ(wi(µ + 2ρJ)) ⊗C ζk ⊗C (−1)�(wi)−1) by (29)

= −ζk chω(LJ(wi(µ + 2ρJ)))

= −ζk D̂i(e(wi(µ + 2ρJ))) by Lemma 1.6.1

= −ζk
(
P ∗

ω ◦ Dr̂i
◦ (P ∗

ω)−1
)
(e(wi(µ + 2ρJ))) by (6)

= −ζk
(
P ∗

ω ◦ Dr̂i

)
(e(r̂i(µ̂ + α̂i))) since (P ∗

ω)−1(2ρJ) = α̂i

= −ζk P ∗
ω(−Dr̂i

(e(µ̂)))

= ζk
(
D̂i ◦ P ∗

ω

)
(e(µ̂)) by (6)

= ζk D̂i(e(µ))

= D̂i(ζke(µ)).

Thus in all cases (26) holds, and hence

χω
wi

(M) = D̂i(chω(M)) (30)

holds for any 〈ω〉 � B-module M .
Now let us return to the original setup, and let w = wi1 · · ·win be a reduced expression

of w ∈ Wω in the Coxeter system (Wω, {wi | i ∈ Î}). Then we get that

χω
w(Cµ,k) =

∑
j≥0

(−1)j χω
wi1

(Hj(X(wi2 , . . . , win),LX(wi2 ,... ,win )(Cµ,k))) by (25)

=
∑
j≥0

(−1)j D̂i1

(
chω(Hj(X(wi2 , . . . , win),LX(wi2 ,... ,win )(Cµ,k)))

)
by (30)

= D̂i1

∑
j≥0

(−1)j chω(Hj(X(wi2 , . . . , win),LX(wi2 ,... ,win )(Cµ,k)))


= D̂i1

(
χω

wi2 ···win
(Cµ,k)

)
.

Here, since �̂(wi2 · · ·win) = n − 1, we have by the induction hypothesis that

χω
wi2 ···win

(Cµ,k) = D̂i2 · · · D̂in(chω(Cµ,k)).
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Therefore, we finally obtain that

χω
w(Cµ,k) = D̂i1D̂i2 · · · D̂in

(chω(Cµ,k)),

proving (22) and hence (21).
If λ ∈ Λω

+, then for any Schubert variety X(w),

Hj(X(w),LX(w)(λ)) = 0 for all j ≥ 1

by the Demazure vanishing theorem [Ja, II.14.15] of Andersen, Mehta-Ramanathan,
Ramanan-Ramanathan, and Seshadri (cf. also [Kan]). Hence we have obtained

χω
w(M) =

∑
j≥0

(−1)j chω(Hj(X(w),LX(w)(M))) = D̂w(chω(M)) ∈ C[Λω]

for a finite-dimensional rational 〈ω〉 � B-module M and w ∈ Wω, and in particular,

chω(H0(X(w),LX(w)(Cλ))) = D̂w(e(λ))

for λ ∈ Λω
+. Namely, we have proved Theorem 0.1 in the introduction.

Theorem 0.1 reveals that there exists a striking relation between the ω-Euler char-
acteristic χω

w(Cλ) ∈ C[(h∗
Z
)0] for g and the ordinary Euler characteristic for the orbit

Lie algebra ĝ. To state the relation, we need some notation. Recall from Remark 1.2.1
that the orbit Lie algebra ĝ is the dual Lie algebra t

(
(tg)

tω
)

of the (semi-simple) fixed
point subalgebra (tg)

tω = {x ∈ tg | (tω)(x) = x} of tg by tω ∈ Aut(tg). Let Ĝ be a
connected, simply connected semi-simple linear algebraic group over C with maximal
torus T̂ and Borel subgroup B̂ ⊃ T̂ such that Lie(Ĝ) = ĝ, Lie(T̂ ) = ĥ, and Lie(B̂) = b̂.
For ŵ ∈ Ŵ � NĜ(T̂ )/T̂ , we take a right coset representative ˙̂w ∈ NĜ(T̂ ) of ŵ, and
define the Schubert variety X̂(ŵ) over C by

X̂(ŵ) = B̂ ˙̂wB̂/B̂ = B̂ ˙̂wB̂/B̂ ⊂ Ĝ/B̂.

For each λ̂ ∈ ĥ∗
Z
, we denote by LX̂(ŵ)(Cλ̂) the (locally free) B̂-equivariant sheaf of

OX̂(ŵ)-modules associated to the one-dimensional B̂-module Cλ̂ on which B̂ acts by the

weight λ̂ through the quotient B̂ → T̂ .
Now we are ready to state the following

Corollary 3.1.3. Let λ ∈ (h∗
Z
)0 and w ∈ Wω. We set λ̂ = (P ∗

ω)−1(λ) ∈ ĥ∗
Z

and
ŵ = Θ−1(w) ∈ Ŵ . Then we have in the algebra C[(h∗

Z
)0],

χω
w(Cλ) =

∑
j≥0

(−1)j chω(Hj(X(w),LX(w)(Cλ)))

= P ∗
ω

∑
j≥0

(−1)j ch Hj(X̂(ŵ),LX̂(ŵ)(Cλ̂))

 ,

where ch Hj(X̂(ŵ),LX̂(ŵ)(Cλ̂)) ∈ C[ĥ∗
Z
] for j ∈ Z≥0 is the ordinary character of the

j-th cohomology group Hj(X̂(ŵ),LX̂(ŵ)(Cλ̂)) of X̂(ŵ).
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Proof. Let w = wi1wi2 · · ·win
be a reduced expression of w ∈ Wω in the Coxeter system

(Wω, {wi | i ∈ Î}). Then ŵ = Θ−1(w) = r̂i1 r̂i2 · · · r̂in is a reduced expression of ŵ ∈ Ŵ

in the Coxeter system (Ŵ , {r̂i | i ∈ Î}). Hence, by the ordinary Demazure character
formula [Ja, II.14.18] for the orbit Lie algebra ĝ, we have in the algebra C[ĥ∗

Z
],∑

j≥0

(−1)j ch Hj(X̂(ŵ),LX̂(ŵ)(Cλ̂)) = Dr̂i1
Dr̂i2

· · ·Dr̂in
(e(λ̂)). (31)

By applying P ∗
ω to both sides of the equality (31), we obtain in the algebra C[(h∗

Z
)0],

P ∗
ω

∑
j≥0

(−1)j ch Hj(X̂(ŵ),LX̂(ŵ)(Cλ̂))

 = P ∗
ω

(
Dr̂i1

Dr̂i2
· · ·Dr̂in

(e(λ̂))
)

by (31)

= D̂i1D̂i2 · · · D̂in
(P ∗

ω(e(λ̂))) by (6)

= D̂i1D̂i2 · · · D̂in(e(λ))

=
∑
j≥0

(−1)j chω(Hj(X(w),LX(w)(Cλ))),

where the last equality is by Theorem 0.1. This proves the corollary.

3.2. Joseph’s modules

Let us finally return to Joseph’s module Jw(λ) with w ∈ Wω and λ ∈ Λω
+. Thus let

v∗λ be a (nonzero) lowest weight vector of the dual module L(λ)∗ (which is the dual
element of a (nonzero) highest weight vector vλ of L(λ)), and let ẇ ∈ NG(T )ω be a
representative of w ∈ Wω. Since v∗λ is fixed by ω, so is ẇ v∗λ. Joseph’s module Jw(λ) of
highest weight −w(λ) in L(λ)∗ is defined to be

Jw(λ) = U(b) (ẇ v∗λ) ⊂ L(λ)∗,

where U(b) is the universal enveloping algebra of b = Lie(B). Note that, since ω ·
(ẇ v∗λ) = ẇ v∗λ, Joseph’s module Jw(λ) is a 〈ω〉�B-submodule of L(λ)∗. Moreover, since
ẇ0 v∗λ is a (nonzero) highest weight vector of L(λ)∗ fixed by ω, there is an isomorphism
of 〈ω〉 � G-modules

L(λ)∗ � L(−w0(λ)), (32)

which enables us to regard Jw(λ) as a 〈ω〉 � B-submodule of L(−w0(λ)). Then we
obtain a short exact sequence of 〈ω〉 � B-modules

0 ← Jw(λ)∗ ← L(−w0(λ))∗ ← Jw(λ)⊥ ← 0,

with Jw(λ)⊥ = {φ ∈ L(−w0(λ))∗ | φ(Jw(λ)) = 0}. On the other hand, Lemma 3.1.1 for
the case J = I combined with (32) yields an isomorphism of 〈ω〉 � G-modules

H0(G/B,LG/B(Cλ)) � L(−w0(λ))∗.
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Since the restriction map

H0(G/B,LG/B(Cλ)) → H0(X(w),LX(w)(Cλ))

is a 〈ω〉 � B-equivariant surjection by [Ja, II.14.19], we obtain from [Ja, II.14.19(2)] a
commutative diagram of short exact sequences of 〈ω〉 � B-modules

0 Jw(λ)∗�� L(−w0(λ))∗��

∼

Jw(λ)⊥�� 0��

0 H0(X(w),LX(w)(Cλ))�� H0(G/B,LG/B(Cλ))�� Jw(λ)⊥�� 0,��

and hence an isomorphism of 〈ω〉 � B-modules

Jw(λ)∗ � H0(X(w),LX(w)(Cλ)),

or equivalently

Jw(λ) � H0(X(w),LX(w)(Cλ))∗. (33)

Here we employ an elementary lemma from linear algebra.

Lemma 3.2.1. Let S ∈ M(m, C) be an m × m complex matrix such that Tr(S) ∈ R.
Suppose that Sk = Im for some k ∈ Z≥1, where Im is the identity matrix. Then we
have that Tr(S−1) = Tr(S).

We now define a C-linear conjugation ¯ : C[Λω] → C[Λω] by∑
µ∈Λω

aµ e(µ) =
∑

µ∈Λω

aµ e(−µ) with aµ ∈ C for µ ∈ Λω.

Theorem 3.2.2. Let λ ∈ Λω
+ and w ∈ Wω. Then we have in C[Λω],

chω(Jw(λ)) = chω(H0(X(w),LX(w)(Cλ))).

Proof. By (33), we get that

chω(Jw(λ)) =
∑

µ∈Λω

Tr((ω−1)∗|(H0(X(w),LX(w)(Cλ))∗)µ
) e(µ),

where the linear operator (ω−1)∗ ∈ GL(H0(X(w),LX(w)(Cλ))∗) is the transposed op-
erator of ω−1 ∈ GL(H0(X(w),LX(w)(Cλ))), which represents ω ∈ 〈ω〉 via the con-
tragredient representation of 〈ω〉 on the dual space H0(X(w),LX(w)(Cλ))∗. Here, by
Corollary 3.1.3, we see that

Tr(ω|H0(X(w),LX(w)(Cλ))µ
) ∈ Z≥0 for all µ ∈ Λω.

In addition, for each µ ∈ Λω, the µ-weight space of H0(X(w),LX(w)(Cλ))∗ is natu-

rally identified with the dual space
(
H0(X(w),LX(w)(Cλ))−µ

)∗
. Hence the assertion

immediately follows from Lemma 3.2.1 since ωN = 1. This completes the proof.

By combining Theorems 0.1 and 3.2.2, we obtain the following
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Corollary 3.2.3. Let λ ∈ Λω
+ and w ∈ Wω. Then we have in C[Λω],

chω(Jw(λ)) = D̂w(e(λ)).

Finally, by combining Corollary 3.1.3 and Theorem 3.2.2, we obtain a remarkable
relation between the twining character chω(Jw(λ)) of Joseph’s module Jw(λ) for g and
the ordinary character of Joseph’s module for the orbit Lie algebra ĝ. Namely, we have
Corollary 0.2 in the introduction.
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