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0. Introduction

Let L be the set of the types [L] of oriented links L in S3, and Lf the set of the

types [L, f ] where L is an oriented link in S3 and f is a finite regular coloring of

L. Let M be the set of the types [M ] of closed connected oriented 3-manifolds M .

By W. B. R. Lickorish [20] and A. H. Wallace [26], the Dehn surgery construction

induces a surjective map which we call the Dehn surgery map

Df : Lf −→ M

sending every colored link type [L, f ] to the type [χ(L, f)] of the Dehn surgery

manifold χ(L, f). In this paper, we shall construct some faithful right inverses

Af : M −→ Lf

of the Dehn surgery map Df. For this purpose, we shall observe that the set L is

a well-ordered set by an order which we call the braid order. Let L0 be the subset

of Lf consisting of the type [L, 0] of a 0-colored link (L, 0). We shall construct a

further special faithful right inverse

a0
∞ : M −→ L0

of the Dehn surgery map

D0 = Df|L0 : L0 −→ M

(which is also a surjective map) such that the oriented link LM given by a0
∞([M ]) =

[LM , 0] is a hyperbolic link possibly with infinite volume and the exterior E(LM ) de-

termines the link LM up to orientations. For this purpose, we study how to change

the Dehn surgery description of a disconnected colored link by the topological imi-

tation theory, which has been developed in [6,7,8,9,10,11,12,13,14,15,16,17]. We say

that a coloring f of an oriented link L is distinguished if [χ(L, f ′)] 6= [χ(L, f)] for ev-

ery coloring f ′ of L with f ′ 6= f . We shall show that for every disconnected colored

link (L, fL) such that fL is a finite regular coloring of L and [χ(L, fL)] 6= [S3], there

is a normal imitation q : (S3, L∗) −→ (S3, L) such that L∗ is a totally hyperbolic

link, [χ(L∗, fLq)] = [χ(L, fL)] and the colorings ∞ and fLq of L∗ are distinguished

(see Corollary 5.7). Writing GM = π1(E(LM )), we can assign to every closed con-

nected oriented 3-manifold M a hyperbolic group GM (that is a finitely generated

torsion-free discrete subgroup of PSL(2,C)) so that any two closed connected ori-

ented 3-manifolds M and M ′ are mutually homeomorphic if and only if the groups
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GM and GM ′ are mutually isomorphic. The group GM is abelian if and only if M

is homeomorphic to S3 or S1 × S2, where we have GS3
∼= Z ⊕ Z and GS1×S2

∼= Z

(see Theorem 5.10).

In §1, we introduce the braid order in the link type set L by which L is a

well-ordered set. In §2, we review some terminologies on the Dehn surgery map.

In §3, a general construction and some examples of faithful right inverses of the

Dehn surgery map are made. We also explain here how to derive all the oriented

3-manifold invariants from oriented link invariants. In §4, we review some termi-

nologies and some basic results of the topological imitation theory which are used

in this paper. In §5, we discuss a distinguished coloring of a framed link in a

3-manifold to state the basic result (Theorem 5.3) on changing a Dehn surgery de-

scription by a normal imitation. Some consequences of Theorem 5.3 including the

fundamental group version (Theorem 5.4), Corollary 5.7 and Theorem 5.10 cited

above are proved here by assuming Theorem 5.3. The proof of Theorem 5.3 is given

in §6.

1. The braid order in the types of oriented links

The type [L] of an oriented link L in S3 is the class of of an oriented link L′ in S3

such that there is an orientation-preserving homeomorphism h : S3 −→ S3 sending

L′ to L orientation-preservingly. As we stated in §0, we denote by L the set of types

of oriented links in S3. To define the braid order in L, we first introduce an order

(which we call the permuting order) in the set Qr with r a fixed positive integer

extending the usual order of the rational number set Q. The permuting minimal

r-row cp-min of an r-row c = (c1, c2, . . . , cr) ∈ Qr is the minimal r-row in the

lexicographic order among all the r-rows obtained by permuting the coordinates ci
(i = 1, 2, . . . , r) of c. For two r-rows c, c′ ∈ Qr, we define the permuting order c ≺ c′

if either cp-min is smaller than c′p-min in the lexicographic order or cp-min = c′p-min

and c is smaller than c′ in the lexicographic order. We see that the permuting order

≺ is a total order in Qr.

For every oriented link L in S3, the Alexander theorem (see J. S. Birman [1])

says that there is a braid σ with [σ̂] = [L], where σ̂ denotes the closure of the braid

σ. The braid index b(x) of an element x ∈ L is the minimum of the braid string

number among all the braids σ with [σ̂] = x. When we need to clarify the braid

index b of the braid σ, we will use the notation σ(b) for σ. Let σi (i = 1, 2, . . . , b−1)

be the standard generators of the b-string braid group Bb. By convention, we regard

the sign of the crossing point of the diagram σi as +1. If b(x) = b, then there is a

braid σ ∈ Bb with [σ̂] = x, so that we can write

(*) σ = σε1
i1
σε2

i2
. . . σεr

ir
, εi = ±1(i = 1, 2, . . . , r).

The braid length `(x) of an element x ∈ L is the least number r among all the

presentations (*) of all the braids σ ∈ Bb with b = b(x) and [σ̂] = x. We note that

`(x) = 0 if and only if x = [1̂(b)] for the identity braid 1(b) ∈ Bb with b = b(x) if and
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only if x is the trivial link type with b(x)-components. The enumeration index i(x)

of an element x ∈ L with `(x) = r > 0 is the smallest r-row in the permuting order

≺ among the r-rows (i1, i2, . . . , ir) for all the presentations (*) of all the braids

σ ∈ Bb with b = b(x) and [σ̂] = x. The negative expotent e−(x) of an element

x ∈ L with `(x) = r > 0 is the smallest r-row in the permuting order ≺ among all

the (−1)-multiple exponent r-rows (−ε1,−ε2, . . . ,−εr) of all the presentations (*)

with i(x) = (i1, i2, . . . , ir) of all σ ∈ Bb with [σ̂] = x and b = b(x). We see from

the construction that the braid σ and the oriented link diagram σ̂ are uniquely

determined by the deta b(x), `(x), i(x) and e−(x), and called the braid of x and

the oriented link diagram of x, respectively.

For x, y ∈ L, we define the order x ≺ y if we have either

(1) b(x) < b(y),

(2) b(x) = b(y) and `(x) < `(y),

(3) b(x) = b(y), `(x) = `(y) and i(x) ≺ i(y), or

(4) b(x) = b(y), `(x) = `(y), i(x) = i(y) and e−(x) ≺ e−(y).

This order ≺ is called the braid order of L. Then we have the following lemma:

Lemma 1.1. The set L is a well-ordered set with respect to the braid order.

Proof. If b(x) = b(y), `(x) = `(y), i(x) = i(y) and e−(x) = e−(y), then we have

x = y. Taking the contrapositive claim, we see that L is a totally ordered set

with respect to the braid order ≺. Let S(L) be a non-empty subset of L. Let

Sb(L) be the subset of S(L) consisting of elements with the smallest braid index

among all x ∈ S(L). Next, let Sb,`(L) be the subset of Sb(L) consisting of elements

with the smallest braid length among all x ∈ Sb(L). If the smallest braid length

is 0, then Sb,`(L) is a singleton set. Assume that the smallest braid length is

positive. Then let Sb,`,i(L) be the subset of Sb,`(L) consisting of elements with the

smallest enumeration index in the permuting order ≺ among all x ∈ Sb,`(L). Next,

let Sb,`,i,e−(L) be the subset of Sb,`,i(L) consisting of elements with the smallest

negative exponent in the permuting order ≺ among all x ∈ Sb,`,i(L). Then the

set Sb,`,i,e−(L) is the singleton set consisting of the initial element of the set S(L)

in the braid order, showing that L is a well-ordered set with respect to the braid

order. �

2. The Dehn surgery map

We extensively consider as an oriented link a pair (M,L) where M is a compact

connected oriented 3-manifold such that the boundary ∂M is empty or consists of

tori and L is a locally flat closed oriented 1-submanifold. When the ambient mani-

fold M is obvious, we denote the oriented link (M,L) by L. Let Ki(i = 1, 2, . . . , r)

be the components of L. A meridian system m(L) on a tubular neighborhood

N(L) = ∪r
i=1N(Ki) of L in M is always defined as a system consisting of a merid-

ian m(Ki) of N(Ki) for every i = 1, 2, . . . , r. On the other hand, a longitude
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system `(L) on N(L) is not uniquely specified in general. A framed link is an ori-

ented link (M,L) such that a longitude system `(L) of L in M is specified on a

tubular neighborhood N(L) as a system consisting of a longitude `(Ki) of N(Ki)

for every i = 1, 2, . . . , r. By a meridian-longitude system of a framed link L, we

mean a pair of a meridian system m(L) and a longitude system `(L) on N(L) such

that m(Ki) meets `(Ki) transversely in a single point for every i. We can specify

the orientations of m(L) and `(L) from those of L and M uniquely. When M = S3,

we have a canonical meridian-longitude system (m(L), `(L)) of L by taking a canon-

ical longitude `(Ki) on N(Ki) characterized by that `(Ki) is null-homologous in

the exterior E(Ki) = cl(S3 −N(Ki). Unless otherwise stated, we will consider an

oriented link L in S3 as a framed link by taking a canonical meridian-longitude

system of L.

Definition 2.1. A coloring f of a framed link L is a map

f : {Ki| i = 1, 2, . . . , r } −→ Q+,

where Q+ = Q ∪ {∞, ∅} for symbols ∞, ∅ with the identities −∞ = ∞, −∅ = ∅,

∞+ c = c+∞ =∞ and ∅+ c = c+ ∅ = ∅ (c ∈ Q).

Let f(L) be the subset of Q+ consisting of the element f(Ki) ∈ Q+ for all i. A

coloring f of L is the c-coloring for an element c ∈ Q+ if f is the constant map to c,

i.e., f(Ki) = c for all i. A colored link (L′, f ′) is equivalent to a colored link (L, f)

if there is an orientation-preserving homeomorphism h : M −→M sending L to L′

orientation-preservingly such that f(Ki) = f ′h(Ki) for all i. The type [L, f ] of a

colored link (L, f) is the class of colored links equivalent to (L, f). A coloring f of

L is finite if f(L) ⊂ Q ∪ {∅}, and regular if f(L) ⊂ Q ∪ {∞}. By Lf, we denote

the set of the colored link types [L, f ] such that L is an oriented link in S3 and

f is a finite regular coloring of L. The size of a rational number c = a
b

with a, b

coprime integers is the integer ρ(c) = |a| + |b|. The sizes of the symbols ∅ and ∞

are ρ(∅) = 0 and ρ(∞) = 1 by convention. The size ρ(f) of a coloring f of L is the

set of the sizes ρ(f(Ki)) for all i. For an integer J , if we have ρ(f(Ki)) ≥ J for all

i or ρ(f(Ki)) > J for all i, respectively, then we denote it by ρ(f) ≥ J or ρ(f) > J ,

respectively. Similarly, if we have ρ(f(Ki)) ≤ J for all i or ρ(f(Ki)) < J for all i,

respectively, then we denote it by ρ(f) ≤ J or ρ(f) < J , respectively.

By re-indexing the components Ki (i = 1, 2, . . . , r), let Ki (i = 1, 2, . . . , u) be

the components of L with f(Ki) 6= ∅. Let f(Ki) = ai

bi

for coprime integers ai, bi
where we take ai = ±1 and bi = 0 when f(Ki) =∞. Then we have a (unique up to

isotopies) simple loop si on ∂N(Ki) with [si] = ai[mi]+bi[`i] in H1(∂N(Ki);Z) for

the meridian-longitude pair (mi, `i) of Ki on N(Ki). We note that if the different

choice f(Ki) = −ai

−bi

is made, then only the orientation of si is changed.

Definition 2.2. The Dehn surgery manifold of a colored link (L, f) is the oriented
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3-manifold

χ(L, f) = E(L) ∪s1=1×∂D2
1
S1 ×D2

1 · · · ∪sr=1×∂D2
r
S1 ×D2

u

with the orientation induced from E(L) ⊂M , where ∪si=1×∂D2
i

denotes a pasting

of S1 × ∂D2
i to ∂N(Ki) so that si is identified with 1× ∂D2

i .

By definition, we have χ(L, f) = E(L) if f = ∅ and χ(L, f) = M if f =∞. The

type [M ] of an oriented 3-manifold M is the class of oriented 3-manifolds which are

orientation-preservingly homeomorphic to M . The set of types of closed connected

oriented 3-manifolds is denoted by M. In the construction of χ(L, f), the type

[χ(L, f)] is independent of choices of orientations of the simple loops si and hence

determined uniquely from the colored link type [L, f ]. We denote by Lf the set of

types [L, f ] where L is an oriented link in S3 and f is a finite regular coloring of L.

The Dehn surgery map

Df : Lf −→ M

is a map sending [L, f ] to [χ(L, f)]. This map Df is well-known to be surjective

by W. B. R. Lickorish [20] and A. H. Wallace [26]. Let L0 be the subset of Lf

consisting of 0-colored link types [L, 0]. The following lemma is a folklore result

obtained by the Kirby calculus (see R. Kirby [19]):

Lemma 2.3. The restriction

D0 = Df|L0 : L0 −→ M

of the Dehn surgery map Df to L0 is a surjection.

Proof. For every [M ] ∈M, we have a colored link (L, f) with the components Ki

(i = 1, 2, . . . , r) such that [χ(L, f)] = [M ] and f(Ki) = mi is an even integer for all

i (see S. J. Kaplan [5]). Let L1 = L ∪ L0 be the split union of the oriented link L

and a negative Hopf link L0. Let f1 be the coloring of L1 obtained from f and the

0-coloring of L0. If sign(mi) = +1, then we take a fusion K ′
i of Ki and |mi|

2 paralell

copies of L0. If sign(mi) = −1, then we take a fusion K ′
i of Ki and |mi|

2 paralell

copies of L0 with the orientations of all the paralell copies of one component of L0

reversed. Replacing Ki with K ′
i for all i with mi 6= 0, we obtain an oriented link

L′
1 from L1 such that [χ(L′

1, 0)] = [χ(L1, f1)] = [M ]. �

3. Faithful right inverses of the Dehn surgery map

In this section, we consider how to construct faithful right inverses of the Dehn

surgery map Df : Lf −→ M. Let

π : Lf −→ L
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be the forgetful surjective map sending every colored link type xf = [L, f ] ∈ Lf

to the link type x = [L] ∈ L. We define b(xf) = b(x), `(xf) = `(x), i(xf) = i(x)

and e−(xf) = e−(x). Let σ be the braid of x. We can consider the oriented

link diagram L = σ̂ of x as an ordered link by the order among the components

of L appearing first as a braid string of the braid σ. Let Ki (i = 1, 2, . . . , r)

be the components of L with Ki the ith component ordered in this way. Let

f(L) = (f(K1), f(K2), . . . , f(Kr)) ∈ Qr for a finite regular coloring f of L. The

size, absolute value and negative sign of an r-row c = (c1, c2, . . . , cr) ∈ Qr are

respectively the r-rows

ρ(c) = (ρ(c1), ρ(c2), . . . , ρ(cr)),

|c| = (|c1|, |c2|, . . . , |cr|),

sign−(c) = (−sign(c1),−sign(c2), . . . ,−sign(cr)),

where the sign of a rational number c is defined by

sign(c) =

{
c
|c|

(c 6= 0)

0 (c = 0).

Let F be the set of finite regular colorings f of L such that [L, f ] = xf. The size

ρ(xf) of xf is the smallest r-row in the permuting order ≺ among the r-rows ρ(f(L))

for all f ∈ F . Since the permuting minimal r-rows ρ(f(L))p-min are the same for

all f ∈ F , the size ρ(xf) is equal to the smallest r-row in the lexicographic order

among the r-rows ρ(f(L)) for all f ∈ F . Let F ′ be the subset of F consisting a

finite regular coloring f ′ of L with ρ(f ′(L)) = ρ(xf). The absolute value |xf| of xf

is the smallest r-row in the permuting order ≺ among the r-rows |f ′(L)| for all

f ′ ∈ F ′ which is equal to the smallest r-row in the lexicographic order. Let F ′′

be the subset of F ′ consisting a finite regular coloring f ′′ of L with |f ′′(L)| = |xf|.

The negative sign sign−(xf) of xf is the smallest r-row in the permuting order ≺

among the r-rows sign−(f ′′(L)) for all f ′′ ∈ F ′′ which is equal to the smallest

r-row in the lexicographic order. Let F ′′′ be the subset of F ′′ consisting a finite

regular coloring f ′′′ of L with sign−(f ′′′(L)) = sign−(xf). Then we see that F ′′′

is a singleton set. Thus, two colored link types xf, yf ∈ Lf are equal if and only if

x = π(xf) = π(yf) = y, ρ(xf) = ρ(yf), |xf| = |yf| and sign−(xf) = sign−(yf).

For xf, yf ∈ Lf, we define the order xf ≺ yf which we also call the braid order in

Lf if we have either

(1) x = π(xf) ≺ π(yf) = y,

(2) x = y, ρ(xf) ≺ ρ(yf),

(3) x = y, ρ(xf) = ρ(yf) and |xf| ≺ |yf|, or

(4) x = y, ρ(xf) = ρ(yf), |xf| = |yf| and sign−(xf) ≺ sign−(yf).

Then we have the following lemma:

Lemma 3.1. The set Lf is a well-ordered set with respect to the braid order.
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Proof. If xf 6= yf, then we see that xf ≺ yf or yf ≺ xf, so that Lf is a totally

ordered set. Let S(Lf) be a non-empty subset of Lf. Let x be the initial element

of the subset π(S(Lf)) ⊂ L, and S(Lf)π = π−1(x) ∩ S(Lf) which is a non-empty

subset of S(Lf). Let S(Lf)π,ρ be the subset of S(Lf)π consisting of an element

xf with the smallest size ρ(xf) in the permuting order ≺ among all xf ∈ S(Lf)π.

Then we see that the set S(Lf)π,ρ is a finite set. Next, let S(Lf)π,ρ,|| be the subset

of S(Lf)π,ρ consisting of an element xf with the smallest absolute value |xf| in

the permuting order ≺ among all xf ∈ S(Lf)π,ρ. Finally, let S(Lf)π,ρ,||,sign− be

the subset of S(Lf)π,ρ,|| consisting of an element xf with the smallest negative sign

sign−(xf) in the permuting order ≺ among all xf ∈ S(Lf)π,ρ,||. Then S(Lf)π,ρ,||,sign−

is the singleton set, showing that Lf is a well-ordered set with respect to the braid

order. �

Let P(Lf) be the set of non-empty subsets of Lf. By Lemma 3.1, we have a map

ψ : P(Lf) −→ Lf

sending every S(Lf) ∈ P(Lf) to the initial element of S(Lf) in the braid order, which

we call the braid choice function. Let xf = [−L̄,−f ] ∈ Lf for every element xf =

[L, f ] ∈ Lf, where −L̄ denotes the mirror image L̄ of L with opposite orientation.

Let x̄ = [−M ] ∈M for every element x = [M ] ∈M. A right inverse

A : M −→ Lf

of the Dehn surgery map Df is said to be faithful if we have A(x̄) = A(x) for every

x ∈M with x 6= x̄. Let

S(Lf) = {xf |xf ∈ S(Lf)} ∈ P(Lf)

for every S(Lf)} ∈ P(Lf). Then we have the following criterion to constructing a

faithful right inverse of the Dehn surgery map Df:

Criterion 3.2. Assume that there is a map

Af : M −→ P(Lf)

such that DfAf(x) = {x} for every x ∈M and Af(x̄) = Af(x) for every x ∈M with

x 6= x̄. Then the braid choice function ψ and the map Af define a unique faithful

right inverse

Af : M −→ Lf

of the Dehn surgery map Df such that

(1) Af(x) ∈ Af(x) for every x ∈M,

(2) Af(x) = ψAf(x) if x = x̄, and ψ(Af(x) ∪ Af(x̄)) is equal to either Af(x) or

Af(x̄) if x 6= x̄.
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Proof. If x 6= x̄, then ψAf(x) 6= ψAf(x̄) and ψ(Af(x) ∪ Af(x̄)) is equal to either

ψAf(x) or ψAf(x̄) which we call Af(x) or Af(x̄), respectively. Since Af(x̄) = Af(x),

we have the desired unique faithful right inverse Af : M −→ Lf. �.

The following example may be useful in making a table of closed oriented 3-

manifolds:

Example 3.3. For every element x ∈M we take the subset Lf(x) ⊂ Lf consisting

of a colored link type xf = [L, f ] such that Df(xf) = [χ(L, f)] = x. By W. B. R.

Lickorish [20] and A. H. Wallace [26], Lf(x) is not empty. Since DfLf(x) = {x} and

Lf(x̄) = Lf(x) for every x ∈M, we obtain from Criterion 3.2 a unique faithful right

inverse

af : M −→ Lf

of the Dehn surgery map Df such that af(x) ∈ Lf(x) for every x ∈ M and af(x) =

ψLf(x) if x = x̄ and ψ(Lf(x) ∪ Lf(x̄)) is equal to either af(x) or af(x̄) if x 6= x̄. For

example, we have the following calculations whose proofs are good exercise of the

Kirby calculus (cf. D. Rolfsen [22]):

(3.3.1) af([S3]) = [1̂(1), 1] and af([S1 × S2]) = [1̂(1), 0]

(3.3.2) We have af([L(p, q)] = [1̂(1),
p
q
] for a suitably oriented lens space L(p, q)

(0 < q ≤ p
2 ).

(3.3.3) For a suitably oriented quotanion space Q, we have af[Q]) = [σ̂4
1(2), 0].

(3.3.4) For the 3-torus T 3 = S1 × S1 × S1, we have af([T 3]) = [σ̂, 0] with σ =

(σ1σ
−1
2 )3(3).

(3.3.5) For a suitably oriented Poincaré homology 3-sphere M , we have af([M ]) =

[σ̂3
1(2), 1].

Since Lf is a well-ordered set by the braid order, M is a well-ordered set with

respect to the order given by the following definition:

x ≺ y ⇐⇒ af(x) ≺ af(y)

for x, y ∈M. The enumeration of the 3-manifolds in (3.3.1)-(3.3.5) in this order is

as follows:

[S1 × S2] ≺ [S3] ≺ [L(p, q)] ≺ [M ] ≺ [Q] ≺ [T 3].

The following example concerns a correspondence from M to L:

Example 3.4. Let L0 be the subset of L consisting of 0-colored link types. For

every x ∈ M we take the subset L0(x) ⊂ L0 consisting of a 0-colored link type
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x0 = [L, 0] such that D0(x0) = Df(x0) = [χ(L, 0)] = x. By Lemma 2.3, L0(x) is

not empty. Since DfL0(x) = {x} and L0(x̄) = L0(x) for every x ∈ M, we obtain

from Criterion 3.2 a unique faithful right inverse

a0 : M −→ L0

of the Dehn surgery map D0 such that a0(x) ∈ L0(x) for every x ∈ M and

a0(x) = ψL0(x) if x = x̄ and ψ(L0(x) ∪ L0(x̄)) is equal to either a0(x) or a0(x̄)

if x 6= x̄. Incidentally, it would be interesting to know whether or not there is an

element x0 ∈ L0(x) with x0 = x0 for every element x ∈M with x̄ = x. Using the

identification map L0 −→ L sending [L, 0] to [L], we can identify the maps D0 and

a0 with the maps

D : L −→ M and a : M −→ L

respectively such that a is a right inverse of D with a(x̄) = a(x) for every x ∈ M
with x 6= x̄. Some calculations are made as follows:

(3.4.1) a[S3] = [σ̂2
1(2)] which is the positive Hopf link type.

(3.4.2) a[S1 × S2] = [1̂(1)] which is the trivial knot type.

(3.4.3) For the projective 3-space P 3 = L(2, 1), we have a([P 3]) = [σ̂] with

σ = (σ1σ2)
3
(3).

(3.4.4) For a suitably oriented quotanion space Q, we have a([Q]) = [σ̂4
1(2)].

(3.4.5) For the 3-torus T 3 = S1 × S1 × S1, we have a([T 3]) = [σ̂] with σ =

(σ1σ
−1
2 )3(3).

(3.4.6) For any oriented Poincaré homology 3-sphere M , the oriented link LM has

at least 10 components.

The proofs of (3.4.1)-(3.4.5) are exercise of the Kirby calculus (cf. D. Rolfsen

[22]). To see (3.4.6), assume that LM has r components. Using that M is a

homology 3-sphere and [M ] = [χ(LM , 0)], we see thatM bounds a simply connected

4-manifold W with an r×r non-singular intersection matrix whose diagonal entries

are all 0. Since the Rochlin invariant ofM is non-trivial, it follows that the signature

of W is an odd multiple of 8 and r is even. Hence m ≥ 8. If m = 8, then the

intersection matrix is a positive or negative definite matrix which is not in our

case. Thus, we have m ≥ 10, showing (3.4.6).

The set M is also a well-ordered set with respect to the order given by the

following definition:

x ≺ y ⇐⇒ a(x) ≺ a(y)

for x, y ∈M. The enumeration of the manifolds in (3.4.1)-(3.4.6) in this order is as

follows:

[S1 × S2] ≺ [S3] ≺ [Q] ≺ [P 3] ≺ [T 3] ≺ [M ].
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By an oriented 3-manifold invariant and an oriented link invariant, we mean

maps

M −→ Λ and L −→ Λ

respectively, where Λ denotes an algebraic system. Let Inv(M,Λ) and Inv(L,Λ) be

the sets of oriented 3-manifold invariants and oriented link invariants, respectively.

By the right inverese a of D in Example 3.4, we have the following sequence

Inv(M,Λ)
D#

−→ Inv(L,Λ)
a#

−→ Inv(M,Λ)

of the dual maps a# and D# of a and D. Since the composite a#D# is the identity

map on Inv(M,Λ), we see that the subset D#(Inv(M,Λ)) of the set Inv(L,Λ) of ori-

ented link invariants is mapped bijectively by a# onto the set Inv(M,Λ) of oriented

3-manifold invariants, where this bijective map is independent of a#. For example,

the Witten invariant τr ∈ Inv(M,C) (see E. Witten [27]) induces an oriented link

invariant D#(τr) ∈ Inv(L,C) with a#(D#(τr)) = τr.

On the other hand, the surjection

a# : Inv(L,Λ) −→ Inv(M,Λ)

depends on the right inverse a of D, which implies that constructing a nice right

inverse of D would lead to a nice oriented 3-manifold invariant. An example of a

right inverse of D similar to but different from the right inverse a which leads to

a hyperbolic group classification of closed connected oriented 3-manifolds stated in

the introduction is given from this viewpoint in §5. Here is one example on creating

an oriented 3-manifold invariant from an oriented link invariant.

Example 3.5. Let λ ∈ Inv(L,Z) be the signature invariant which is the signature

of the symmetric matrix V +V ′ for a Seifert matrix V associated with a connected

Seifert surface of an oriented link (see [18]). The right inverse a of D : L −→ M in

Example 3.4 induces the oriented 3-manifold invariant

λa = a#(λ) ∈ Inv(M,Z).

For the 3-manifolds in (3.4.1)-(3.4.5), this invariant is calculated as follows:

(3.5.1) λa(S3) = −1.

(3.5.2) λa(S1 × S2) = 0.

(3.5.3) λa(P 3) = −4.

(3.5.4) λa(±Q) = ∓3, where we note that [Q] 6= [−Q].

(3.5.5) λa(T 3) = 0.
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4. Review on AID and normal imitations

In this section, we briefly explain some notions of imitations of a link (M,L)

where M is a compact connected oriented 3-manifold witout boundary or with

only torus boundary components. See [6− 17] for more detailed accounts. In this

section, we grant the link L to be empty unless otherwise stated. Let I = [−1, 1].

The concept of topological imitation arose from an interpretation of reflection.

Namely, for an oriented link (M,L), an involution α on (M,L)×I = (M×I, L×I)

is called a reflection in (M,L) × I if

(1) α((M,L) × 1) = (M,L) × (−1), and

(2) the fixed point set Fix(α, (M,L)× I) of α in (M,L)× I is an oriented link.

The reflection α is standard if α(x, t) = (x,−t) for all (x, t) ∈ M × I, and normal

if α(x, t) = (x,−t) for all (x, t) ∈ ∂(M × I)∪N(L)× I for a tubular neighborhood

N(L) of L in M . The reflection α is isotopically standard if h−1αh is standard for

an auto-homeomorphism h of M × I which is isotopic to the identity by an isotopy

keeping ∂(M × I) ∪ N(L) × I fixed for a tubular neighborhood N(L) of L in M .

Further, the reflection α is isotopically almost standard if L 6= ∅ and α defines an

isotopically standard reflection in (M,L −K)× I for every component K of L. A

reflector of a reflection α in (M,L)× I is an embedding

φα : (M∗, L∗) −→ (M,L) × I

with φα(M∗, L∗) = Fix(α, (M,L) × I).

Definition 4.1. An imitation of (M,L) is the composite

q : (M∗, L∗)
φα

−→ (M,L) × I
proj
−→ (M,L)

where φα : (M∗, L∗) −→ (M,L) × I is reflector of a reflection α in (M,L) × I.

We also call (M∗, L∗) an imitation of (M,L) (with imitation map q). We note

that the pair (M∗, L∗) is also an oriented link with orientation induced from the

orientation of (M,L) by q. If the reflection α is normal, then we say that the

imitation

q : (M∗, L∗) −→ (M,L)

is a normal imitation. If α is isotopically almost standard, then we say that the

imitation

q : (M∗, L∗) −→ (M,L)

is an AID (=almost identical) imitation. A normal imitation q : (M∗, L∗) −→

(M,L) is said to be imitation-homotopic to a normal imitation q′ : (M∗′, L∗′) −→

(M,L) if there is an auto-homeomorphism h of M × I which is isotopic to the

identity by an isotopy keeping ∂(M × I) ∪N(L)× I fixed such that we have

q = projφ : (M∗, L∗) −→ (M,L),

q′ = projφ′ : (M∗′, L∗′) −→ (M,L)
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for reflectors φ : (M∗, L∗) −→ (M,L) × I, φ′ : (M∗′, L∗′) −→ (M,L)× I of normal

reflections α, h−1αh in (M,L) × I, respectively. If q : (M∗, L∗) −→ (M,L) is an

AID imitation, then the restricted normal imitation

q|(M∗,L∗−K∗) : (M∗, L∗ −K∗) −→ (M,L −K)

for every component K of L and K∗ = q−1(K), is imitation-homotopic to the

identical imitation 1(M,L−K) : (M,L−K) −→ (M,L−K). In particular, in the case

of AID imitation, we can identify M∗ with M and L∗ with (L−K)∪K∗ for every

component K of L. From construction, we see that if q∗ : (M∗∗, L∗∗) −→ (M∗, L∗)

and q : (M∗, L∗) −→ (M,L) are normal (or AID, respectively) imitations, then

there is a normal (or AID, respectively) imitation q∗∗ : (M∗∗, L∗∗) −→ (M,L) with

q∗∗ = qq∗ on a tubular neighborhood N(L∗∗) of L∗∗ in M∗∗. The exterior of an

oriented link (M,L) is the compact manifold E(L) = cl(M − N(L)). A compact

connected oriented 3-manifold M without boundary or with only torus boundary

components is called a hyperbolic 3-manifold if M − ∂M is a complete hyperbolic

3-manifold. Except for the hyperbolic 3-manifolds S1×D2 and S1×S1× [0, 1], the

hyperbolic 3-manifold M has a finite volume (see [18, C.7.2] for an explanation).

Unless otherwise stated, hyperbolic 3-manifolds are assumed to have finite volomes.

The volume and the isometry group of a hyperbolic 3-manifold M are denoted by

Vol(M) and Isom(M) respectively, which are topological invariants of M by the

Mostow rigidity theorem (see G. D. Mostow [21], W. P. Thurston [24, 25]). A

hyperbolic 3-manifold M is said to be asymmetric if the isometry group Isom(M)

is trivial. An imitation q : (M∗, L∗) −→ (M,L) is called a hyperbolic asymmetric

imitation if the exterior E(L∗) is hyperbolic and asymmetric. The following lemma

is proved in [8] except the asymmetry condition which is proven in [9].

Lemma 4.2. Let (M,L) be a disconnected oriented link. Then for any positive

number C , there is a hyperbolic asymmetric AID imitation

q : (M,L∗) −→ (M,L)

with Vol(E(L∗)) > C .

From a technical reason, we need the following lemma:

Lemma 4.3. Let q : M∗ −→ M be an imitation such that M is a hyperbolic

3-manifold. Then there is a connected sum decomposition M∗ = S#M ′ such that

(1) the connected summand S is a homology 3-sphere with q#(π1(S0)) = {1}

for the punctured manifold S0 of S used for the connected sum,

(2) the connected summand M ′ is an irreducuble 3-manifold and if ∂M∗ is not

empty, then it is a Haken manifold with incompressible boundary,

(3) the restriction q|M ′

0
: M ′

0 −→ M of q to the compact punctured manifold

M ′
0 of M ′ used for the connected sum extends to a map q′ : (M ′, ∂M ′) −→
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(M,∂M) whose lift

q̃′ : (M̃ ′, ∂M̃ ′) −→ (M̃, ∂M̃ )

associated with every covering M̃ of M is a homology equivelence.

Proof. We use the homology equivalence property of imitation in [6], saying that

the lift q̃ : M̃∗ −→ M̃ of the imitation map q associated with every covering M̃ of

M induces isomorphisms

q̃∗ : H∗(M̃
∗;Z) ∼= H∗(M̃ ;Z),

q̃∗ : H∗(M̃
∗, ∂M̃∗;Z) ∼= H∗(M̃ , ∂M̃ ;Z).

First, we show the following assertion:

(4.3.1) If there is a connected sum decomposition M∗ = M∗
1 #M∗

2 , then we have

q#(π1(M
∗
i )) = {1} for some i.

If there is a connected sum decomposition M∗ = M∗
1 #M∗

2 with q#(π1(M
∗
i )) 6=

{1} for i = 1 and 2, then we consider the universal covering M̃ of M whose interior

is homeomorphic to the 3-space. Let q̃ : M̃∗ −→ M̃ be the associated lifting of q.

Let S2 be a 2-sphere in M̃∗ lifting the 2-sphere defining the connected sum M∗ =

M∗
1 #M∗

2 . By the homology equivalence property, we see that M̃∗ is connected and

H1(M̃
∗;Z) = 0, so that the 2-sphere S2 splits M̃∗ into two connected submanifolds

Xi (i = 1, 2). Using that π1(M) is a torsion-free group and hence q#(π1(M
∗
i ))

is an infinite group for i = 1, 2, we see that Xi is not compact for i = 1 and

2. This implies that the 2-sphere S2 represents a non-zero element of H2(M̃
∗;Z),

contradicting that H2(M̃
∗;Z) = H2(M̃ ;Z) = 0. This proves (4.3.1).

By applying (4.3.1) and the homology equivalence property to a prime decompo-

sition of M∗ (cf. J. Hempel [3]), we can conclude that there is a connected sum de-

composition M∗ = S#M ′ such that S is a closed 3-manifold with q#(π1(S)) = {1}

and M ′ is a prime 3-manifold. Since q#(π1(M
′)) = π1(M) is a non-abelian hyper-

bolic group, we see that M ′ is an irreducible 3-manifold. For the universal covering

space M̃ of M , we have that H1(M̃
∗ ;Z) = 0 and M̃∗ contains an infinitely many

copies of S as connected summands. Thus, we have H1(S;Z) = 0, showing that

S is a homology 3-sphere, showing (1). If ∂M ′ is not empty, then M ′ is a Haken

manifold with incompressible boundary, because the restriction

q|∂M∗ : ∂M∗ = ∂M ′ −→ ∂M

of the imitation map q is a homotopy equivalence (see [6]) and ∂M is incompress-

ible in M , showing (2) (cf. W. Jaco [4] for an account of Haken manifold and

incompressibility). Let

W = M∗ × [0, 1] ∪s
j=1 h

2
j
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be a cobordism from M∗ = M∗ × 0 to M ′ such that h2
j (j = 1, 2, . . . , s) are

mutually disjoint 2-handles on the connected summand S × 1 of M∗ × 1 whose

surgery produce the connected summand S3 of M ′. Because q#(π1(S)) = {1}, the

map q : M∗ −→ M extends to a map F : W −→ M . Let q′ = F |M ′ : M ′ −→ M .

For every covering M̃ −→M , we have a map

F̃ : W̃ −→ M̃

lifting F and extending the liftings q̃ : M̃∗ −→ M̃ and q̃′ : M̃ ′ −→ M̃ of q and

q′, respectively. By excision, we see that Hd(W̃ , M̃∗;Z) = Hd(W̃ , M̃ ′;Z) = 0 for

d 6= 2. Using that S is a homology 3-sphere, we have natural isomorphisms

Hd(M̃∗;Z)
∼=
−→ Hd(W̃ ;Z)

∼=
←− Hd(M̃

′;Z)

for d 6= 2 and natural monomorphisms

H2(M̃
∗;Z) −→ H2(W̃ ;Z) and H2(M̃

′;Z) −→ H2(W̃ ;Z)

with the same image. Then the isomorphism q̃∗ : H∗(M̃
∗;Z) ∼= H∗(M̃ ;Z) induces

an isomorphism (q̃′)∗ : H∗(M̃
′;Z) ∼= H∗(M̃ ;Z). When ∂M ′ is not empty, the

restriction q̃′|∂M ′ : ∂M ′ −→ ∂M is a homotopy equivalence, and hence by the five

lemma we have an isomorphism

(q̃′)∗ : H∗(M̃
′, ∂M̃ ′;Z) −→ H∗(M̃ , ∂M̃),

showing (3). �

5. Distinguished coloring of a framed link in a 3-manifold

In this section, we explain the basic result (Theorem 5.3) on changing the Dehn

surgery description of a disconnected colored link. Its consequences are shown by

assuming Theorem 5.3. We begin with the definitions of distinguished and π1-

distinguished colorings.

Definition 5.1. A coloring f of a framed link (M,L) is distinguished if we have

[χ(L, f)] 6= [χ(L, f ′)] for every coloring f ′ of L with f ′ 6= f , and π1-distinguished

if the fundamental groups π1(χ(L, f)) and π1(χ(L, f ′)) are not isomorphic to each

other for every coloring f ′ of L with f ′ 6= f .

The ∞-coloring of any framed link (M,L) with a trivial component is not dis-

tinguished. The ∞-coloring of every non-trivial knot in S3 is distinguished by

the Gordon-Luecke theorem [2], and π1-distinguished if and only if the property

P conjecture is true. If the distinguished ∞-coloring is the π1-distinguished ∞-

coloring for every oriented link in S3 with ∞-coloring distinguished if and only if
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the Poincaré conjecture is true (see Remark 5.8 for the proof of the “only if”part).

The following observation is important to our argument:

Lemma 5.2. The ∞-coloring of a framed link (M,L) is distinguished if and

only if every homeomorphism h : E(L′) −→ E(L) from the exterior E(L′) of an

oriented link (M,L′) to the exterior E(L) sends every meridian system m(L′) to a

meridian system m(L) up to orientations, so that h extends to a homeomorphism

h+ : (M,L′) −→ (M,L).

Proof. To prove the “only if”part, we consider an oriented link (M,L′) with a

homeomorphism h : E(L′) −→ E(L). Since the ∞-coloring of (M,L) is distin-

guished, the image h(m(L′)) must be equal to a meridian-system m(L) in E(L)

up to orientations of m(L). Hence we can extend h to a homeomorphism h+ :

(M,L′) −→ (M,L). To prove the “if”part, suppose that the∞-coloring of a framed

link (M,L) is not distinguished. Then there is a coloring f 6= ∞ of (M,L) such

that χ(L, f) = M , and the dual link of L in χ(L, f) is an oriented link (M,L′) with

E(L′) = E(L) such that the meridian system m(L′) of (M,L′) up to orientations

is not homologous to m(L) in ∂E(L). �

An oriented link (M,L) is determined by the exterior E(L) up to orientations

if we have a homeomorphism (M,L′) ∼= (M,L) for every oriented link (M,L′)

with a homeomorphism E(L′) ∼= E(L). By Lemma 5.2, every oriented link with

the ∞-coloring distinguished is determined by the exterior up to orientations. A

trivial knot and a Hopf link are examples of oriented links whose ∞-colorings are

not distinguished. An oriented link (M,L) is totally hyperbolic if every non-empty

sublink Ls is a hyperbolic link in M , that is, if the exterior E(Ls) is a hyperbolic

3-manifold. If q : (M,L∗) −→ (M,L) is a normal imitation of a framed link

(M,L), then we can consider (M,L∗) as a framed link so that the imitation map

q preserves meridian-longitude systems of L∗ and L. Further, if M = S3, then

q preserves canonical meridian-longitude systems of L∗ and L by the homology

equivalence property in [6]. If f is a coloring of a framed link (M,L), then fq is a

coloring of the framed link (M,L∗). Then we obtain the following theorem:

Theorem 5.3. Let (M,L) be a disconnected framed link. For every finite regular

coloring fL of L, any positive integer ρ(fL) ≤ J and any positive number C , we

have a normal imitation

q : (M,L∗) −→ (M,L)

such that

(1) [χ(L∗, fLq)] = [χ(L, fL)],

(2) the Dehn surgery manifolds χ(L∗, fq) for all distinct colorings f of L with

ρ(f) ≤ J and f 6= ∞, fL are mutually distinct hyperbolic asymmetric 3-

manifold with volumes greater than C , and
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(3) the Dehn surgery manifold χ(L∗, fq) for every coloring f of L with ρ(f) � J

is a normal imitation of a hyperbolic asymmetric 3-manifold with volume

greater than C .

For a compact connected oriented 3-manifold M without boundary or with only

torus boundary components, the Gromov norm ‖M‖ is defined and is a constant

multiple of the hyperbolic volume Vol(M) when M is a hyperbolic 3-manifold (see

W. P. Thurston [24, 25]). The following theorem is a fundamental group version of

Theorem 5.3:

Theorem 5.4. Let (M,L) be a disconnected framed link. For every finite regular

coloring fL of L, we have a normal imitation

q : (M,L∗) −→ (M,L)

such that

(1) L∗ is totally hyperbolic,

(2) [χ(L∗, fLq)] = [χ(L, fL)], and

(3) the fundamental group π1(χ(L∗, fq)) for every coloring f of L with f 6=

∞, fL admits an epimorphism onto a non-abelian hyperbolic group and is

not isomorphic to the fundamental group π1(χ(L, f ′)) for every coloring f ′

of L.

Proof. In Theorem 5.3, we consider all colorings f of L such that f(L) ⊂ {∞, ∅}

but f 6=∞. Since ρ(f) ≤ 1 ≤ J , we see that L∗ is totally hyperbolic. In Theorem

5.3, we consider the Dehn surgery manifold M∗ = χ(L∗, fq) for every f 6= ∞, fL

a normal imitation of a hyperbolic 3-manifold H with the imitation map qH :

M∗ −→ H such that the Gromov norm ‖H‖ > C , where we take C ≥ ‖E(L)‖.

Then we have C ≥ ‖χ(L, f ′)‖ for all colorings f ′ of L by a property of the Gromov

norm (see W. P. Thurston [24, 25]). Suppose that π1(M
∗) is isomorphic to the

fundamental group π1(N) of the Dehn surgery manifold N = χ(L, f ′) for some

coloring f ′ of L. By Lemma 4.3, there is a connected sum M∗ = S#M ′ such

that S is a homology 3-sphere and M ′ is an irreducible manifold with a degree

one map q′H : (M ′, ∂M ′) −→ (H,∂H). By a property of the Gromov norm (see

W. P. Thurston [24, 25]), we have ‖M ′‖ ≥ ‖H‖ > C . Since ∂N has only torus

components and every compact oriented 3-manifold with a positive genus boundary

component has a non-trivial first homology, we see from Kneser’s conjecture (see J.

Hempel [3]) that there is a connected sum N = S ′#N ′ such that S ′ is a homology

3-sphere and N ′ is an irreducible 3-manifold homotopy equivalent to M ′. Then we

show that

‖N ′‖ = ‖M ′‖.

To see this, first, assume that ∂N is empty. Then ∂M ′ = ∂M is empty and we have

degree one maps N ′ −→ M ′ and M ′ −→ N ′, so that ‖N ′‖ = ‖M ′‖ by a property
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of the Gromov norm. Next, assume that ∂N is not empty. Then M ′ and N ′ are

Haken manifolds with incompressible boundary consisting of torus components. By

the Johannson theorem (see W. Jaco [4, p.212]), the hyperbolic pieces of the torus

decompositions of N ′ and M ′ are mutually homeomorphic. By T. Soma [23], ‖N ′‖

and ‖M ′‖ are equal to the sums of the Gromov norms of the hyperbolic pieces of

the torus decompositions of N ′ and M ′, respectively. Hence we have ‖N ′‖ = ‖M ′‖

as desired.

Since there is a degree one map N −→ N ′, we have

‖N‖ ≥ ‖N ′‖ = ‖M ′‖ > C

by a property of the Gromov norm, which contradicts C ≥ ‖N‖. Thus, we see that

π1(χ(L∗, fq)) = π1(M
∗) is not isomorphic to π1(N) = π1(χ(L, f ′)). �

We see from (3) of Theorem 5.4 that the link L∗ is distinct from the link L

componentwise, by considering collorings f, f ′ of L such that

f(L −K) = f ′(L −K ′) = {∞} and f(K) = f ′(K′) ∈ Q

for every pair of components K,K ′ of L. The existence of this kind of imitation

on the Dehn surgery of a colored disconnected link in S3 has been promised in [7,

p.151]. Counting this observation, we obtain the following three corollaries from

Theorem 5.4:

Corollary 5.5. Let (M,L) be a disconnected framed link, and fL a finite regular

coloring of L such that [χ(L, fL)] = [M ]. Then we have a normal imitation

q : (M,L∗) −→ (M,L)

such that

(1) L∗ is totally hyperbolic and distinct from L componentwise,

(2) [χ(L∗, fLq)] = [χ(L, fL)] = [χ(L∗,∞)] = [M ], and

(3) the fundamental group π1(χ(L∗, fq)) for every coloring f of L with f 6=

∞, fL is not isomorphic to the fundamental group π1(χ(L, f ′)) for every

coloring f ′ of L.

Corollary 5.6. Let (M,L) be a disconnected framed link. Assume that the

fundamental group π1(χ(L, fL)) is not isomorphic to the fundamental group π1(M)

for a finite regular coloring fL of L. Then we have a normal imitation

q : (M,L∗) −→ (M,L)

such that

(1) L∗ is totally hyperbolic and distinct from L componentwise,

(2) [χ(L∗, fLq)] = [χ(L, fL)], and

(3) the colorings ∞ and fLq of L∗ are π1-distinguished.
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Corollary 5.7. Assume that a disconnected framed link (M,L) has [χ(L, fL)] 6=

[M ] for a finite regular coloring fL of L. Then we have a normal imitation

q : (M,L∗) −→ (M,L)

such that

(1) L∗ is totally hyperbolic and distinct from L componentwise,

(2) [χ(L∗, fLq)] = [χ(L, fL)], and

(3) the colorings ∞ and fLq of L∗ are distinguished.

Concerning Corollary 5.7, here is a remark.

Remark 5.8. For every [M ] ∈ M with [M ] 6= [S3], we see from W. B. R.

Lickorish [20], A. H. Wallace [26] and Corollary 5.7 that we have a colored link type

[L, f ] ∈ Lf such that [χ(L, f)] = [M ] and the ∞-coloring of L is distinguished. If

the distinguished ∞-coloring is the π1-distinguished ∞-coloring for every oriented

link in S3 with ∞-coloring distinguished, then the fundamental group π1(M) is

non-trivial and hence the Poincaré conjecture is affirmative.

The following example leads to a hyperbolic group classification of closed con-

nected oriented 3-manifolds:

Example 5.9. We shall construct an injective map

a0
∞ : M −→ L0

which is a faithful right inverse of D0, analogous to but different from a0 in Ex-

ample 3.4. For every x ∈ M, we take the subset L0
∞(x) ⊂ L0 consisting of a

0-colored link type x0 = [L, 0] such that L is an oriented hyperbolic link possi-

bly with infinite volume determined by the exterior E(L) up to orientations, and

D0(x0) = [χ(L, 0)] = x. The set L0
∞(x) is not empty for every x ∈ M. In fact, if

x 6= [S3], then we see from Lemma 2.3 and Corollary 5.7 that L0
∞(x) is not empty.

If x = [S3], then the set L0
∞(x) is also non-empty, since it contains a 0-colored Hopf

link type. Since D0L0
∞(x) = {x} and L0

∞(x̄) = L0
∞(x) for every x ∈ M, we obtain

from Criterion 3.2 a unique faithful right inverse

a0
∞ : M −→ L0

of the Dehn surgery map D0 with a0
∞(x) ∈ L0

∞(x) for every x ∈ M such that

a0
∞(x) = ψL0

∞(x) if x = x̄, and either a0
∞(x) or a0

∞(x̄) is equal to ψ(L0
∞(x)∪L0

∞(x̄))

if x 6= x̄. By the natural identification L0 = L, the map a0
∞ is identified with the

injection

a∞ : M −→ L
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such that we have a∞(x̄) = a∞(x) for every x ∈ M with x 6= x̄. We note that

a∞([S3]) is the positive Hopf link type and a∞([S1 × S2]) is the trivial knot type.

By making use of Example 5.9, we show the following result:

Theorem 5.10. To every closed connected oriented 3-manifold M we can assign

a finitely generated torsion-free discrete subgroup GM of PSL(2,C) so that there is

a homeomorphism M −→M ′ if and only if there is an isomorphism GM −→ GM ′.

The group GM is abelian if and only if M is homeomorphic to S3 or S1×S2 where

we have GS3
∼= Z ⊕ Z and GS1×S2

∼= Z.

Proof. Let a∞([M ]) = [LM ] in Example 5.9. Let GM = π1(E(LM )) be the group

of a hyperbolic link LM possibly with infinite volume, which is a finitely generated

torsion-free discrete subgroup of PSL(2,C). From our construction, we see that

if there is a homeomorphism M −→ M ′, then [LM ] = [LM ′ ] or [LM ] = [−L̄M ′]

according to whether [M ] = [M ′] or [M ] 6= [M ′] and [M ] = [−M ′]. Hence there is

an isomorphism GM −→ GM ′ . Conversely, assume that there is an isomorphism

GM −→ GM ′ . A hyperbolic link has the infinite volume if and only if it is a trivial

knot or a Hopf link, whose link group constitutes all the abelian link groups. If one

of the hyperbolic manifolds E(LM ) and E(LM ′) has a finite volume, then both of

the hyperbolic manifolds have finite volumes and hence there is a homeomorphism

E(LM ) −→ E(LM ′) by the Mostow rigidity theorem (see G. D. Mostow [21], W.

P. Thurston [24, 25]). If both the hyperbolic manifolds E(LM ) and E(LM ′) have

the infinite volume, then LM and L′
M are a trivial knot and/or an oriented Hopf

link, so that the isomorphism GM
∼= GM ′ implies that there is a homeomorphism

E(LM ) −→ E(LM ′). Since the oriented links LM , LM ′ are determined by the

exteriors up to orientations, we have a homeomorphism (S3, LM ) −→ (S3, LM ′),

which implies the identity [M ] = [±M ′], namely there is a homeomorphism M −→

M ′. In Example 5.9, we haveGS3
∼= Z⊕Z and GS1×S2

∼= Z. If [M ] 6= [S3], [S1×S2],

then the link LM is a hyperbolic link which is neither a trivial knot nor a Hopf link,

so that GM is not ablelian. �

6. Proof of Theorem 5.3

We note that if (M,L) is a framed link and q : (M,L∗) −→ (M,L) is a normal

imitation, then L∗ is a framed link by a meridian-longitude system induced from

that of L by q, so that a colored link (L, f) induces a unique colored link (L∗, fq).

The following lemma is obtained by combining Lemma 4.2 with the idea of [15,

Lemma 2.1]:

Lemma 6.1. For any disconnected framed link (M,L), any positive number C

and any positive integer J , there is an AID imitation

q : (M,L∗) −→ (M,L)
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such that

(1) χ(L∗, fq) is a hyperbolic asymmetric 3-manifold with volume greater than

C for every finite coloring f of L with ρ(f) ≤ J ,

(2) χ(L∗, fq) and χ(L∗, f ′q) are distinct, i.e., [χ(L∗, fq)] 6= [±χ(L∗, f ′q)], for

every pair of distinct finite colorings f, f ′ of L with ρ(f), ρ(f ′) ≤ J .

Proof. When M = S3, the proof is proved in [15, Lemma 2.1] except the volume

condition which can be easily added in the topological imitation theory. Since the

present proof is parallel to the argument of [15, Lemma 2.1], we give here only

the outline of the proof. Let L+ be a meridian addition link of L, that is a link

obtained from L by adding a meridian loop to every component of L. We note that

the sublink L+ − L is canonically framed by which we consider L+ a framed link

extending the framed link L. By Lemma 6.1 we have a hyperbolic asymmetric AID

imitation

q+ : (M, (L+)∗) −→ (M,L+)

with Vol(E(L+)∗) > C for every given positive number C . For any finite coloring

f of L and a positive integer n, let fn be the finite coloring of L+ such that

fn(K) =

{
f(K) + n (if K ⊂ L)
1
n

(if K ⊂ L+ − L).

We note that χ(L+, fn) = χ(L, f) and χ(L+ − L, 1
n
) = M . Since

lim
n→+∞

ρ(fn(K)) = +∞

for every component K of L+ and there are only finitely many colorings f of L

with ρ(f) ≤ J , we see from Thurston’s hyperbolic Dehn surgery argument ([24,

25]) that if we take n sufficiently large, then the AID imitation

q = χ(q+; (L+ − L,
1

n
)) : (M,L∗) −→ (M,L)

obtained by taking the Dehn surgery manifold χ(L+−L, 1
n
) = M has the property

that for every finite coloring f of L with ρ(f) ≤ J the Dehn surgery manifold

χ(L∗, fq) is a hyperbolic asymmetric 3-manifold with volume greater than C and

the dual link in χ(L∗, fq) of the sublink obtained from L∗ by removing the sublink

L∗
∅ ⊂ L

∗ consisting of a component K∗ with fq(K∗) = ∅ consists of short geodesics.

This last condition together with the Mostow rigidity theorem ([21,24,25]) implies

that [χ(L∗, fq)] 6= [±χ(L∗, f ′q)] for every pair of distinct colorings f, f ′ of L with

ρ(f), ρ(f ′) ≤ J (see [15, Lemma 2.1]). �

In Lemma 6.1, if f is an infinite coloring of L, then we have [χ(L∗, fq)] = [χ(L, f)]

by a property of the AID imitation q. We used first this property in an argument of

Dehn surgery of [8, Corollary 4.1], which is also developed in the following lemma:
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Lemma 6.2. Let Ls and Lc
s = L − Ls be non-empty sublinks of a framed link

(M,L). For any positive number C , any positive integer J and any finite regular

coloring fL of L, we have a normal imitation

q : (M,L∗) −→ (M,L)

where L∗ is written as L∗
s ∪ L

c
s such that

(1) the restriction

q|(M,L∗−K∗) : (M,L∗ −K∗) −→ (M,L−K)

for every knot K∗ ⊂ L∗
s and the knot K = q(K∗) ⊂ Ls is imitation-

homotopic to the identical imitation,

(2) [χ(L∗, fq)] = [χ(L, f)] for every coloring f of L such that f(K) = fL(K)

for a knot K ⊂ Lc
s,

(3) the Dehn surgery manifolds χ(L∗, fq) for all distinct colorings f of L such

that ρ(f) ≤ J , f |Ls
is a finite coloring of Ls, and f(K) 6= fL(K) for any

knot K ⊂ Lc
s are mutually distinct hyperbolic asymmetric 3-manifolds with

volumes greater than C .

Proof. We consider the Dehn surgery manifold M ′ = χ(Lc
s, fL|Lc

s
) and the framed

link L′ = Ls ∪L′c
s in M ′ where Lc′

s denotes the dual framed link obtained from the

link Lc
s by the Dehn surgery operation M −→M ′. We apply Lemma 6.1 to (M ′, L′)

to obtain an AID imitation

q′ : (M ′, (L′)∗) −→ (M ′, L′)

where (L′)∗ can be written as L∗
s ∪ L

c′
s . By the dual Dehn surgery operation

M ′ −→M , the AID imitation q′ induces a normal imitation

q : (M,L∗) −→ (M,L)

where L∗ can be written as L∗
s ∪L

c
s. (1) follows directly, since the normal imitation

q′|(M ′,(L′)∗−K∗) : (M,L∗ −K∗) −→ (M ′ , L′ −K)

is imitation-homotopic to the identical imitation. Since the coloring f of L in (2)

changes into an infinite coloring f ′ of the framed link (M ′, L′), we obtain (2) from

the remark preceding to this lemma. Since the coloring f of L in (3) changes into

a finite coloring f ′ of the framed link (M ′, L′), (3) follows from the properties of

Lemma 6.1 with a large positive integer J . �
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An important observation on Lemma 6.2 is that the coloring f of (3) may be

infinite on Lc
s.

Lemma 6.3. Let (M,L) be a disconnected framed link. For any positive number

C , any positive integer J and any finite regular coloring fL of L, we have a normal

imitation

q : (M,L∗) −→ (M,L)

such that

(1) [χ(L∗, fLq)] = [χ(L, fL)],

(2) the Dehn surgery manifolds χ(L∗, fq) for all distinct colorings f of L such

that ρ(f) ≤ J and f 6= ∞, fL are mutually distinct hyperbolic asymmetric

3-manifolds with volumes greater than C .

Proof. Let Li (i = 1, 2, . . . ,m) be all the non-empty sublinks of L such that

Lc
i = L − Li is not empty for all i. Inductively, we take positive numbers Ci

(i = 1, 2, . . . ,m) and m normal imitations

qi : (M,L∗
i ∪ L

c∗
i ) −→ (M,L∗

i−1 ∪ L
c∗
i−1) (i = 1, 2, . . . ,m)

which satisfy the following conditions:

(i) L∗
0 = L1, L

c∗
0 = Lc

1, C1 = C .

(ii) When we regard L∗
i−1, L

c∗
i−1 and Ci as Ls, L

c
s and C in Lemma 6.2 respec-

tively, we take q and L∗ in Lemma 6.2 as qi and L∗
i ∪L

c∗
i where we take L∗

i

and Lc∗
i so that

qiqi−1 . . . q1(L
∗
i ) = Li, qiqi−1 . . . q1(L

c∗
i ) = Lc

i .

(iii) ‖E(L∗
i ∪ L

c∗
i )‖ > Ci ≥ ‖E(L∗

i−1 ∪ L
c∗
i−1)‖ (i = 1, 2, . . . ,m).

Taking L∗ = L∗
m ∪ L

c∗
m , we have a composite normal imitation

q : (M,L∗) −→ (M,L)

such that q = qmqm−1 . . . q1 on a tubular neighborhood N(L∗) of L∗ in M . We

show that this normal imitation q has the properties (1) and (2). (1) follows directly

from (2) of Lemma 6.2. To see (2), let f be a coloring of L such that ρ(f) ≤ J and

f 6= ∞, fL. Let Lf=fL
be the sublink of L consisting of a component K of L with

f(K) = fL(K), and Lf=∞ the sublink of L consisting of a component K of L with

f(K) =∞. By the assumption that f 6=∞, fL, the sublinks Lf=fL
and Lf=∞ are

disjoint proper sublinks of L (which may be empty). We take the largest index i

such that Lf=fL
⊂ Li and Lf=∞ ⊂ Lc

i . By (1) and (2) of Lemma 6.2, we have

[χ(L∗, fq)] = [χ(L∗
i ∪ L

c∗
i , fqiqi−1 . . . q1)].

22



By (3) of Lemma 6.2, the Dehn surgery manifolds χ(L∗
i ∪ L

c∗
i , fqiqi−1 . . . q1) for

all distinct colorings f with ρ(f) ≤ J and f 6= ∞, fL such that Lf=fL
⊂ Li and

Lf=∞ ⊂ Lc
i are mutually distinct hyperbolic asymmetric 3-manifolds with volumes

greater than Ci. Since the volumes of these hyperbolic 3-manifolds is smaller than

or equal to Ci+1, we see (2). �

Proof of Theorem 5.3. For J1 = J , by Lemma 6.3 we have a normal imitation

q1 : (M,L∗1) −→ (M,L)

such that [χ(L∗1, fLq
1)] = [χ(L, fL)] and the Dehn surgery manifolds χ(L∗1, fq1)

for all distinct colorings f of L such that ρ(f) ≤ J1 and f 6= ∞, fL are mutually

distinct hyperbolic asymmetric 3-manifolds with volumes greater than C . Then by

Thurston’s argument on hyperbolic Dehn surgery, there exists an integer J+
1 > J1

such that

(*) the Dehn surgery manifolds χ(L∗1, fq1) are mutually distinct hyperbolic 3-

manifolds with volumes greater than C for all distinct colorings f of L such that

f 6= ∞, fL, ρ(f |Ls
) ≤ J1 and ρ(f |L−Ls

) > J+
1 for a (possibly empty) sublink

Ls ⊂ L.

Let J2 = J+
1 . Let L have the r components Ki (i = 1, 2, . . . , r). Then by

continuing this process, there are integers Jj(j = 1, 2, . . . , r + 2) with Jr+2 >

Jr+1 > · · · > J1 = J and normal imitations

qj : (S3, L∗j) −→ (S3, L∗(j−1)) (j = 1, 2, . . . , r + 1)

where L∗0 = L such that

[χ(L∗, fLq
r+1qr . . . q1)] = [χ(L, fL)]

and we have the following condition for every j = 1, 2, . . . , r + 1:

(**) The Dehn surgery manifolds χ(L∗j , fqjqj−1 . . . q1) are mutually distinct hy-

perbolic 3-manifolds with volumes greater than C for all distinct colorings f of L

such that f 6= ∞, fL, ρ(f |Ls
) ≤ Jj and ρ(f |L−Ls

) > Jj+1 for a (possibly empty)

sublink Ls ⊂ L.

Since the component number of L is r, for every coloring f of L we can find an

index j such that none of the sizes ρ(f(Ki)) for all i are in the half open interval

(Jj , Jj+1], so that every coloring f of L with f 6= ∞, fL satisfies the condition in

(**) for some j and hence the Dehn surgery manifold χ(L∗j , fqjqj−1 . . . q1) is a

hyperbolic 3-manifold with volume greater than C . Taking L∗ = L∗(r+1), we have

a composite normal imitation

q : (M,L∗) −→ (M,L)
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such that q = qr+1qr . . . q1 on a tubular neighborhood N(L∗) of L∗ in M . Since the

Dehn surgery manifold χ(L∗, fq) is a normal imitation of the Dehn surgery manifold

χ(L∗j , fqjqj−1 . . . q1) for every coloring f and every j, the normal imitation q is a

desired imitation with Jr as J . �
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[19] R. Kirby, A calculus for framed links in S3, Invent. Math., 45(1978), 35-56.

24



[20] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds,

Ann. of Math., 76(1962), 531-540.

[21] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. Math. Studies,

78(1973), Princeton Univ. Press.

[22] D. Rolfsen, Knots and links, (1976), Publish or Perish.

[23] T. Soma, The Gromov invariant of links, Invent. Math., 64(1981), 445-454.

[24] W. P. Thurston, The geometry and topology of 3-manifolds, Lecture notes at

Princeton Univ. (1978-1980).

[25] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic

geometry, Bull. Amer. Math. Soc., 6(1982), 357-381.

[26] A. H. Wallace, Modifications and cobounding manifolds, Canadian J. Math.,

12(1960), 503-528.

[27] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math.

Phys., 121(1989), 351-399.

Department of Mathematics

Osaka City University

Sugimoto, Sumiyoshi-ku

Osaka 558-8585, Japan

kawauchi@sci.osaka-cu.ac.jp

25


