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ABSTRACT

We show that the linking signature of a closed oriented 4-manifold with infinite cyclic first

homology is twice the Rochlin invariant of an exact leaf with a spin support if such a leaf exists.

In particular, the linking signature of a surface-knot in the 4-sphere is twice the Rochlin invariant

of an exact leaf of an associated closed spin 4-manifold with infinite cyclic first homology. As an

application, we characterize a difference between the spin structures on a homology quaternion

space in terms of closed oriented 4-manifolds with infinite cyclic first homology, so that we can

obtain examples showing that some different punctured embeddings into S4 produce different

Rochlin invariants for some homology quaternion spaces.

Keywords : quadratic function, linking signature, surface-knot, Rochlin invariant, exact leaf, spin

structure, homology quaternion space

0. Introduction
A quadratic function on a finite abelian group G is a function

q : G −→ Q/Z

such that q(−x) = q(x) for all x ∈ G and the pairing ` : G × G → Q/Z defined by
the identity `(x, y) = q(x + y) − q(x) − q(y) is a non-singular symmetric bilinear
form which we call the linking induced from q. We note that 2q(x) = `(x, x)
and q(2mx) = 22mq(x) for every integer m ≥ 1 and x ∈ G. A quadratic function
q : G×G → Q/Z is said to be isomorphic to a quadratic function q′ : G′×G′ → Q/Z
if there is an isomorphism f : G ∼= G′ such that q = q′f . The linking signature σ(q)
of q is a rational number modulo one which is defined by the Gauss sum identity

GS(q) =
∑

x∈G

exp(2π
√
−1 · q(x)) =

√

|G| exp(2π
√
−1 · σ(q))

(see [8]). The linking signature σ(q) ∈ Q/Z is an invariant of a quadratic function
q up to isomorphisms and has 8σ(q) = 0 in Q/Z in general. A closed connected
oriented 4-manifold M with H1(M ;Z) ∼= Z is simply called a ZH1-manifold. By a
result of [7], the ZH1-manifold M#n(S2×S2) admits an exact leaf V if n is greater
than a constant depending on M . In this paper, we consider the torsion quadratic
function

q : GM̃ −→ Q/Z

of the infinite cyclic covering space M̃ over a ZH1 -manifold M belonging to a
generator γ ∈ H1(M ;Z). This quadratic function q was first defined in [8], although
the induced torsion linking

` : GM̃ × GM̃ −→ Q/Z

had been defined in [4] (see also [6]). We denote the linking signature σ(q) by

σ(M̃) = σγ(M). For our purpose, we consider a ZH1-manifold M containing an
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exact leaf V with a spin support M∗ in M , that is, a compact spin 4-manifold
neighborhood M∗ of V in M such that H1(∂M∗;Z) is a free abelian group. For a
spin structure ι on V induced from any spin structure on M∗, we take the Rochlin
invariant µ(V, ι), arranged to have the value in Q/Z. Then, as the main result
of this paper, we shall show that the linking signature σγ(M) is equal to 2µ(V, ι).
This theorem will be exactly stated in §2 and proved in §3. In §1, some facts of
the torsion quadratic function, the torsion linking, and the linking signature are
explained.

As a concrete object, we consider an oriented surface-knot F in a closed con-
nected oriented 4-manifold M1 with H1(M1;Z) = 0 such that F admits a Seifert
hypersurface in M1 (in other words, such that [F ] = 0 ∈ H2(M1;Z)). For standard
examples, we take M1 = S4. By [8] we still have the torsion quadratic function

qF : GF −→ Q/Z

and the torsion linking
`F : GF × GF −→ Q/Z

of the surface-knot F . This torsion linking `F is a natural generalization of the
Farber-Levine linking of an S2-knot in S4 (see Farber [2], Levine [13]). We denote
the linking signature σ(qF ) ∈ Q/Z by σ(F ). Let EF be the compact exterior of F
in M1, i.e., EF = cl(M1−NF ) for a trivial normal bundle NF of F in M1. We have
the first homology H1(EF ;Z) ∼= Z with a unique meridian generator. We choose a
trivialization NF = F × D2 so that the natural composite

H1(F × 1; Z) −→ H1(∂EF ;Z) −→ H1(EF ;Z) ∼= Z

is the zero map under the identification ∂EF = ∂NF = F × S1. Let V0 be the
handlebody such that ∂V0 = F . Let Mφ be the closed 4-manifold obtained from
EF and V × S1 by attaching the boundaries by a homeomorphism φ : ∂EF =
F × S1 → ∂V0 × S1 which preserves the S1-factor. Then Mφ is a ZH1-manifold.
We refer the ZH1 -manifold Mφ,n = Mφ#n(S2 × S2) as a ZH1-manifold associated
with the surface-knot F . Choosing φ carefully, we can make Mφ and hence Mφ,n

spin. Let V be an exact leaf of the spin ZH1-manifold Mφ,n for a large integer n.
Let ι be a spin structure on V induced from any spin structure on Mφ,n. In this
case, our main theorem implies the identity

σ(F ) = 2µ(V, ι).

We shall also note in Remark 2.6 that the Rochlin invariant µ(V, ι) itself is not
an invariant for a high genus surface-knot F , although it is an invariant when F is
an S2-knot in S4 by a result of Ruberman[14]. Our main result is applied in §4 to
characterize a difference between the spin structures ι on a homology quaternion
space V by constructing ZH1-manifolds M such that V is an exact leaf of M with a
spin support M∗ in M and ι is a spin structure on V induced from a spin structure
on M∗. Using this characterization, we shall obtain examples showing that some
different punctured embeddings into S4 produce different Rochlin invariants for the
quaternion space and a homology quaternion space.

Finally, the torsion linking and the torsion quadratic function of a surface-link
are also defined in [8], and the surface-link version of this paper will be discussed
in [9].

2



1. The torsion linking, the torsion quadratic function, and the linking
signature

Let Λ = Z[Z ] = Z[t, t−1]. Let W be a compact connected oriented 4-manifold

which admits an infinite cyclic connected covering p : W̃ → W belonging to an
indivisible element γ ∈ H1(W ;Z). Let A and A′ be ∅ or compact 3-submanifolds

of ∂W such that A′ = cl(∂W − A). For a subspace W ′ of W , let W̃ ′ = p−1(W ′).
For a finitely generated Λ-module H, let DH be the maximal finite Λ-submodule
of H (see [4;§3]), tH the Z-torsion part of H, and TH the Λ-torsion part of H. Let
BH = H/TH. Let Eq(H) = ExtqΛ(H,Λ). By an argument of [4] we have a t-anti
epimorphism

θA,A′ : DH1(W̃ , Ã;Z) → E1(BH2(W̃ , Ã′;Z))

which is an invariant of (W̃ , Ã, Ã′) or (W,A,A′, γ). We denote the kernels of θA,A′

and θA′,A by DH1(W̃ , Ã;Z)θ and DH1(W̃ , Ã′;Z)θ, respectively. The second duality
of [4] then says that there is a t-isometric non-singular bilinear form

` : DH1(W̃ , Ã;Z)θ × DH1(W̃ , Ã′;Z)θ −→ Q/Z

which is an invariant of (W̃ , Ã, Ã′) or (W,A,A′, γ). By taking A = ∅ and A′ = ∂W ,

let D̂H1(W̃ ;Z)θ denote the following quotient finite Λ-module:

DH1(W̃ ;Z)θ/Im(̃i∗ : H1(∂W̃ ;Z) → H1(W̃ ;Z)) ∩ DH1(W̃ ;Z)θ,

where ĩ∗ denotes the natural homomorphism. Then we have the following lemma
(see [8]):

Lemma 1.1. The bilinear form ` induces a t-isometric linking

ˆ̀ : D̂H1(W̃ ;Z)θ × D̂H1(W̃ ;Z)θ −→ Q/Z. �

The linking ˆ̀ is an invariant of W̃ or (W,γ) and called the torsion linking of W̃
or (W,γ). We say that H is (t−1)-divisible if t−1 is an automorphism of H. For a
finitely generated (t− 1)-divisible Λ-module H, it is well-known that the Z-torsion
part tH of H is equal to DH, originally due to M. A. Kervaire [12] (cf. [4;§3]).
For DH, let

D0H = ∩∞
n=1(t − 1)nDH,

D1H = {x ∈ DH|∃n ≥ 1, (t − 1)nx = 0}.

Then we have a natural splitting DH = D0H ⊕ D1H, so that D0H is a unique
maximal (t − 1)-divisible finite Λ-submodule of H (see [8]). We denote by G(W̃ )

the unique maximal Λ-submodule D0(D̂H1(W̃ )θ) of D̂H1(W̃ )θ . The restriction

`G of ˆ̀ to G(W̃ ) induces a t-isometric linking

`G : G(W̃ ) × G(W̃ ) −→ Q/Z,

which we call the (t−1)-divisible torsion linking of W̃ or (W,γ), which leads to the
following definition (see [8]):
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Definition 1.2. The torsion quadratic function of W̃ or (W,γ) is the function

q : G(W̃ ) −→ Q/Z

defined by q(x) = `G(x, (1 − t)−1x). �

It is direct to see that q is an invariant of W̃ or (W,γ). We have

q(−x) = q(x) and q(x + y) − q(x) − q(y) = `G(x, y).

Thus, q is a quadratic function inducing `G. The linking signature σ(q) ∈ Q/Z is
given by the Gauss sum identity

GS(q) =
∑

x∈G(W̃)

exp(2π
√
−1 · q(x)) =

√

|G(W̃ )| exp(2π
√
−1 · σ(q)),

which is denoted by σ(W̃ ) = σγ(W ) and called by the linking signature of W̃ or

(W,γ). For every prime p, let G(W̃ )p be the p-torsion subgroup of G(W̃ ). Then

we see that the linking `G : G(W̃ ) × G(W̃ ) → Q/Z is the unique orthogonal sum

of the linkings `p : G(W̃ )p ×G(W̃ )p → Q/Z induced from `G for all primes p. The

restricted function qp : G(W̃ )p → Q/Z of q is a quadratic function inducing `p. We

denote σ(qp) by σp(W̃ ) and call it the p-local linking signature. Then we have the
identity

σ(W̃ ) =
∑

p

σp(W̃ )

where the summation
∑

p ranges over all primes p. Further, the p-primary compo-

nent G(W̃ )p has a homogeneous orthogonal splitting ⊕∞
i=1G(W̃ )i

p with respect to `p

where G(W̃ )i
p is a direct sum of copies of Zpi . The restricted function qi

p : G(W̃ )i
p →

Q/Z of qp is a quadratic function inducing the linking `i
p : G(W̃ )i

p×G(W̃ )i
p → Q/Z

induced from `p. We denote the linking signature σ(qi
p) by σi

p(W̃ ) and call it the

ith p-local signature of W̃ or (W,γ). By definition,

σp(W̃ ) =
∞
∑

i=1

σi
p(W̃ ).

It turns out that σi
p(W̃ ) is an invariant of W̃ and takes a value in Q/Z as follows:

σi
p(W̃ ) =











0 if p is any prime and i is even

0 or 1
2 if p = 2 and i is odd

0, 1
2 , or ± 1

4 if p and i are odd.

Let F be a surface-knot in a closed connected oriented 4-manifold M1 such that
H1(M1;Z) = 0 and [F ] = 0 ∈ H2(M1;Z), and EF the compact exterior of F in
M1. The torsion linking

`F : GF ×GF → Q/Z
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of this surface-knot F is the torsion linking `G : G(ẼF ) × G(ẼF ) → Q/Z for the

infinite cyclic covering space ẼF over EF belonging to the element γ ∈ H1(EF ;Z)
sending the meridian of F to 1, and the torsion quadratic function

qF : GF → Q/Z

of F is the torsion quadratic function q : G(ẼF ) → Q/Z. We define

σ(F ) = σ(ẼF ), σp(F ) = σp(ẼF ), σi
p(F ) = σi

p(ẼF ).

Let M̃φ,n → Mφ,n be the infinite cyclic covering belonging to γ under the iden-

tification H1(ẼF ;Z) = H1(Mφ,n;Z), which extends the infinite cyclic covering

ẼF → EF . As observed in [8;Proposition 4.4], the torsion quadratic function

qF : GF → Q/Z is isomorphic to the torsion quadratic function q : G(M̃φ,n) → Q/Z
for all n, so that

σ(F ) = σ(M̃φ,n), σp(F ) = σp(M̃φ,n), σi
p(F ) = σi

p(M̃φ,n)

for all primes p and all positive integers i.

2. Identifying the linking signature with twice the Rochlin invariant

A leaf of a ZH1-manifold M is a bicollared 3-submanifold V of M such that V
represents a generator of H3(M ;Z) ∼= H1(M ;Z) ∼= Z. The following definition of
exact leaf is found in [7] together with two equivalent definitions:

Definition 2.1. A leaf V of a ZH1-manifold M is exact if the natural semi-exact
sequence

0 → tH2(M̃, Ṽ ;Z)
∂̃−→ tH1(Ṽ ;Z)

ĩ∗−→ tH1(M̃ ;Z)

induced from the homology exact sequence of the pair (M̃ , Ṽ ) is exact. �

Further, we say that a ZH1-manifold M is exact if there is an exact leaf V of M .
The following lemma is proved in [7]:

Lemma 2.2. For every ZH1-manifold M , we have a non-negative integer n such
that the connected sum M#n(S2 × S2) is exact. �

For a closed oriented 3-manifold V , we have a linking form

`V : tH1(V ;Z) × tH1(V ;Z) −→ Q/Z

on the Z-torsion part tH1(V ;Z) of H1(V ;Z) defined by the Poincaré duality. Given
a spin structure ι on V , we have a unique quadratic function

qι
V : tH1(V ;Z) −→ Q/Z,

such that
qι
V (x + y) − qι

V (x) − qι
V (y) = `V (x, y)

(see [8;Lemma 1.1]). By [8;Corollary 1.4], the linking signature σ(qι
V ) ∈ Q/Z given

by the Gauss sum identity

GS(qι
V ) =

∑

x∈tH1(V ;Z)

exp(2π
√
−1 · qι

V (x)) =
√

|tH1(V ;Z)| exp(2π
√
−1 · σ(qι

V ))
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has 8σ(qι
V ) = 0 ∈ Q/Z. We call this invariant the spin linking signature of (V, ι)

and denote it by s(V, ι). The Rochlin invariant µ(V, ι) ∈ Q/Z of (V, ι) is defined
by the identity

µ(V, ι) = −sign(U )/16 ∈ Q/Z

for any smooth spin 4-manifold (U, ιU ) bounded by (V, ι). By [8;Lemma 1.3], we
have

s(V, ι) = 2µ(V, ι).

To state our main theorem, we generalize the concept of a spin ZH1-manifold as
follows: A leaf V of a ZH1-manifold M admits a spin support M∗ in M if M∗ is a
compact spin 4-manifold neighborhood of V in M such that tH1(∂M∗;Z) = 0. For
example, let V be a leaf of a spin ZH1-manifold M ′, and M the connected sum of
M ′ and any closed non-spin 4-manifold W with H1(W ;Z) = 0. Then V is a leaf of
the non-spin ZH1-manifold M with a spin support in M . Using this concept, we
state our main theorem (proved in §3) as follows:

Theorem 2.3. Let V be an exact leaf of a ZH1-manifold M with a spin support
M∗ in M . For any spin structure ι on V induced from any spin structure on M∗,
we have

σ(M̃ ) = s(V, ι) = 2µ(V, ι). �

Let F be a surface-knot in a closed spin 4-manifold M1 such that H1(M1;Z) =
0 and F admits a Seifert hypersurface in M1. By our choice of a trivialization
NF = F × D2, the surface F × 1 bounds a bicollared 3-submanifold VF in EF .
By Poincaré duality over Z2, we have a Z2-symplectic basis xi, yi (i = 1, 2, . . . ,m)
for H1(F × 1; Z2) whose Z2-intersection numbers have xi · xj = yi · yj = 0 and
xi · yj = δi,j for all i, j = 1, 2, . . . ,m and such that xi bounds a Z2-chain in VF for
all i. We represent xi and yi by circles Sx

i and Sy
i embedded in F × 1 such that

Sx
i ∩Sx

j = Sy
i ∩Sy

j = Sx
i ∩Sy

j = ∅ for all i, j with i 6= j and Sx
i ∩Sy

i = one point for

all i. We choose a homeomorphism φ : ∂EF = F × S1 → ∂V0 × S1 preserving the
S1-factor such that φ(Sx

i ) is a meridian disk in V0 × 1. Then we have the following
lemma:

Lemma 2.4. The ZH1-manifold Mφ is spin. �

Proof. We consider the following part

H2(EF ;Z2) → H2(Mφ;Z2) → H2(Mφ, EF ;Z2)
∂→ H1(EF ;Z2)

of the exact sequence of the pair (Mφ, EF ). Using the excision isomorphism

H2(Mφ, EF ;Z2) ∼= H2(V0 × S1, F × S1;Z2),

we see that H2(Mφ;Z2) is generated by Z2-cycles C in H2(EF ;Z2) and Z2-cycles
C ′

i (i = 1, 2, . . . ,m) in Mφ such that C ′
i is the sum of a Z2-chain in VF bounded

by Sx
i and a medidian disk in V0 bounded by φ(Sx

i ). Since EF is spin, we have the
Z2-intersection number C · C = 0 for every Z2-cycle in EF . By construction, we
also have the Z2-intersection number C ′

i · C ′
i = 0 for all i. These mean that Mφ is

spin. �

Combining Lemma 2.4 with Theorem 2.3, we obtain the following corollary from
the identity σ(F ) = σ(M̃φ,n):

6



Corollary 2.5. Let Mφ,n be any spin ZH1-manifold associated with any surface-
knot F in M1 which admits an exact leaf V , and ι a spin structure on V induced
from any spin structure on Mφ,n. Then we have

σ(F ) = s(V, ι) = 2µ(V, ι). �

We consider an S2-knot K in S4. Let V be a closed oriented 3-manifold obtained
from a Seifert hypersurface VK for K in S4 by adding a 3-ball, and ι the spin
structure on V induced from S4. Then Ruberman [14] showed that the Rochlin
invariant µ(V, ι) ∈ Q/Z is independent of a choice of VK and hence an invariant of
K. A geometric proof of this fact is also easily derived from the fact in [5] that any
two Seifert hypersurfaces for K are connected by a surgery sequence on embedded
1-handles or 2-handles, because the surgery trace of every embedded 1-handle or
2-handle on a Seifert hypersurface VK is in S4 and hence has the signature zero.
By definition, V is an exact leaf of the (unique) spin ZH1-manifold Mφ associated
with K. Hence we have

σ(K) = s(V, ι) = 2µ(V, ι)

by Corollary 2.5. By this evidence, one may expect that µ(V, ι) itself is an invariant
for a positive genus surface-knot F . However, the following remark shows that this
is not true for a high genus surface-knot:

Remark 2.6. It is well-known that every homology 3-sphere V can embedded
smoothly into the connected sum #n(S2 × S2) for a positive integer n. For our
purpose, we take any V such that µ(V, ιV ) = 1

2 , where ιV denotes the unique spin

structure on V . We note that the ZH1 -manifold M = S1 × S3#n(S2 × S2) is a
ZH1-manifold associated with a trivial surface-knot of genus n. Since V separates
#n(S2×S2) into two submanifolds, we see that V is a leaf of the ZH1-manifold M .
The factor S3 of the connected summand S1 × S3 of M gives a leaf of M . Since
H1(S

3;Z) = H1(V ;Z) = 0, we see from Lemma 4.2 later that S3 and V are exact
leaves of M . However, we have µ(S3, ιS3) = 0 and µ(V, ιV ) = 1

2
. �

In spite of this example, we can re-use the Rochlin invariant as an invariant of
a positive-genus surface-knot F together with a self-orthogonal Λ-submodule X of
BH2(ẼF ;Z) (see [10]).

3. Proof of Theorem 2.3
Let V be a leaf of a ZH1-manifold M . Let µ ∈ H3(M̃ ;Z) be the fundamental

class of the covering p : M̃ → M , that is a homology class represented by a lift
of the leaf V to M̃ (see [5]). Unless a confusion might occur, this lift is also

denoted by V . Let τH2(M̃ ;Z) be the image of the Bockstein homomorphism

δQ/Z : H1(M̃ ;Q/Z) → H2(M̃ ;Z). Let tH1(V ;Z)θ be the subgroup of tH1(V ;Z)

given by (∩[V ])i∗(τH2(M̃ ;Z)) in the following commutative diagram:

τH2(M̃ ;Z)
∩µ−−−−→ tH1(M̃ ;Z)

i∗




y

i∗

x





tH2(V ;Z)
∩[V ]
∼=−−−−→ tH1(V ;Z).
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It is shown in [6;Lemma 4.1 and Theorem 4.2] that if V is an exact leaf of M , then
there is an orthogonal splitting tH1(V ;Z) = tH1(V ;Z)θ ⊕ Keri∗ with respect to
the linking `V . Further, we have the following (1) and (2):

(1) The map i∗ induces an isomorphism from the restricted linking

`V |tH1(V ;Z)θ : tH1(V ;Z)θ × tH1(V ;Z)θ −→ Q/Z

to the torsion linking

`G : G(M̃) ×G(M̃ ) −→ Q/Z

of M̃ with G(M̃) = tH1(M̃ ;Z)θ.
(2) We have Keri∗ = K+ ⊕ K− and `V (K+,K+) = `V (K−,K−) = 0 for

K± = Im(∂ : H2(M̃±, Ṽ±;Z) → tH1(Ṽ±;Z)) ∩ tH1(V ;Z)

where M̃± are 4-submanifolds obtained by M̃ splitting along V such that
M̃ = M̃+ ∪ M̃+, M̃+ ∩ M̃− = V , M̃± ⊃ t±1V , and Ṽ± = M̃± ∩ Ṽ .

We are now in a position of the proof of Theorem 2.3.

Proof of Theorem 2.3. Let V be an exact leaf of a ZH1-manifold M with a
spin support M∗ in M . Let ι be the spin structure on V induced from any spin
structure on M∗. Let M̃∗

± = M̃± ∩ M̃∗. We first show the following:

(1) The linking signature of the restricted quadratic function qι
V |Keri∗ is 0.

Let k be a 1-knot in V with [k] ∈ K+. Then there is a 2-chain C in M̃+ with

∂C = k and [C ] ∈ tH2(M̃+, Ṽ+;Z). Then C meets M̃∗
+ in a 2-chain C∗ such that

c = ∂C∗ − k is a torsion cycle in ∂M∗. Since ∂M̃∗ is a trivial lift of ∂M∗ and
tH1(∂M∗

+;Z) = 0, we have tH1(∂M̃∗
+;Z) = 0. Hence c is null-homologous in ∂M∗

+.

Let Ĉ be a 2-chain in M̃∗
+ with ∂Ĉ = k obtained from the 2-chain C∗ by adding a

2-chain in ∂M̃∗
+ with boundary −c. Let k′ be a longitude of k in V given by the spin

structure ι. For a 2-chain Ĉ ′ in M̃+ with ∂Ĉ ′ = k′ obtained from Ĉ by moving k

to k′ locally, the Z-intersection number s(Ĉ, Ĉ ′) in M̃+ is even by using a property

of the spin structure on M̃∗
+. Let clQ(Ĉ) and clQ(Ĉ ′) be rational 2-cycles in M̃+

obtained from Ĉ and Ĉ ′ by adding rational 2-chains cQ and c′Q in V with ∂cQ = −k

and ∂c′Q = −k′, respectively. Since clQ(Ĉ) and clQ(Ĉ ′) are rationally homologous

(in M̃∗) to rational 2-cycles in Ṽ+ ∪ ∂M̃∗
+, we see that the Q-intersection number

sQ(clQ(Ĉ), clQ(Ĉ ′)) = sQ(clQ(Ĉ), Ĉ ′) = 0. This means that the Z-intersection

number s(Ĉ, Ĉ ′) = −LinkQ(k, k′). Therefore, we have

qι
V ([k]) =

LinkQ(k, k′)

2
(mod 1)

= −s(Ĉ, Ĉ ′)

2
(mod 1) = 0.
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Thus, qι
V (K+) = 0. Similarly, qι

V (K−) = 0. By a result of hyperbolic quadratic
function in [8;Corollary 2.5], the linking signature of the quadratic function qι

V |Keri∗
is 0, as desired. Next, we show the following :

(2) For any elements x ∈ G(M̃) and y ∈ tH1(V ;Z)θ with i∗(y) = x, we have

qι
V (y) = `G(x, (1 − t)−1x) = q(x).

As a result, we see that the linking signature of the restricted quadratic function
q|tH1(V ;Z)θ is equal to σ(M̃ ).

Let z = (1 − t)−1x ∈ G(M̃ ). Let k and kt be 1-knots in V with [k], [kt] ∈
tH1(V ;Z)θ such that i∗([k]) = z and i∗([kt]) = tz. Since i∗[k − kt] = (1 − t)z = x,
we have y = [k−kt]. Let U be the compact manifold obtained from M by splitting

along V which we identify with a canonical lift to M̃ such that ∂U = V −tV . Using
that V is an exact leaf and ĩ∗[kt − tk] = 0, we have a 2-chain C̃ in tH2(M̃, Ṽ ;Z)

such that ∂C̃ = kt − tk. Considering the intersection of C̃ with U , we have a
2-chain C in tH2(U, ∂U ;Z) such that ∂C = (kt + k−)− (tk + tk+) for some 1-knots
k± in V with [k±] ∈ K± and kt ∩ k− = k ∩ k+ = ∅. Let U∗ be the compact
manifold obtained from M∗ by splitting along V . Then C meets U∗ in a 2-chain
C∗ such that c = ∂C∗ − ∂C is a torsion and hence null-homologous 1-cycle in
∂M∗. Let Ĉ be a 2-chain in U∗ with ∂Ĉ = ∂C obtained from the 2-chain C∗ by
adding a 2-chain in ∂M∗ with boundary −c. Let k′

t, k
′
−, k′, k′

+ be longitudes of

kt, k−, k, k+ given by the spin structure ι, respectively. Then for a 2-chain Ĉ ′ in

U∗ with ∂Ĉ ′ = (k′
t + k′

−) − (tk′ + tk′
+) obtained from Ĉ by moving kt, k−, k, k+

to k′
t, k

′
−, k′, k′

+ locally, respectively, we have that s(Ĉ, Ĉ ′) is an even integer. Let

clQ(Ĉ) and clQ(Ĉ ′) be rational 2-cycles in U∗ obtained from Ĉ and Ĉ ′ by adding
rational 2-chains in V ∪ tV with boundaries −(kt + k−) + (tk + tk+) and −(k′

t +

k′
−)− (tk′ + tk′

+), respectively. Since clQ(Ĉ) and clQ(Ĉ ′) are rationally homologous
(in U∗) to rational 2-cycles in V ∪ tV ∪∂M∗, we see that the Q-intersection number

sQ(clQ(Ĉ), clQ(Ĉ ′)) = sQ(clQ(Ĉ), Ĉ ′) = 0. This means that

−s(Ĉ, Ĉ ′) = LinkQ(kt + k−, k′
t + k′

−) − LinkQ(k + k+, k′ + k′
+)

= LinkQ(kt, k
′
t) + 2LinkQ(kt, k−) + LinkQ(k−, k′

−)

− LinkQ(k, k′) − 2LinkQ(k, k+) − LinkQ(k+, k′
+).

Since s(Ĉ,Ĉ′)
2 , LinkQ(kt, k−),

LinkQ(k−,k′

−
)

2 , LinkQ(k, k+), and
LinkQ(k+,k′

+)

2 are all 0
(mod 1), it follows that

LinkQ(kt, k
′
t)

2
=

LinkQ(k, k′)

2
(mod 1).
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Then

qι
V (y) =

LinkQ(k − kt, k
′ − k′

t)

2
(mod 1)

=
LinkQ(k, k′)

2
− LinkQ(kt, k) +

LinkQ(kt, k
′
t)

2
(mod 1)

= `V ([k], [k]) − `V ([kt], [k])

= `V ([k] − [kt], [k])

= `G(x, z)

= `G(x, (1 − t)−1x)

= q(x).

By (1) and (2) and the identity

s(V, ι) = σ(qι
V |Keri∗) + σ(qι

V |tH1(V ;Z)θ ),

the identity s(V, ι) = σ(M̃) is obtained. �

4. An application to spin structures on a homology quaternion space
A homology quaternion space is a closed connected oriented 3-manifold V such

that H1(V ;Z) ∼= Z2 ⊕ Z2 and the linking `V : H1(V ;Z) × H1(V ;Z) → Q/Z is
hyperbolic. Then we have `V (x,x) = `V (y, y) = 0 and `V (x, y) = 1

2
for every Z2-

basis x, y for H1(V ;Z). By [8;Corollary 2.5], the spin linking signature s(V, ι) = 0
or 1

2
for every spin structure ι on V . We represent x and y by disjoint knots kx

and ky in V , respectively. By [3;Lemma 1.1], we have unique longitudes Lx and Ly

on the tubular neighbourhoods T (kx) and T (ky) such that two paralells (with the
same orientation) of Lx and Ly bound compact oriented surfaces F2x and F2y in
cl(V − T (kx)) and cl(V − T (ky)), respectively. Using `V (x, y) = 1

2
, we can assume

that kx meets F2y transversely in one point and ky meets F2x transversely in one
point. There are four spin structures on a homology quaternion space V which we
can specify for a Z2-basis x, y of H1(V ;Z) as follows:

Let ι00 be the spin structure on V such that Lx and Ly are the Z2-longitudes
on kx and ky on this spin structure, respectively.

Let ι01 be the spin structure on V such that Lx is the Z2-longitude on kx and
Ly is not the Z2-longitude on ky on this spin structure.

Let ι10 be the spin structure on V such that Lx is not the Z2-longitude on kx
and Ly is the Z2-longitude on ky on this spin structure.

Let ι11 be the spin structure on V such that Lx and Ly are the non-Z2-longitudes
on kx and ky on this spin structure, respectively.

For the spin linking signature s(V, ι) of a spin homology quaternion space (V, ι),
we have the following characterization result:

Theorem 4.1. For a homology quaternion space V and a spin structure ι on
V , the following statements are mutually equivalent:

(1) s(V, ι) = 0.
(2) ι = ι00, ι01, or ι10 for any Z2-basis x, y for H1(V ;Z).
(3) There is a Z2-basis x, y for H1(V ;Z) on which ι = ι00.

10



(4) There is a ZH1-manifold M with H1(M̃ ;Z) = 0 which contains V as an
exact leaf with a spin support M∗ in M , and ι is induced from a spin
structure on M∗.

(5) µ(V, ι) = 0, 1
2 .

The following statements are also mutually equivalent:

(1′) s(V, ι) = 1
2 .

(2′) ι = ι11 for any Z2-basis x, y for H1(V ;Z).

(3′) There is a ZH1-manifold M with H1(M̃ ;Z) 6= 0 which contains V as a leaf
with a spin support M∗ in M , and ι is induced from a spin structure on
M∗.

(4′) There is a ZH1-manifold M with H1(M̃ ;Z) 6= 0 which contains V as an
exact leaf with a spin support M∗ in M , and ι is induced from a spin
structure on M∗.

(5′) µ(V, ι) = ± 1
4 . �

Proof. Because s(V, ι) = 0 if and only if there is a Z2-basis x, y of H1(V ;Z)
such that qι

V (x) = qι
V (y) = 0 (see [8;Corollary 2.5]), we have (1) ⇔ (2) ⇔ (3) and

(1′) ⇔ (2′). Using s(V ; ι) = 2µ(V, ι), we see that (5) ⇔ (1) and (5′) ⇔ (1′). Thus,
it suffices to show that

(3) ⇒ (4) ⇒ (5),

(2′) ⇒ (3′) ⇒ (4′) ⇒ (5′),

To see that (3) ⇒ (4), we use the fact that there is a Z2-basis x, y of H1(V ;Z)
such that qι

V (x) = qι
V (y) = 0. This means that Lx and Ly are Z2-longitudes of kx

and ky on ι. By taking homeomorphisms f±1 : D2 × D2 → h±1, we construct a
4-manifold

W = V × [−1, 1] ∪ h−1 ∪ h1

where we identify T (kx)×(−1) with f−1((∂D2)×D2) and T (ky)×1 with f1((∂D2)×
D2) so that Lx × (−1) and Ly × 1 correspond to f−1(∂D2 × p) and f1(∂D2 × p)
for a point p ∈ ∂D2 . Then W is a spin 4-manifold with H1(W ;Z) = 0 and ∂W is
the disjoint union of two closed 3-manifolds V−1 and V1 such that H1(V±1;Z) ∼= Z
where ky × (−1) and kx × 1 represent generators of H1(V−1;Z) and H1(V1;Z),
respectively. Let M be the double of W . Then M is a spin ZH1-manifold with
H1(M̃ ;Z) = 0. We show that V = V × 0 of a copy of W in M is an exact
leaf of M . Let MV be the 4-manifold obtained from M by splitting along V .
By construction, we have H1(MV ;Z) ∼= Z2 ⊕ Z2. Then the boundary operator

∂̃′ : H2(M̃ , M̃V ;Z) → H1(M̃V ;Z) is onto, for H1(M̃ ;Z) = 0. Since

H2(M,MV ;Z) ∼= H2(V × I, V × ∂I;Z) ∼= Z2 ⊕ Z2

by excision, we see that H2(M̃, M̃V ;Z) and H1(M̃V ;Z) are Λ-isomorphic to the

same Λ-module Λ2 ⊕ Λ2 with Λ2 = Z2 ⊗ Λ, so that the Λ-epimorphism ∂̃′ :
H2(M̃, M̃V ;Z) → H1(M̃V ;Z) is an isomorphism by a Noetherian ring property.
By [7;Theorem 2.1], this means that V is an exact leaf of M . Thus, we have

(3) ⇒ (4). The assertion (4) ⇒ (5) is direct from Theorem 2.3, because σ(M̃ ) = 0.
To see that (2′) ⇒ (3′), we take knots kx, ky, and kx+y in V representing x,

y, x + y. By the assumption of (2′), the longitudes Lx on T (kx), Ly on T (ky),
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and Lx+y on T (kx+y) are non-Z2 longitudes on ι, respectively. We construct an
orientable 4-manifold W ′ from V × [0, 1] by identifying T (kx) × 0 with T (ky) × 1
and T (ky)× 0 with T (kx+y)× 1 so that Lx × 0 and Ly × 0 coincide with Ly × 1 and
Lx+y ×1, respectively. Then W ′ is a spin 4-manifold. To calculate H1(∂W ′;Z), let
V(x,y) = cl(V −T (kx)∪T (ky)) and V(y,x+y) = cl(V −T (ky)∪T (kx+y)). Examining
the relations between kx and F2y and ky and F2x, we see that the meridians of
T (kx) and T (ky) are homologous to 2Ly and 2Lx in V(x,y), respectively. Then we
have H1(V(x,y);Z) ∼= Z ⊕ Z with a basis represented by Lx and Ly. Similarly, we
have H1(V(y,x+y);Z) ∼= Z ⊕ Z with a basis represented by Ly and Lx+y. Thus,
H1(∂W ′;Z) ∼= Z ⊕Z ⊕Z with a basis represented by Lx × 0, Ly × 0, and a simple
loop L such that L ∩ V(x,y) × 0 is an arc and hence L ∩ V(y,x+y) × 1 is also an arc.

Attaching a 2-handle D2×D2 to W ′ along a tubular neighborhood T (L) of L in ∂W ′

with a Z2-longitude given by a spin structure on W ′, we obtain a spin 4-manifold
W ∗ such that H1(W

∗;Z) ∼= Z and H1(∂W ∗;Z) ∼= Z ⊕ Z with a basis represented

by Lx×0 and Ly×0. To examine the homology H1(W̃
∗;Z), let W ∗

V be a 4-manifold
obtained from W ∗ by splitting along V = V × 1

2 , and V± the two copies of V in
W ∗

V . From construction, the natural homomorphisms H1(V±;Z) → H1(W
∗
V ;Z)

are isomorphisms. Thus, the natural homomorphism H1(V ;Z) → H1(M̃
∗;Z) is an

isomorphism. Since the 3-dimensional bordism group

Ω3(S
1 × S1) ∼= ⊕p+q=3Hp(S

1 × S1;Z) ⊗ Ωq = 0

by Conner-Floyd [1], there is a compact orientable (not necessarily spin) 4-manifold
X such that ∂X = ∂W ∗ and the natural homomorphism H1(∂X;Z) → H1(X;Z)
is an isomorphism. Then M = M∗ ∪ X is a ZH1-manifold such that V is a leaf of
M with a spin support M∗ in M . From construction, the natural homomorphism
H1(M̃

∗;Z) → H1(M̃ ;Z) is an isomorphism, and hence H1(M̃ ;Z) 6= 0, showing
that (2′) ⇒ (3′). To see that (3′) ⇒ (4′), we use the following two lemmas proved
later:

Lemma 4.2. For every leaf V of a ZH1-manifold M and every field F, the natural
homomorphism i∗ : H1(V ; F) → H1(M̃ ; F) is an epimorphism. In particular, if

H1(V ;Z) is finite, then the natural homomorphism i∗ : H1(V ;Z) → H1(M̃ ;Z) is
an epimorphism. �

Lemma 4.3. A leaf V of a ZH1-manifold M is exact if the natural homomor-
phism i∗ : H1(V ;Z) → H1(M̃ ;Z) is a monomorphism. �

By lemma 4.2, i∗ : H1(V ;Z) → H1(M̃ ;Z) is an epimorphism for a homology

quaternion space V . If i∗ is not an isomorphism, then we must have H1(M̃ ;Z) ∼= Z2,

because H1(V ;Z) ∼= Z2 ⊕ Z2 and H1(M̃ ;Z) 6= 0. However, this is impossible

since H1(M̃ ;Z) is (t − 1)-divisible. Thus, i∗ is an isomorphism and by Lemma
4.3 V is exact and the assertion that (3′) ⇒ (4′) is proved. To show that (4′) ⇒
(5′), we may assume by the preceding argument that i∗ : H1(V ;Z) → H1(M̃ ;Z)

is an isomorphism. By Theorem 2.3, we have 2µ(V, ι) = σ(V, ι) = σ(M̃). To

calculate σ(M̃ ) directly, we note that the elements x, tx for any non-zero element

x ∈ H1(M̃ ;Z) form a Z2-basis for G(M̃) = H1(M̃ ;Z), for G(M̃ ) is (t−1)-divisible.
Further, we see that `G(x,x) = `G(tx, tx) = 0, `G(x, tx) = 1/2, and (1−t)−1e = te,
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which imply that q(x) = q(tx) = q(x + tx) = 1
2 . Hence we have

GS(q) = −2 = 2 exp(2π
√
−1 · 1

2
)

and σ(M̃) = σ(q) = 1
2
, showing (4′) ⇒ (5′). �

Proof of Lemma 4.2. By [11], the natural homomorphism

iF∗ : H1(V ; F) → H1(M̃ ; F)

is onto for every field F. Taking F = Q, we see from H1(V ;Q) = 0 that H1(M̃ ;Z)

is a Z-torsion Λ-module. Hence H1(M̃ ;Z) is finite because it is (t− 1)-divisible. If

i∗ : H1(V ;Z) → H1(M̃ ;Z) is not onto, then the cokernel coker(i∗) is a non-trivial
finite abelian group and we have a prime p such that coker(i∗)⊗Zp 6= 0. Then the
homomorphism

i∗ ⊗ 1 : H1(V ;Z) ⊗ Zp −→ H1(M̃ ;Z) ⊗ Zp

which is identical to i
Zp

∗ : H1(V ;Zp) → H1(M̃ ;Zp) is not onto. Thus, we have a
contradiction. �

Proof of Lemma 4.3. Let MV be the manifold obtained from M by splitting
along V . As a part of the exact sequence of the pair (M̃, M̃V ), we have the following
exact sequence:

H2(M̃ , M̃V ;Z)
∂̃′

−→ H1(M̃V ;Z)
ĩ′
∗−→ H1(M̃ ;Z).

Further, by excision we have an isomorphism

H2(M̃, M̃V ;Z) ∼= H2(Ṽ × I, Ṽ × ∂I;Z)(∼= H1(Ṽ ;Z)).

Using that i∗ : H1(V ;Z) → H1(M̃ ;Z) is injective, we see that the boundary op-

erator ∂̃′ : H2(M̃, M̃V ;Z) → H1(M̃V ;Z) is injective, and thus the exact sequence
above implies that the following semi-exact sequence

0 → tH2(M̃, M̃V ;Z)
∂̃′

−→ tH1(M̃V ;Z)
ĩ′
∗−→ tH1(M̃ ;Z)

is exact. By [7;Theorem 2.1], this means that V is an exact leaf of M . �

Here are two examples showing that some different punctured embeddings into
S4 produce different Rochlin invariants for the quaternion space and a homology
quaternion space.

Example 4.4. Let V be the quaternion space, which is the boundary ∂N of
a tubular neighborhood N of the real projective plane P 2 embedded smoothly in
S4. Then a punctured 3-manifold V o of V is the interior of a Seifert hypersurface
of a trivial 2-knot K0 in S4. Let ι0 be the spin structure on V induced from the
inclusion V ⊂ S4. By a 2-handle surgery along K0, we see that V is a leaf of
the spin ZH1-manifold M0 = S1 × S3. Since BH2(M̃0;Z) = 0, we see that V is
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necessarily an exact leaf of M0 by [7]. By construction, the spin structure ι0 on
V coincides with the one induced from any spin structure on M0. Since the spin
3-manifold (V, ι0) is the boundary of a compact spin 4-submanifold of S4 (which

has zero signature), we have µ(V ; ι0) = 0. Using H1(M̃0;Z) = 0, we see from
Theorem 4.1 that there is a Z2-basis x, y for H1(V ;Z) with ι0 = ι00. On the
other hand, a punctured 3-manifold V o of the quaternion space V is a fiber of
a fibered S2-knot K in S4 (for example, consider the 3-twist spun trefoil by E.
C. Zeeman [15]). Let ι1 be the spin structure on V determined by the inclusion
V 0 ⊂ S4 − K ⊂ S4. The quaternion space V is a fiber of a spin fiber bundle
MK over S1 with H∗(MK ;Z) = H∗(S

1 × S3;Z), obtained from S4 by a 2-handle

surgery along K, and V is an exact leaf of MK by [7] since BH2(M̃K ;Z) = 0. By
construction, the spin structure ι1 on V coincides with the one induced from any
spin structure on MK . Since H1(M̃K ;Z) ∼= H1(V ;Z) 6= 0, we see from Theorem
4.1 that µ(V, ι1) = ± 1

4 and ι1 = ι11 on any Z2-basis x, y for H1(V ;Z). �

Example 4.5. Let V P be the homology quaternion space V #P where V is the
quaternion space and P is the Poincaré homology 3-sphere with µ(P, ιP ) = 1

2 for
the unique spin structure ιP on P . A punctured 3-manifold P o of P is a fiber of
a fibered 2-knot KP in S4 (for example, consider the 5-twist spun trefoil by [15]).
A punctured 3-manifold (V P )0 of V P is the interior of a Seifert hypersurface for
the S2-knot K0#KP = KP in S4. Let ιP0 be the spin structure on V P determined
by the inclusion (V P )0 ⊂ S4 − KP ⊂ S4, which is equal to the spin structure
determined from ι0 in Example 4.4 by construction. The homology quaternion
space V P is a leaf of a spin ZH1-manifold MP

0 with H∗(M
P
0 ;Z) = H∗(S

1 × S3;Z),
obtained from S4 by a 2-handle surgery along KP , and V P is an exact leaf of
MP

0 by [7] since BH2(M̃
P
0 ;Z) = 0. We note that the spin structure ιP0 is the one

induced from any spin structure on MP
0 and H1(M̃

P
0 ;Z) = 0. In this case, we see

that µ(V P ; ιP0 ) = 1
2 , and there is a Z2-basis x, y for H1(V

P ;Z) with ιP0 = ι00 as

it is shown in Theorem 4.1. On the other hand, a punctured manifold (V P )0 of
V P is a fiber of a fibered S2-knot K#KP in S4, where K denotes the S2-knot
in Example 4.4. Let ιP1 be the spin structure on V P determined by the inclusion
(V P )0 ⊂ S4 − K#KP ⊂ S4, which is equal to the spin structure determined from
ι1 in Example 4.4 by construction. The homology quaternion space V P is a fiber of
a spin fiber bundle MP

K over S1 with H∗(M
P
K ;Z) = H∗(S

1 ×S3;Z), obtained from
S4 by a 2-handle surgery along K#KP , and V P is an exact leaf of MP

K by [7] since

BH2(M̃
P
K ;Z) = 0. We note that the spin structure ιP1 is the one induced from any

spin structure on MP
K and H1(M̃

P
K ;Z) ∼= H1(V

P ;Z) 6= 0. In this case, we see that

µ(V P , ιP1 ) = µ(V, ι1) +
1

2
= ∓1

4
,

and ιP1 = ι11 on any Z2-basis x, y for H1(V
P ;Z) as it is shown in Theorem 4.1.

�
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