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Abstract. In 1958 E. Heinz obtained a lower bound for |∂xF |2 + |∂yF |2,
where F is a one-to-one harmonic mapping of the unit disc onto itself keeping
the origin fixed. We improve Heinz’s inequality in the case where F is the

Poisson integral of a sense-preserving homeomorphic self-mapping f of the unit
circle. As an application we infer a version of Heinz’s inequality for harmonic

and quasiconformal self-mappings of the unit disc.

Introduction

Write Hom+(T) for the class of all sense-preserving homeomorphic self-mappings
of the unit circle T := {z ∈ C : |z| = 1}. Given a function f : T → C integrable on
T we denote by P[f ](z) the Poisson integral of f , i.e.

P[f ](z) :=
1
2π

∫
T

f(u)Re
u+ z

u − z
|du| , z ∈ D ,(0.1)

where D := {z ∈ C : |z| < 1} is the unit disc. It is well known that the Jacobian
J[P[f ]] is positive on D for every f ∈ Hom+(T); see e.g. [1] or [4, p. 43]. Modifying
considerations in [4, pp. 42-43] we obtain a stronger result given by Theorem 1.2
in Section 1. This implies [6, Remark 2.3] and thereby completes consideration in
[6].
In 1958 E. Heinz proved that the inequality

|∂xF (z)|2 + |∂yF (z)|2 ≥ 2
π2

(0.2)

holds for every z = x + iy ∈ D, provided F is a one-to-one harmonic mapping of
D onto itself and F (0) = 0; cf. [2]. Applying Theorem 1.2 and [6, Lemma 2.1], we
are able to improve Heinz’s inequality (0.2) in two cases. The first one, discussed
in Section 2, deals with the case where F = P[f ] for some f ∈ Hom+(T); see
Theorem 2.2. The second one, discussed in Section 3, deals with the case where F
is a quasiconformal (qc. in abbreviation) mapping; see Theorem 3.2. The results
were presented on Seminar: Generalized Cauchy-Riemann Structures and Surface
Properties of Crystals, 23-30 July, 2001, Bȩdlewo-Czȩstochowa, Poland.
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1. A lower estimate for the Jacobian

Given f ∈ Hom+(T) and z ∈ T set

df := ess inf
z∈T

|f ′(z)| ,(1.1)

where

f ′(z) := lim
u→z

f(u)− f(z)
u − z

(1.2)

provided the limit exists and f ′(z) := 0 otherwise.

Lemma 1.1. If f ∈ Hom+(T), then 0 ≤ df ≤ 1 and for every Borel subset I ⊂ T,

sin
|f(I)|1
2

≥ df sin
|I |1
2

,(1.3)

where |I |1 is the arc-length measure of I.

Proof. Let m := df . Obviously m ≥ 0. If V is a Borel subset of T, then

|f(V )|1 ≥
∫

V

|f ′(z)||dz| ≥ m

∫
V

|dz| = m|V |1 .(1.4)

In particular |T|1 = |f(T)|1 ≥ m|T|1, and hence m ≤ 1. Applying (1.4) we obtain

|f(I)|1 ≥ m|I |1 and |f(T \ I)|1 ≥ m|T \ I |1 =m(2π − |I |1) .(1.5)

Since f(T \ I) = T \ f(I) we conclude from (1.5) that

|f(I)|1 = |T \ (T \ f(I)|1 = 2π − |f(T \ I)|1 ≤ 2π −m(2π − |I |1) ,(1.6)

and hence

m|I |1 ≤ |f(I)|1 ≤ 2π −m(2π − |I |1) .(1.7)

Since 0 ≤ |f(I)|1/2 ≤ π we conclude from (1.7) that

(1.8) sin(|f(I)|1/2) ≥min{sin(m|I |1/2) , sin(π −m(π − |I |1/2))}
= min{sin(m|I |1/2) , sin(m(π − |I |1/2))} .

Since R � t �→ sin t is a concave function on [0;π], we have sin(mt) ≥ m sin t for
0 ≤ t ≤ π. Thus

sin(|f(I)|1/2) ≥ mmin{sin(|I |1/2) , sin(π − |I |1/2))} = m sin(|I |1/2)(1.9)

follows from (1.8), which yields (1.3).

Theorem 1.2. If f ∈ Hom+(T), then

inf
z∈D

J[P[f ]](z) ≥ d3
f .(1.10)

Proof. Given h ∈ Hom+(T), t ∈ R and s ∈ [0;π] define

h(t, s)1 : = |h(I(eit, ei(t+s)))|1 ,

h(t, s)2 : = |h(I(ei(t+s), ei(t+π)))|1 ,

h(t, s)3 : = |h(I(ei(t+π), ei(t+s+π)))|1 ,

h(t, s)4 : = |h(I(ei(t+s+π), ei(t+2π)))|1 ,

(1.11)
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where I(z, w) is a closed arc directed counterclockwise from z ∈ T to w ∈ T.
Following Douady and Earle [1] the Jacobian J[P[h]](0) of h is equal to

J[P[h]](0) =
1
π2

∫ π

0

(sin s

∫ 2π

0

Rh(t, s)dt)ds ,(1.12)

where

Rh(t, s) := sin
h(t, s)1 + h(t, s)2

2
sin

h(t, s)2 + h(t, s)3
2

sin
h(t, s)1 + h(t, s)3

2
;

see also [4, pp. 42-43]. For a ∈ D and z ∈ D write

ha(z) :=
z − a

1− az
.

Fix z ∈ D and set

h(u) := f ◦ h−z(u) , u ∈ T .(1.13)

From (1.12) and (1.3) it follows that

J[P[h]](0) =
1
π2

∫ π

0

(sin s

∫ 2π

0

Rf◦h−z
(t, s)dt)ds

≥
d3

f

π2

∫ π

0

(sin s

∫ 2π

0

Rh−z
(t, s)dt)ds = d3

f J[P[h−z]](0) .

Hence

J[P[f ]](z) = J[P[h ◦ hz]](z) = J[P[h] ◦ hz](z) = J[P[h]](hz(z)) J[hz](z)

= J[P[h]](0) J[hz](z) ≥ d3
f J[h−z](0) J[hz ](z) = d3

f J[h−z](hz(z)) J[hz](z)

= d3
f J[h−z ◦ hz](z) = d3

f J[id](z) = d3
f ,

which proves (1.10).

2. The case where F is given by the Poisson integral

Recall that the formal derivative operators ∂ and ∂̄ are defined by the usual real
partial derivatives ∂x and ∂y as below

∂ :=
1
2
(∂x − i∂y) and ∂̄ :=

1
2
(∂x + i∂y) .(2.1)

Let f ∈ Hom+(T). From [6, Lemma 2.1] it follows that for a.e. z ∈ T both
the functions ∂ P[f ] and ∂̄ P[f ] have radial limiting values at z and the following
equalities hold

2z lim
r→1−

∂ P[f ](rz) = lim
r→1−

[
f(z)−P[f ](rz)

1− r
+ zf ′(z)

]

2z lim
r→1−

∂̄ P[f ](rz) = lim
r→1−

[
f(z)−P[f ](rz)

1− r
− zf ′(z)

]
.

(2.2)

Thus we may define

d∗f := ess inf
z∈T

∣∣∣∣ lim
r→1−

∂ P[f ](rz)
∣∣∣∣ .(2.3)

Following Heinz [2], we will prove the following lemma.
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Lemma 2.1. If f ∈ Hom+(T) and if F = P[f ], then

inf
z∈D

|∂F (z)| ≥ d∗f .(2.4)

Proof. From [5, (1.10)] it follows that

|∂F (z)|2 >
1
2π2

(
1− |a|
1 + |a|

)2

> 0 , z ∈ D ,

where a ∈ D is a unique point satisfying F (−a) = 0. Hence the holomorphic
function 1/∂F on D belongs to the Hardy class H∞, and so

sup
z∈D

|∂F (z)|−1 ≤ ess sup
z∈T

| lim
r→1−

∂F (rz)|−1 .

Then (2.4) fol lows from (2.3), as claimed.

Theorem 2.2. If f ∈ Hom+(T) and if F := P[f ] satisfies F (0) = 0, then

inf
z∈D

|∂F (z)|2 ≥ 1
π2

+
1
4
d2

f +
1
4
max{df , 2d3

f}(2.5)

and

inf
z∈D

(|∂xF (z)|2 + |∂yF (z)|2) ≥ 2
π2

+
1
2
d2

f +
1
2
max{df , 2d3

f}(2.6)

Proof. From (2.2) it follows that for a.e. z ∈ T the limits

lim
r→1−

f(z)− F (rz)
1− r

and lim
r→1−

J[F ](rz)

exist and the following equalities hold:

2 lim
r→1−

(|∂F (rz)|2 + |∂̄F (rz)|2) = |f ′(z)|2 + lim
r→1−

∣∣∣∣f(z)− F (rz)
1− r

∣∣∣∣
2

(2.7)

as well as

lim
r→1−

(|∂F (rz)|2 − |∂̄F (rz)|2) = lim
r→1−

J[F ](rz) .(2.8)

Combining (2.7) with (2.8) we see that the equality

lim
r→1−

|∂F (rz)|2 = 1
4
|f ′(z)|2 + 1

4
lim

r→1−

∣∣∣∣f(z)− F (rz)
1− r

∣∣∣∣
2

+
1
2
lim

r→1−
J[F ](rz)(2.9)

holds for a.e. z ∈ T. Since F is harmonic on D, F (D) = D and F (0) = 0, we
conclude from [2, Lemma] that

|F (z)| ≤ 4
π
arctan |z| , z ∈ D .(2.10)

Actually, this is a version of Schwarz’s lemma for harmonic self-mappings of D.
From (2.10) we see that for every z ∈ T and r ∈ [0; 1),∣∣∣∣f(z)− F (rz)

1− r

∣∣∣∣ ≥ |f(z)| − |F (rz)|
1− r

≥ 1− 4
π arctan r

1− r
→ 2

π
as r → 1− .(2.11)

By [6, Theorem 2.2] and by Theorem 1.2 we have

lim
r→1−

J[F ](rz) ≥ 1
2
max{df , 2d3

f} for a.e. z ∈ T .
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Combining this with (2.9) and (2.11) we obtain

(d∗f )
2 ≥ 1

π2
+
1
4
d2

f +
1
4
max{df , 2d3

f}

Thus Lemma 2.1 yields (2.5). Applying (2.1) we get

|∂xF (z)|2 + |∂yF (z)|2 = 2(|∂F (z)|2 + |∂̄F (z)|2) , z ∈ D .(2.12)

Combining (2.5) with (2.12) we obtain (2.6), which completes the proof.

3. The case where F is a quasiconformal mapping

It is well known that a quasiconformal self-mapping F of D has a homeomorphic
extension F ∗ to the closure D; cf. [3]. We call the restriction f := F ∗

|T the boundary
limiting valued function of F . Suppose that F is additionally a harmonic mapping.
Then F = P[f ] on D, as a unique solution to the Dirichlet problem with the
boundary function f .

Lemma 3.1. Given K ≥ 1 let F be a K-quasiconformal and harmonic self-mapping
of D satisfying F (0) = 0. If f is the boundary limiting valued function of F , then

df ≥ 2
πK

.(3.1)

Proof. From (2.2) it follows that for a.e. z ∈ T,

lim
r→1−

[z∂F (rz) + z∂̄F (rz)] = lim
r→1−

f(z)− F (rz)
1− r

lim
r→1−

[z∂F (rz)− z∂̄F (rz)] = zf ′(z) .
(3.2)

Since F is a K-quasiconformal mapping, we see from (3.2) that for a.e. z ∈ T,

|f ′(z)| = lim
r→1−

|z∂F (rz)− z∂̄F (rz)| ≥ lim
r→1−

(|∂F (rz)| − |∂̄F (rz)|)

≥ 1
K

lim
r→1−

(|∂F (rz)|+ |∂̄F (rz)|) ≥ 1
K

lim
r→1−

(|z∂F (rz) + z∂̄F (rz)|)

=
1
K

lim
r→1−

∣∣∣∣f(z)− F (rz)
1− r

∣∣∣∣ .

Hence by (2.11) we deduce (3.1).

Theorem 3.2. Given K ≥ 1 let F be a K-quasiconformal and harmonic self-
mapping of D satisfying F (0) = 0. If f is the boundary limiting valued function of
F , then the inequalities

|∂F (z)| ≥ K + 1
Kπ

(3.3)

and

|∂xF (z)|2 + |∂yF (z)|2 ≥ 2
π2

(
1 +

1
K

)2

(3.4)

hold for every z ∈ D.

Proof. Since F is a K-quasiconformal mapping, we have

(K + 1)|∂̄F (w)| ≤ (K − 1)|∂F (w)| , w ∈ D ,
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and hence

2(K2 + 1)|∂F (w)|2 ≥ (K + 1)2(|∂F (w)|2 + |∂̄F (w)|2) , w ∈ D .(3.5)

Combining (2.7) with (3.1) and (2.11) we see that for a.e. z ∈ T,

lim
r→1−

(|∂F (rz)|2 + |∂̄F (rz)|2) ≥ 2
π2K2

+
2
π2

=
2
π2

(
1 +

1
K2

)
.(3.6)

From this and (3.5) it follows that for a.e. z ∈ T,

lim
r→1−

|∂F (rz)| ≥ K + 1
πK

.(3.7)

Applying now (2.4) we deduce (3.3). Then (3.4) follows directly from (3.3) and
(2.12).
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