ON PSEUDO-RIBBON SURFACE-LINKS

AKIO KAWAUCHI¹

Department of Mathematics, Osaka City University Sumiyoshi-ku, Osaka 558-8585, Japan kawauchi@sci.osaka-cu.ac.jp

ABSTRACT

We first introduce the null-homotopically peripheral quadratic function of a surface-link to obtain a lot of pseudo-ribbon, non-ribbon surface-links, generalizing a known property of the turned spun torus-knot of a non-trivial knot. Next, we study the torsion linking of a surface-link to show that the torsion linking of every pseudo-ribbon surface-link is the zero form, generalizing a known property of a ribbon surface-link. Further, we introduce and algebraically estimate the triple point cancelling number of a surface-link.

Keywords : Surface-knot, Surface-link, Pseudo-ribbon, Ribbon, Torsion linking, Triple point cancelling number, Triple point number

0. Introduction

A surface-knot in the 4-space R^4 is a closed connected oriented surface embedded in R^4 by a locally flat PL embedding. A surface-link F in R^4 (with components F_i (i = 1, 2, ..., r)) is the union $\bigcup_{i=1}^r F_i$ where F_i (i = 1, 2, ..., r) are mutually disjoint surface-knots in R^4 . Let $\rho : R^4 \to R^3$ be the projection sending every point (x, t)(where $x \in R^3$ and $t \in R$) to the point x. The singularity of a surface-link F in R^4 is the set

$$\mathcal{S}(F) = \{ x \in F \mid | F \cap \rho^{-1}(\rho(x)) | \ge 2 \}.$$

A surface-link F in \mathbb{R}^4 is generic if for every point $x \in \mathcal{S}(F)$, we have either

- (1) $\rho(x)$ is a double point, that is, there is a 3-ball neighborhood $V_{\rho(x)}$ of $\rho(x)$ in \mathbb{R}^3 such that $F \cap \rho^{-1}(V_{\rho(x)})$ consists of two disjoint disks whose images by ρ meet transversely in a line containing $\rho(x)$, or
- (2) $\rho(x)$ is a triple point, that is, there is a 3-ball neighborhood $V_{\rho(x)}$ of $\rho(x)$ in \mathbb{R}^3 such that $F \cap \rho^{-1}(V_{\rho(x)})$ consists of three disjoint disks every pair of whose images by ρ meet transversely in a line and the resulting three lines meet transversely only at $\rho(x)$.

¹Dedicating this paper to Professor Jerome Levine on his 65th birthday.

It is known that every surface-link in R^4 is ambient isotopic to a generic surfacelink. In this paper, we concern the following type of surface-link:

Definition 0.1. A surface-link F in R^4 is a *pseudo-ribbon* surface-link if F is ambient isotopic to a generic surface-link F' in R^4 such that $\rho(F')$ has no triple points, namely $|F' \cap \rho^{-1}(\rho(x))| = 2$ for every point $x \in \mathcal{S}(F')$.

In Definition 0.1, we can see further that F' is ambient isotopic to a generic surface F'' such that $\mathcal{S}(F'')$ is \emptyset or a closed 1-manifold, namely the singular surface $\rho(F'')$ has no triple points and no branch points (see J. S. Carter-M. Saito [3], D. Roseman [15]). A ribbon surface-link is a surface-link in \mathbb{R}^4 obtained from a trivial S^2 -link by a surgery along some embedded 1-handles. Every ribbon surface-link is a pseudo-ribbon surface-link, and conversely every pseudo-ribbon S^2 -link is a ribbon S^2 -link (see T. Yajima [22]). On the other hand, the turned spun T^2 -knot T(k) of a non-trivial knot k (see J. Boyle [1], Z. Iwase [4], C. Livingston [13]) is pseudoribbon and non-ribbon (see A. Shima [19]), although the spun T^2 -knot $T^0(k)$ is ribbon. In §1, we introduce the null-homotopically peripheral quadratic function of a surface-link which is useful in identifying a non-ribbon surface-link. Using this invariant, we can show in §1 that any connected sum of the turned spun T^2 -knot of a non-trivial knot and any ribbon (or more generally, any pseudo-ribbon) surface-link is a pseudo-ribbon. non-ribbon surface-link. Next, we discuss the torsion linking ℓ_F of a surface-link F, which is a generalization of the Farber-Levine pairing on S^2 knots as it is mentioned in [7] (see also [8,9,10]). We show that the torsion linking ℓ_F of every pseudo-ribbon surface-link F in $S^4 = R^4 \cup \{\infty\}$ vanishes by studying a canonical Seifert hypersurface of F which is constructed by a method analogous to Seifert's algorithm on constructing a Seifert surface of a knot. This result is stated in §2 together with an explanation of the torsion linking ℓ_F and proved in $\S3$. We note that if F is a ribbon surface-link, then this result is known. In fact, the ribbon surface-link F bounds a Seifert hypersurface V such that the torsion part $tH_1(V;Z) = 0$ (see [11]). Then the vanishing $\ell_F = 0$ follows from a result of M. Sekine [18] showing that the torsion linking ℓ_F is induced from a singular sublinking of the linking ℓ_V : $tH_1(V, \partial V; Z) \times tH_1(V; Z) \to Q/Z$ defined by the Poincaré duality for every Seifert hypersurface V of F. In $\S4$, we introduce the triple point cancellation number $\mathcal{T}(F)$ of a surface-link F which measures a distance to the pseudo-ribbon surface-links. Using the vanishing of the torsion linking of a pseudoribbon surface-knot, we shall make an algebraic estimate of $\mathcal{T}(F)$. This method is similar to S. Kamada's argument in [5]. As an application of this estimate, we shall show in §4 that every surface-link F is concordant to a surface-link F_* with $\mathcal{T}(F_*) = n$ for every previously given integer $n > \mathcal{T}(F)$.

1. The null-homotopically peripheral quadratic function of a surface-link

By a 2-*chain*, we mean a simplicial 2-chain C with Z_2 -coefficients in a 4-manifold W. This 2-chain C is *regular* if $|\partial C|$ is a closed 1-manifold. The *support* of C,

denoted by |C| is the union of all simplices in C with non-zero coefficients. For a 2- or 3-submanifold Y of a 4-manifold W, the 2-chain C in W is Y-proper if $|C| \cap Y = |\partial C|$. A disk-chain is a 2-chain which is obtained from a simplicial map $f : B^2 \to W$ where B^2 is a triangulated disk. Let F be a surface-link in $S^4 = R^4 \cup \{\infty\}$ with components $F_i(i = 1, 2, ..., r)$. Let $K(F; Z_2)$ be the subgroup of $H_1(F; Z_2)$ consisting of an element represented by the boundary of an F-proper 2-chain in S^4 . We note that every element of $K(F; Z_2)$ is represented by the boundary of an F-proper regular 2-chain in S^4 . The peripheral quadratic function of a surface-link F is the function

$$\Xi: K(F; Z_2) \to Z_2$$

defined by putting $\Xi(x)$ to be the Z_2 -intersection number $\operatorname{Int}_{S^4}(C, \tilde{C})_2$ in S^4 where C and \tilde{C} are F-proper regular 2-chains in S^4 with $x = [\partial C] = [\partial \tilde{C}]$ and $|\partial C| \cap |\partial \tilde{C}| = \emptyset$ such that \tilde{C} is obtained from C by sliding ∂C along F. The function Ξ is well-defined and is a quadratic function with respect to the Z_2 -intersection form $\operatorname{Int}_F(\ ,\)_2$ on F, that is, Ξ has the identity

$$\Xi(x+y) = \Xi(x) + \Xi(y) + \operatorname{Int}_F(x,y)_2$$

for all $x, y \in K(F; Z_2)$. We note that Ξ may be a singular quadratic function for a general surface-link F, although it is always non-singular when F is a surface-knot. Let $\Delta(F; Z_2)$ be the subgroup of $K(F; Z_2)$ generated by the elements represented by the boundaries of all F-proper disk-chains in S^4 . For our purpose, we are interested in the restricted quadratic function

$$\xi = \Xi|_{\Delta(F;Z_2)} : \Delta(F;Z_2) \to Z_2,$$

which we call the null-homotopically peripheral quadratic function of the surfacelink F. For a surface-link F in S^4 , let N be a tubular neighborhood of F in S^4 , and $E = \operatorname{cl}(S^4 - N)$ be the link-exterior of F. Let D^2 be the unit disk in the complex plane. A canonical trivialization of N is an identification $(N, F) = (F \times D^2, F \times 0)$ such that the natural injection $F \times 1 \subset F \times S^1 = \partial N = \partial E \subset E$ induces the trivial composite homomorphism

$$H_1(F \times 1; Z) \to H_1(\partial E; Z) \to H_1(E; Z) \xrightarrow{\gamma} Z,$$

where $\gamma \in \text{hom}(H_1(E; Z), Z) = H^1(E; Z)$ is the epimorphism sending every oriented meridian to $1 \in Z$. The γ -structure on the link-exterior E of a surface-link Fis the subset of $H^1(E; Z)$ consisting of the γ 's under all orientation changes of components of F, whose cardinal number is seen to be 2^r for the component number rof F.

Let $\Delta_E(\partial E; Z_2)$ be the subgroup of $H_1(\partial E; Z_2)$ generated by the elements represented by the boundaries of all ∂E -proper disk-chains in E. Similarly, let $\Delta_E(F \times 1; Z_2)$ be the subgroup of $H_1(F \times 1; Z_2)$ generated the elements represented by the boundaries of all $F \times 1$ -proper disk-chains in E. The quadratic function

$$\xi_E : \Delta_E(F \times 1; Z_2) \to Z_2$$

is defined by a method analogous to the definition of ξ , namely by

$$\xi_E(x) = \operatorname{Int}_E(C, \tilde{C})_2$$

where C and \tilde{C} are $F \times 1$ -proper regular 2-chains in E with $x = [\partial C] = [\partial \tilde{C}]$ and $|\partial C| \cap |\partial \tilde{C}| = \emptyset$ such that \tilde{C} is obtained from C by sliding ∂C along $F \times 1$. The following lemma concerns the arguments of J. Boyle [1] and Z. Iwase [4] on T^2 -knots.

Lemma 1.1.

(1) The natural composite map

$$k_*: H_1(F \times 1; Z_2) \to H_1(\partial E; Z_2) \to H_1(N; Z_2) \stackrel{\cong}{\leftarrow} H_1(F \times 0; Z_2) = H_1(F; Z_2)$$

induces an isomorphism

$$k_*: \Delta_E(F \times 1; Z_2) \xrightarrow{\cong} \Delta_E(\partial E; Z_2) \xleftarrow{\cong} \Delta(F; Z_2).$$

- (2) The isomorphism k_* induces an isomorphism from the quadratic function $\xi_E : \Delta_E(F \times 1; Z_2) \to Z_2$ to the quadratic function $\xi : \Delta(F; Z_2) \to Z_2$.
- (3) The quadratic function $\xi_E : \Delta_E(F \times 1; Z_2) \to Z_2$ is invariant (up to isomorphisms) under any γ -structure-preserving homeomorphism between the link-exteriors E for all surface-links F. In particular, ξ_E is invariant (up to isomorphisms) under any homeomorphism between the knot-exteriors E for all surface-knots F.

Proof. To see (1), we take a simplicial map $f: B^2 \to S^4$ giving an F-proper disk-chain C in S^4 . By a general position argument on f and the uniqueness of a regular neighborhood, we may consider that the regular neighborhood $N = F \times D^2$ of F in S^4 meets $|f(B^2)|$ in a singular annulus A such that $L = (\partial N) \cap |f(D^2)|$ is a simple loop bounding a singular disk $cl(|f(B^2)| - A)$ in E. For the infinite cyclic covering $p: \tilde{E} \to E$ associated with γ , the boundary $\partial E = F \times S^1$ of E lifts to $\partial \tilde{E} = F \times R$ and the loop L lifts to $F \times R$ trivially. Since any component of $p^{-1}(L)$ is homotopic in $\partial \tilde{E}$ to a loop in $F \times 1 \subset F \times R = \partial \tilde{E}$, we see that L is homotopic in ∂E to a loop L' in $F \times 1 \subset F \times S^1 = \partial E$. Since the inclusion $F \times 1 \subset N$ is a homotopy equivalence, we see that L' is homotopic to the loop $|\partial C| \times 1$ in $F \times 1$. Thus, we have a simplicial map $f': B^2 \to E$ giving an $F \times 1$ -proper disk-chain C' in E such that $\partial C' = \partial C \times 1$ in $F \times 1$. Conversely, if we are given an $F \times 1$ -proper disk-chain C' in E, then we can construct an F-proper disk-chain C in S^4 with $\partial C' = \partial C \times 1$ by sliding $\partial C'$ along $F \times [0,1] \subset F \times D^2 = N$. This implies that the map k_* is an isomorphism from $\Delta_E(F \times 1; \mathbb{Z}_2)$ onto $\Delta(F; \mathbb{Z}_2)$ proving (1), and further that k_* is an isomorphism from ξ_E to ξ proving (2). To see (3), let $E' = \operatorname{cl}(S^4 - N')$ be the exterior of a surface-link F' in S^4 where $N' = F' \times D^2$ is a tubular neighborhood of F' in S^4 with the specified trivialization. Let $\gamma' \in H^1(E'; \mathbb{Z})$ be the cohomology class sending each oriented meridian of F' to 1. Assume that there is a γ -structure preserving homeomorphism $h : E' \cong E$. Since by definition, ξ is invariant under all the choices of the orientations on S^4 and the components of F, we can assume from (2) that h is orientation-preserving and $h^*(\gamma) = \gamma'$.

We need the following sublemma:

Sublemma 1.1.1. Let F_* be a closed oriented surface of a positive genus. Let h be an orientation-preserving auto-homeomorphism of $F_* \times S^1$ such that $h^*(\gamma) = \gamma$ for the Poincaré dual $\gamma \in H^1(F_* \times S^1; Z)$ of the homology class $[F_* \times 1] \in H_2(F_* \times S^1; Z)$. Then h is isotopic to an auto-homeomorphism h' with $h'(F_* \times 1) = F_* \times 1$.

Let F'_* and F_* be any positive genus surface components of F' and F respectively such that $h(F'_* \times S^1) = F_* \times S^1$. Then we see from Sublemma 1.1.1 and a property of γ' , γ that the homeomorphism h is isotopic to a homeomorphism $h' : E' \cong E$ such that $h'(F'_* \times 1) = F_* \times 1$ for all F'_* and F_* with $h(F'_* \times S^1) = F_* \times S^1$. The homeomorphism h' induces an isomorphism from the quadratic function $\xi_{E'}$: $\Delta_{E'}(F' \times 1; Z_2) \to Z_2$ to the quadratic function $\xi_E : \Delta_E(F \times 1; Z_2) \to Z_2$. we have (3) except the proof of Sublemma 1.1.1. \Box

Proof of Sublemma 1.1.1. Using that the intersection number of $F_* \times 1$ and every 1-cycle in $F_* \times 1$ in $F_* \times S^1$ is 0, we see that $\gamma|_{F_* \times 1} = 0$. For a point $x \in F_*$, we assume that h(x, 1) = (x, 1) by an isotopic deformation of h. Since $h^*(\gamma) = \gamma$, the automorphism $h_{\#}$ of $\pi_1(F_* \times S^1, (x, 1))$ preserves the subgroup $\pi_1(F_* \times 1, (x, 1))$. Let f be an auto-homeomorphism of $(F_* \times 1, (x, 1))$ inducing the automorphism $h_{\#}|_{\pi_1(F_* \times 1, (x, 1))}$ up to an conjugation. Then the auto-homeomorphism $h' = f \times 1$ of $F_* \times S^1$ is homotopic to h since $F_* \times S^1$ is a Haken manifold and $h'_{\#}$ coincides with $h_{\#}$ up to a conjugation. By F. Waldhausen's result in [21], h is isotopic to h'and $h'(F_* \times 1) = F_* \times 1$. \Box

Let $\varsigma(F)$ be the Gauss sum

$$GS(\xi) = \sum_{x \in \Delta(F;Z_2)} \exp(2\pi\sqrt{-1}\frac{\xi(x)}{2})$$

The following theorem is useful to obtain a pseudo-ribbon non-ribbon surface-link:

Theorem 1.2.

(1) For every surface-link F of total genus g, the invariant $\varsigma(F)$ is 0, 1 or $\pm 2^s$ for an integer s with $1 \le s \le g$.

- (2) If F is a ribbon surface-link of total genus g, then we have $\varsigma(F) = 2^g$.
- (3) For any connected sum $F = F_1 \# F_2$ of any surface-links F_1 and F_2 , we have

$$\varsigma(F) = \varsigma(F_1)\varsigma(F_2).$$

It appears unknown whether there is a surface-link F with $\varsigma(F) = -2^s$.

Proof. If $\Delta(F; Z_2) = 0$, then we have $\varsigma(F) = 1$ since $\xi(0) = 0$. Assume $\Delta(F; Z_2) \neq 0$. Let x_i (i = 1, 2, ..., s) and y_j (j = 1, 2, ..., u) be a Z_2 -basis for $\Delta(F; Z_2)$ with $0 \leq u \leq s \leq g$ such that $\operatorname{Int}_2(x_i, x_{i'}) = \operatorname{Int}_2(y_j, y_{j'}) = 0$ and $\operatorname{Int}_2(x_i, y_j) = \delta_{ij}$ for all i, i', j, j'. Let Δ_i (i = 1, 2, ..., s) be the direct summand of $\Delta(F; Z_2)$ with basis x_i, y_i for $i \leq u$ or x_i for i > u. Let ξ_i be the restriction of ξ to Δ_i . For every $i \leq u$, we have either $\xi_i(x_i) = 0$ and $\xi_i(x_i + y_i) = \xi_i(y_i) + 1$ or $\xi_i(x_i) = \xi_i(y_i) = \xi_i(x_i + y_i) = 1$, so that $GS(\xi_i) = \pm 2$ by noting $\exp(\pi\sqrt{-1}) = -1$. For every i > s, it is direct to see that $GS(\xi_i)$ is 2 or 0 according to whether $\xi_i(x_i)$ is 0 or 1. Since $\Delta(F; Z_2)$ splits into Δ_i (i = 1, 2, ..., s) orthogonally with respect to the Z_2 -intersection form on F, we have

$$\varsigma(F) = GS(\xi) = GS(\xi_1)GS(\xi_2)\cdots GS(\xi_s) = 0, 1 \text{ or } \pm 2^s,$$

showing (1). To show (2), let F be a ribbon surface-link of total genus g. By [11], F admits a Seifert hypersurface V which is homeomorphic to the connected sum of handlebodies V_i (i = 1, 2, ..., r) of total genus g and some copies of $S^1 \times S^2$. Let $O(F; Z_2)$ be the subgroup of $\Delta(F; Z_2)$ generated by a half Z_2 -basis of $H_1(F; Z_2)$ which are represented by meridian loops of V_i (i = 1, 2, ..., r). It is direct to see that $\xi(x) = 0$ for all $x \in O(F; Z_2)$. We take a Z_2 -basis x_i (i = 1, 2, ..., g), y_j (j = 1, 2, ..., u) of $\Delta(F; Z_2)$ with $0 \le u \le g$ such that x_i (i = 1, 2, ..., g) are a Z_2 -basis of O, and $\operatorname{Int}_2(y_j, y_{j'}) = 0$ and $\operatorname{Int}_2(x_i, y_j) = \delta_{ij}$ for all i, j, j'. As in the argument of the first half, we denote by ξ_i (i = 1, 2, ..., g) the restriction of ξ to the direct summand with basis x_i, y_i for $i \le u$ or x_i for i > u. For every $i \le u$, the identity $\xi_i(x_i) = 0$ implies $\xi_i(x_i + y_j) = \xi_i(y_i) + 1$, so that $GS(\xi_i) = 2$. For every i > u, it is direct to see that $GS(\xi_i) = 2$ since $\xi_i(x_i) = 0$. Thus, we have

$$\varsigma(F) = GS(\xi) = GS(\xi_1)GS(\xi_2)\cdots GS(\xi_g) = 2^g,$$

showing (2). To show (3), we first show that $\Delta(F; Z_2) = \Delta(F_1; Z_2) \oplus \Delta(F_2; Z_2)$ under the identification $H_1(F; Z_2) = H_1(F_1; Z_2) \oplus H_1(F_2; Z_2)$. Since $\Delta(F; Z_2) \supset \Delta(F_1; Z_2) \oplus \Delta(F_2; Z_2)$ is obvious, it suffices to show that $\Delta(F; Z_2) \subset \Delta(F_1; Z_2) \oplus \Delta(F_2; Z_2)$. For the infinite cyclic covering $p : \tilde{E} \to E$ associated with γ , we consider an embedding

$$e: F = F \times 1 \xrightarrow{\subset} F \times R^1 = \partial \tilde{E} \xrightarrow{\subset} \tilde{E}.$$

For F_i (i = 1, 2) instead of F, we have a similar embedding

$$e_i: F_i \to \tilde{E}_i$$

We regard F as the union $F_1^0 \cup F_2^0$ where F_i^0 is a compact punctured surface of F_i with $\partial F_1^0 = \partial F_2^0$. We note that every (possibly singular) loop $L \subset F$ is homotopic in F to a bouquet

$$B_L = L_1^1 \vee L_2^1 \vee \cdots \vee L_1^r \vee L_2^r$$

such that L_i^j is a (possibly singular) loop in F_i^0 and the base point is sent to a point $b \in e(\partial F_1^0) = e(\partial F_1^0)$ by e. Since $\pi_1(\tilde{E}, b)$ is the free product $\pi_1(\tilde{E}_1, b) * \pi_1(\tilde{E}_2, b)$ and each loop L_i^j represents an element of $\pi_1(\tilde{E}_i, b)$, we see from a result of W. Magnus-A. Karrass-D. Solitar [14;p.182] that if L is null-homotopic in \tilde{E} , then some loop L_i^j represents a trivial element of $\pi_1(\tilde{E}_i, b)$. The bouquet obtained from B_L by removing this loop L_i^j is homotopic in F to a bouquet

$$B_{L'} = (L')_1^1 \vee (L')_2^1 \vee \cdots \vee (L')_1^{r-1} \vee (L')_2^{r-1}$$

such that $(L')_i^j$ is a loop in F_i^0 and the base point is sent to the point *b* by *e*. Then we note that *L* is homologous to $L_i^j + B_{L'}$ in *F*. Since $B_{L'}$ is null-homotopic in \tilde{E} , we can conclude by induction on *r* that *L* is homologous in *F* to the sum $L_1 + L_2$ where L_i is the sum of loops in F_i^0 which are null-homotopic in \tilde{E}_i . This implies that

$$\Delta(F;Z_2) \subset \Delta(F_1;Z_2) \oplus \Delta(F_2;Z_2)$$

and hence

$$\Delta(F; Z_2) = \Delta(F_1; Z_2) \oplus \Delta(F_2; Z_2).$$

For every element $x_i \in \Delta(F_i; Z_2)$ (i = 1, 2), we have $\text{Int}_2(x_1, x_2) = 0$, so that

$$\xi(x_1 + x_2) = \xi(x_1) + \xi(x_2).$$

By this identity, we have

$$\exp(2\pi\sqrt{-1}\frac{\xi(x_1+x_2)}{2}) = \exp(2\pi\sqrt{-1}\frac{\xi(x_1)}{2})\exp(2\pi\sqrt{-1}\frac{\xi(x_2)}{2}),$$

which implies the identity $\varsigma(F) = \varsigma(F_1)\varsigma(F_2)$. \Box

Let D^2 be the disk, and $\rho_D : D^2 \times [0,1] \to D^2$ the projection to the first factor. Let k be a knot in $D^2 \times [0,1]$ such that $\rho_D(k)$ be a transversely immersed loop in D^2 . We consider an unknotted embedding $f^1 : D^2 \times S^1 \to R^3$ with +1-framing. Let

$$\bar{f}^1: (D^2 \times S^1) \times [0,1] \xrightarrow{f^1 \times id} R^3 \times [0,1] \subset R^4$$

be the associated embedding. Under the identification

$$(D^2 \times [0,1]) \times S^1 = (D^2 \times S^1) \times [0,1],$$

we obtain the torus $k \times S^1$ in $(D^2 \times S^1) \times [0,1]$. The turned spun T^2 -knot of the knot k is the T^2 -knot $T(k) = \overline{f^1}(k \times S^1)$ in $R^4 \subset R^4 \cup \{\infty\} = S^4$ (see J. Boyle

[1]). From construction, $\rho S(T(k))$ is a closed 1-manifold which is the product of the double point set of $\rho_D(k)$ by S^1 . Hence T(k) is a pseudo-ribbon T^2 -knot. When we use an unknotted embedding $f^0: D^2 \times S^1 \to R^3$ with 0-framing instead of f^1 , we obtain the spun T^2 -knot $T^0(k)$ of the knot k, which is directly seen to be a ribbon T^2 -knot. We have the following corollary to Theorem 1.2, generalizing a result of A. Shima [19]:

Corollary 1.3. Any connected sum F # T(k) of a surface-link F and the turned spun T^2 -knot T(k) of a non-trivial knot k is a non-ribbon surface-link.

Proof. First, we show the Gauss sum invariant $\varsigma(T(k)) = 0$. By the unknotted embedding f^1 with +1-framing, we have an embedded disk B in S^4 with $B \cap T(k) =$ ∂B which is an essential loop in T(k) and $\operatorname{Int}_{S^4}(B, \tilde{B})_2 = 1$. Hence the element $x = [\partial B] \in \Delta(T(k); Z_2)$ has $\xi(x) = 1$. Since $H_1(T(k); Z_2)$ has a Z_2 -basis consisting of x and the longitude element y of k and the longitude of k represents an infinite order element of $\pi_1(R^3 - k) \cong \pi_1(S^4 - T(k))$, we see that $\Delta(T(k); Z_2) = \{0, x\} \cong Z_2$. Thus, we have $\varsigma(T(k)) = 1 - 1 = 0$. By Theorem 1.2, $\varsigma(F \# T(k)) = \varsigma(F)\varsigma(T(k)) = 0$ and hence F # T(k) is a non-ribbon surface-link. \Box

For any integer sequence $g_1 \ge g_2 \ge \cdots \ge g_r \ge 0$ with $g_1 > 0$, we take any pseudoribbon (e.g. trivial or ribbon) surface-link with components F_i $(i = 1, 2, \ldots, r)$ such that genus $(F_1) = g_1 - 1$ and genus $(F_i) = g_i$ $(i = 2, 3, \ldots, r)$. Then we see from Corollary 1.3 that the connected sum $F_1 \# T(k) \cup F_2 \cup \ldots F_r$ is a pseudo-ribbon, non-ribbon surface-link of genera g_i $(i = 1, 2, \ldots, r)$. For a surface-knot, we have a result on the knot-exterior as follows:

Example 1.4 Let F be a surface-knot F with $\varsigma(F) \neq 0$. Since the spun T^2 -knot $T^0(k)$ of a non-trivial knot k is a ribbon T^2 -knot, we see from Theorem 1.2 that

$$\varsigma(F \# T^0(k)) = 2\varsigma(F) \neq 0.$$

On the other hand, we have $\varsigma(F\#T(k)) = 0$, for $\varsigma(T(k)) = 0$ by Corollary 1.3. By an observation due to F. González-Acuña found in J. Boyle's paper [1], the knotexteriors of T(k) and $T^0(k)$ are homotopy equivalent. Examining it carefully, we can see also that the knot-exteriors of $F\#T^0(k)$ and F#T(k) are homotopy equivalent. However, from Lemma 1.1(3), we see that the knot-exteriors of $F\#T^0(k)$ and F#T(k) are not homeomorphic, generalizing the property between the T^2 -knots T(k) and $T^0(k)$ known by J. Boyle [1] and Z. Iwase [4].

2. The torsion linking of a pseudo-ribbon surface-link

Let $p: \tilde{W} \to W$ be the infinite cyclic covering of a compact oriented 4-manifold W belonging to an element $\gamma \in H^1(W; Z)$. Let A and A' be \emptyset or compact 3-submanifolds of ∂W such that $A' = cl(\partial W - A)$. Let $\tilde{A} = p^{-1}(A)$ and $\tilde{A}' = p^{-1}(A')$. We briefly explain the torsion linking of $(\tilde{W}, \tilde{A}, \tilde{A}')$ which has been done in [7]. For a Λ -module H, let TH be the Λ -torsion part of H, and BH = H/TH. (Unless otherwise stated, abelian groups are regarded as Λ -modules on which t operates as the identity.) Let tH be the Z-torsion part of H, and bH = H/tH. Let $E^q(H) = Ext^q_{\Lambda}(H, \Lambda)$. For a finitely generated Λ -module H, we have a unique maximal finite Λ -submodule DH of H. Then we have a t-anti epimorphism

$$\theta_{A,A'}: DH_1(\tilde{W}, \tilde{A}; Z) \to E^1(BH_2(\tilde{W}, \tilde{A}'; Z))$$

which is an invariant of $(\tilde{W}, \tilde{A}, \tilde{A}')$ or (W, A, A', γ) . We denote the kernels of $\theta_{A,A'}$ and $\theta_{A',A}$ by $DH_1(\tilde{W}, \tilde{A}; Z)^{\theta}$ and $DH_1(\tilde{W}, \tilde{A}'; Z)^{\theta}$, respectively. Let $\mu \in TH_3(\tilde{W}, \partial W; Z)$ be the fundamental class of the covering $p: \tilde{W} \to W$, which is characterized by $t\mu = \mu$ and $p_*(\mu) = \gamma \cap [W]$ for the fundamental class [W] of W. Let $\tau H^2(\tilde{W}, \tilde{A}; Z)$ be the image of the Bockstein coboundary map

$$\delta_{Q/Z}: H^1(\tilde{W}, \tilde{A}; Z) \to H^2(\tilde{W}, \tilde{A}; Z).$$

The second duality in [7] is equivalent to the following lemma (see [7; Theorem (6.5]):

Lemma 2.1. The cap product map $\cap \mu : \tau H^2(\tilde{W}, \tilde{A}; Z) \to tH_1(\tilde{W}, \tilde{A}'; Z)$ induces an isomorphism

$$\cap \mu : \hom(DH_1(\tilde{W}, \tilde{A}; Z)^{\theta}, Q/Z) \cong DH_1(\tilde{W}, \tilde{A}'; Z)^{\theta}.$$

In fact, by Lemma 2.1 we have a t-isometric non-singular bilinear form

$$\ell: DH_1(\tilde{W}, \tilde{A}; Z)^{\theta} \times DH_1(\tilde{W}, \tilde{A}'; Z)^{\theta} \longrightarrow Q/Z$$

by taking $\ell(x,y) = f_y(x) \in Q/Z$ for $x \in DH_1(\tilde{W}, \tilde{A}; Z)^{\theta}$, $y \in DH_1(\tilde{W}, \tilde{A}'; Z)^{\theta}$, $f_y \in \hom(DH_1(\tilde{W}, \tilde{A}; Z)^{\theta}, Q/Z)$ with $f_y \cap \mu = y$. This bilinear form ℓ is an invariant of $(\tilde{W}, \tilde{A}, \tilde{A}')$ or (W, A, A', γ) and called the *torsion linking* of $(\tilde{W}, \tilde{A}, \tilde{A}')$ or (W, A, A', γ) . Let F be a surface-link in $S^4 = R^4 \cup \{\infty\}$, and E the compact exterior $\operatorname{cl}(S^4 - N)$ where N denotes a normal disk bundle of F in S^4 . Taking $W = E, A = \partial E, A' = \emptyset$ and the element $\gamma \in H^1(E; Z) = \hom(H_1(E; Z), Z)$ sending each oriented meridian of F to $1 \in Z$, we have, as a surface-link type invariant, the *torsion linking*

$$\ell = \ell_F : DH_1(\tilde{E}, \partial \tilde{E}; Z)^{\theta} \times DH_1(\tilde{E}; Z)^{\theta} \longrightarrow Q/Z$$

of the surface-link F. The following theorem is proved in §3:

Theorem 2.2. If F is a pseudo-ribbon surface-link, then the torsion linking ℓ_F vanishes. In other words,

$$DH_1(\tilde{E}, \partial \tilde{E}; Z)^{\theta} = DH_1(\tilde{E}; Z)^{\theta} = 0.$$

The linking signature $\sigma(F)$ and the local linking signatures $\sigma_p^i(F)$ are defined as modulo 4 integers in [10] by using the Gauss sum of the quadratic function associated with the torsion linking ℓ_F . The following corollary is direct from Theorem 2.2:

Corollary 2.3. If F is a pseudo-ribbon surface-link, then we have

$$\sigma(F) = \sigma_p^i(F) = 0$$

for all prime numbers p and all positive integers i.

3. Constructing a canonical Seifert hypersurface for a pseudo-ribbon surface-link

We assume that the singularity image $\rho S(F)$ in \mathbb{R}^3 of a pseudo-ribbon surfacelink F in \mathbb{R}^4 consists of mutually disjoint simple loops C_i (i = 1, 2, ..., r). Let N_i be a regular neighborhood of C_i in $\rho(F)$, so that we have a homeomorphism

$$h_i: (X, v) \times S^1 \cong (N_i, C_i) \quad (i = 1, 2, \dots, r),$$

where X denotes a cone over a four-point set with v as the vertex. We regard X as the subgraph of the 1-skelton $J^{(1)}$ of a bouquet J of two 2-simplices at a vertex such that the complement graph is the union of two disjoint 1-simplices I and I'. In this case, v is the vertex of the bouquet J. Then h_i extends to an embedding $\bar{h}_i : J \times S^1 \longrightarrow R^3$. We note that there are two choices on regarding X as such a subgraph of $J^{(1)}$. Our choice is made to satisfy the condition that

$$P = \operatorname{cl}(\rho(F) - \bigcup_{i=1}^{r} N_i) \cup (\bigcup_{i=1}^{r} \bar{h}_i((I \cup I') \times S^1))$$

is an orientable 2-manifold with an orientation induced from $\rho(F) - \bigcup_{i=1}^{r} N_i$. The 2-manifold P is referred to as a 2-manifold obtained from $\rho(F)$ by orientationpreserving cut along the C_i 's. Let P_j (j = 1, 2, ..., s) be the components of P such that the compact 3-manifold V_j in \mathbb{R}^3 bounded by P_j satisfies the condition that $P_j \subset V_{j'}$ implies j < j'.

Let T be a four-sided disk, and I_0 a proper interval in T splitting T into two foursided disks. We identify the quotient space T/I_0 with J so that the quotient map $q : T \longrightarrow J = T/I_0$ is a half-twist band projection with $q(I_0) = v$. For a subset A of R^3 and an interval [a, b] granting a = b, we denote the subset $\{(x, t) | x \in A, t \in [a, b]\}$ of R^4 by A[a, b]. We choose real numbers t_j (j = 1, 2, ..., s) so that $t_1 < t_2 < \cdots < t_s$. After an ambient deformation of F, we have a Seifert hypersurface V for F so that

$$V = (\prod_{j=1}^{s} V_j[t_j]) \cup (\prod_{i=1}^{r} \bar{h}_i^*(T \times S^1),$$

where \bar{h}_i^* denotes an embedding $\bar{h}_i^*: T \times S^1 \longrightarrow R^4$ such that the composite

$$\rho \bar{h}_i^*: T \times S^1 \xrightarrow{h_i^*} R^4 \xrightarrow{\rho} R^3$$

is equal to the composite

$$T \times S^1 \xrightarrow{q \times 1} J \times S^1 \xrightarrow{\bar{h}_i} R^3.$$

By construction, we have

$$\rho(V) = (\prod_{j=1}^{s} V_j) \cup (\prod_{i=1}^{r} \bar{h}_i(J \times S^1)).$$

Further, we can assume that $V \subset \rho(V)[t_1, t_s]$. We call this hypersurface V a canonical Seifert hypersurface of the pseudo-ribbon surface-link F. Let E_V be the compact oriented 4-manifold obtained from the exterior E of F in $S^4 = R^4 \cup \{\infty\}$ by splitting along $V \cap E(\cong V)$. Let $V^{\pm}(\cong \pm V)$ be the two copies of V in $\partial E_V \subset E_V$. Let $i^{\pm} : V \cong V^{\pm} \subset E_V$ be the composite injections. The following theorem is a key to our argument:

Theorem 3.1. For a canonical Seifert hypersurface V of a pseudo-ribbon surface-link F, the induced homomorphisms

$$i_*^{\pm}: \mathrm{t}H_1(V; Z) \longrightarrow \mathrm{t}H_1(E_V; Z)$$

on the torsion part of the first integral homology are trivial.

To prove this theorem, we need some preliminaries. First we show the following lemma:

Lemma 3.2. For the inclusion $k : \prod_{j=1}^{s} V_j[t_j] \subset V$, we have

$$tH_1(V;Z) \subset image[H_1(\prod_{j=1}^s V_j[t_j];Z) \xrightarrow{k_*} H_1(V;Z)].$$

Proof. Let $A_i = \bar{h}_i^*(I \times S^1)$ (i = 1, 2, ..., r) be proper annuli with any orientations in V. Then we have

$$\operatorname{Int}([A_i], x) = 0$$

for all $x \in tH_1(V; Z)$ with respect to the intersection form

Int :
$$H_2(V, \partial V; Z) \times H_1(V; Z) \longrightarrow Z.$$

This means that every element $x \in tH_1(V; Z)$ is represented by an embedded closed oriented 1-manifold L_x with $L_x \cap A_i = \emptyset$ for all i, so that L_x is isotopically deformed into $\prod_{j=1}^s V_j[t_j]$. \Box

We also need the following lemma:

Lemma 3.3. For every polyhedron V in \mathbb{R}^3 , we have $tH_1(V; Z) = 0$.

Proof. We may assume that V is compact and connected. Further, we may assume that V is a compact connected 3-submanifold of R^3 by taking a regular neighborhood of V instead of V. For any elements $x \in tH_1(V, \partial V; Z)$ and $y \in tH_1(V; Z)$, we can represent x and y by disjoint closed oriented 1-manifolds L_x and L_y in V. Then there are a non-zero integer m and a 2-chain c_y in V such that $\partial c_y = mL_y$ and the torsion linking

$$\ell_V : \mathrm{t}H_1(V, \partial V; Z) \times \mathrm{t}H_1(V; Z) \longrightarrow Q/Z$$

is computed by the identity $\ell_V(x,y) = \text{Int}(L_x, c_y)/m \pmod{1}$. Since the linking number $\text{Link}(L_x, L_y) \in \mathbb{Z}$ in \mathbb{R}^3 is defined, we have

$$\operatorname{Int}(L_x, c_y)/m = \operatorname{Link}(L_x, mL_y)/m = \operatorname{Link}(L_x, L_y) \in Z$$

and hence $\ell_V(x, y) = 0 \in Q/Z$. Using that the torsion linking ℓ_V is non-singular, we obtain $tH_1(V, \partial V; Z) = tH_1(V; Z) = 0$. \Box

By using Lemmas 3.2 and 3.3, Theorem 3.1 is proved as follows:

Proof of Theorem 3.1. We regard $[t_1, t_s] \subset R^1 \cup \{\infty\} = S^1$. Let $f : \rho(V) \times S^1 \longrightarrow R^4 \subset R^4 \cup \{\infty\} = S^4$ be an embedding sending $\rho(V) \times [t_1, t_s]$ to $\rho(V)[t_1, t_s]$ identically. We represent any element $x \in tH_1(V; Z)$ by a closed oriented 1-manifold L_x in $\prod_{j=1}^s V_j[t_j]$. Let $L_j[t_j] = L_x \cap V_j[t_j]$ for a closed 1-manifold L_j or \emptyset in V_j . We take a point $t_0 \in S^1 - [t_1, t_s]$. For any j with $L_j \neq \emptyset$, we further take a subarc $\alpha_j^+ \subset S^1$ with $\partial \alpha_j^+ = \{t_0, t_j\}$ so that $L_j \times \alpha_j^+$ meets $V_j[t_j]$ from the positive side of $V_j[t_j]$. Then the image $f(\prod_{j=1}^s L_j \times \alpha_j^+)$ is a disjoint union of annuli which is contained in E_V and whose boundary consists of L_x in V^+ and $L'_x = f(\prod_{j=1}^s L_j \times t_0)$ in $f(\rho(V) \times t_0) \subset E_V$. Since

$$H_1(\rho(V) \times S^1; Z) \cong H_1(\rho(V); Z) \oplus H_1(S^1; Z),$$

we see from Lemma 3.3 that $[L_x] = 0 \in H_1(\rho(V) \times S^1; Z)$. Using that the natural homomorphism $H_1(\rho(V) \times t_0; Z) \longrightarrow H_1(\rho(V) \times S^1; Z)$ is injective, we see that L'_x bounds a 2-chain c' in $f(\rho(V) \times t_0)$. Thus, $L_x \subset V^+$ bounds a 2-chain $f(\coprod_{j=1}^s L_j \times \alpha_j^+) + c'$ in E_V , which means that $i^+_*(x) = 0$. Similarly, $i^-_*(x) = 0$. \Box The following corollary is direct from Theorem 3.1 since the infinite cyclic covering space \tilde{E} is constructed from the copies $((E_V)_i; (V^+)_i, (V^-)_i)$ $(i \in Z)$ of the triplet $(E_V; V^+, V^-)$ by pasting $(V^-)_{i-1}$ to $(V^+)_i$ for all i:

Corollary 3.4. For any canonical Seifert hypersurface V of a pseudo-ribbon surface-link F, every lift $\tilde{i}: V \longrightarrow \tilde{E}$ of the natural injection $i: V \longrightarrow E$ induces the trivial homomorphism

$$\tilde{i}_* = 0 : \mathrm{t}H_1(V; Z) \longrightarrow \mathrm{t}H_1(\tilde{E}; Z).$$

By using Corollary 3.4, Theorem 2.2 is proved as follows:

Proof of Theorem 2.2. We consider the following commutative diagram:

$$\tau H^{2}(\tilde{E}, \partial \tilde{E}; Z) \xrightarrow{\cap \mu} \operatorname{tH}_{1}(\tilde{E}; Z)$$

$$\tilde{i}^{*} \downarrow \qquad \tilde{i}_{*} \uparrow$$

$$\operatorname{tH}^{2}(V, \partial V; Z) \xrightarrow{\cap [V]} \operatorname{tH}_{1}(V; Z).$$

In this diagram, we have

$$\tilde{i}_* = 0 : \mathrm{t}H_1(V;Z) \longrightarrow \mathrm{t}H_1(\tilde{E};Z)$$

by Corollary 3.4 and hence

$$\cap \mu = 0 : \tau H^2(\tilde{E}, \partial \tilde{E}; Z) \longrightarrow \mathsf{t} H_1(\tilde{E}; Z).$$

By Lemma 2.1, we have

$$\cap \mu = 0 : \hom(DH_1(\tilde{E}, \partial \tilde{E}; Z)^\theta, Q/Z) \cong DH_1(\tilde{E}; Z)^\theta,$$

which implies $DH_1(\tilde{E}, \partial \tilde{E}; Z)^{\theta} = DH_1(\tilde{E}; Z)^{\theta} = 0.$

Here is another corollary to Theorem 3.1.

Corollary 3.5. For any canonical Seifert hypersurface V of a pseudo-ribbon surface-link F, the natural homomorphism $j_* : tH_1(V;Z) \longrightarrow tH_1(V,\partial V;Z)$ is trivial.

Proof. From the boundary isomorphism $\overline{\partial} : H_2(S^4, V \times I; Z) \cong H_1(V \times I; Z)$ and the excision isomorphism $H_2(E_V, V^+ \cup V^-; Z) \cong H_2(S^4, V \times I; Z)$, the composite of the natural homomorphisms

$$tH_2(E_V, \partial E_V; Z) \xrightarrow{\partial} tH_1(\partial E_V; Z) \xrightarrow{i'_*} tH_1(V \times I; Z)$$

is an isomorphism. Since $\partial E_V = \partial (V \times I)$, the Poincaré duality implies that the composite of the natural homomorphisms

$$\hom(\mathsf{t}H_1(E_V;Z),Q/Z) \xrightarrow{i_*^{\#}} \hom(\mathsf{t}H_1(\partial E_V;Z),Q/Z) \xrightarrow{\partial'^{\#}} \hom(\mathsf{t}H_2(V \times I,\partial(V \times I);Z),Q/Z)$$

is an isomorphism and hence the composite of the natural homomorphisms

$$tH_2(V \times I, \partial(V \times I); Z) \xrightarrow{\partial} tH_1(\partial E_V; Z) \xrightarrow{i_*} tH_1(E_V; Z)$$

is an isomorphism by applying hom ($\ ,Q/Z)$ to the homomorphisms above. Further, composing a suspension isomorphism

$$\sigma: tH_1(V, \partial V; Z) \cong H_2((V, \partial V) \times (I, \partial I); Z) = tH_2(V \times I, \partial (V \times I); Z)$$

to this composite isomorphism, we obtain an isomorphism

$$\theta = i_* \partial \sigma : tH_1(V, \partial V; Z) \cong tH_1(E_V; Z).$$

For the natural homomorphism $j_* : tH_1(V;Z) \longrightarrow tH_1(V,\partial V;Z)$, the composite $j_*\theta : tH_1(V;Z) \longrightarrow tH_1(E_V;Z)$ is equal to the map $i_*^+ - i_*^-$ which is the zero map. Thus, $j_* = 0$. \Box

We note that Corollary 3.5 does not mean that $tH_1(V; Z) = 0$. It is unknown whether every pseudo-ribbon surface-link F admits a Seifert hypersurface V with $tH_1(V; Z) = 0$.

4. The triple point cancelling number of a surface-link

The triple point number of a surface-link F in \mathbb{R}^4 , denoted by $\mathbb{T}(F)$ is the minimum on the triple point number of the singular surface $\rho(F')$ for all generic surfacelinks F' ambient isotopic to F. In this section, we shall discuss a similar but distinct concept on a surface-link F. Let F' be a generic surface-link ambient isotopic to F. By an ambient deformation of F' without changing $\rho(F')$, we can consider that the set $F' \cap \rho^{-1}(B_x)$ for a 3-ball neighborhood B_x of every triple point $x \in \rho(F')$ in \mathbb{R}^3 is the union $D_1[t_1] \cup D_2[t_2] \cup D_3[t_3]$ where D_i is a proper disk in B_x and $t_1 < t_2 < t_3$. Then we make an orientation-preserving cut on $D_i \cup D_{i+1} \subset B_x$ for i = 1 or 2 to obtain from F' a new generic surface-link F'_1 in \mathbb{R}^4 (see J. S. Carter-M. Saito [2,Figure N]). When we compare $\rho(F'_1)$ with $\rho(F')$, $\rho(F'_1)$ has the triple points decreased by one point and the branch points increased by two points. We call the operation $F' \Rightarrow F'_1$ a triple point cancelling operation on $\rho(F')$. The triple point cancelling number of the singular surface $\rho(F')$ is the minimum of the number of triple point cancelling operations on $\rho(F')$ needed to obtain a pseudo-ribbon surface-link F'_* in \mathbb{R}^4 . **Definition 4.1.** The triple point cancelling number of a surface-link F in \mathbb{R}^4 , denoted by $\mathcal{T}(F)$ is the minimum on the triple point cancelling number of the singular surface $\rho(F')$ for all generic surface-links F' ambient isotopic to F.

If we compare $\mathbb{T}(F)$ to the crossing number of a classical knot, then we could compare $\mathcal{T}(F)$ to the unknotting number of a classical knot. The following lemma is useful to understand a triple point cancelling operation:

Lemma 4.2. Let F'_* be a surface-link obtained by doing m triple point cancelling operations on $\rho(F')$ for a generic surface-link F' ambient isotopic to a surface-link F in R^4 . Then F'_* is ambient isotopic to a surface-link F_* obtained from F by an embedded surgery along m mutually disjoint 1-handles on F. Conversely, if F_* is a surface-link obtained from F by an embedded surgery along m mutually disjoint 1-handles on F, then F_* and F are respectively ambient isotopic to generic surface-links F'_* and F' such that F'_* is a surface-link obtained by doing m triple point cancelling operations on $\rho(F')$.

Proof. The proof of the first half part is obvious from the definition of a triple point cancelling operation. To prove the second half part, we use three 2-spheres $S_i \subset R^3[t_i]$ (i = 1, 2, 3) with $t_1 < t_2 < t_3$ such that the singularity image $\rho S(S_1 \cup S_2 \cup S_2)$ is homeomorphic to a suspension of a three point set and hence has just two triple points. Let B^3 be a 3-ball in R^3 such that $D_i = S_i \cap B^3[t_i]$ is a disk with $\rho(\operatorname{cl}(S_i - D_i))$ (i = 1, 2, 3) mutually disjoint disks in R^3 . We find a 1-handle $h \subset B^3[t_1, t_2]$ on $D_1 \cup D_2 \cup D_3$ connecting D_1 and D_2 such that $\rho(h)$ induces a triple point cancelling operation on $\rho(S_1 \cup S_2 \cup S_3)$. Let h_i $(i = 1, 2, \ldots, m)$ be mutually disjoint 1-handles on F to produce a surface-link F_* . Then F is ambient isotopic to a generic surface-link F' such that $F' \cap B_i^3[t_1, t_3] = F' \cap \rho^{-1}(B_i^3)$ and $(B_i^3[t_1, t_3]; F' \cap B_i^3[t_1, t_3], h_i)$ is $[t_1, t_3]$ -level-preservingly homeomorphic to $(B^3[t_1, t_3]; D_1 \cup D_2 \cup D_3, h)$ for some m mutually disjoint 3-balls B_i^3 $(i = 1, 2, \ldots, m)$ in R^3 . The surfacelink F_* is ambient isotopic to a surface-link F'_* obtained by doing m triple point cancelling operations on $\rho(F')$. \Box

We use the following result later:

Corollary 4.3. Let F be an S^2 -knot obtained from any non-trivial 2-bridge knot by the 2-twist spinning. Then $\mathcal{T}(F) = 1$.

Proof. Since $DH_1(\tilde{E}; Z) = H_1(\tilde{E}; Z) \cong \Lambda/(p, t+1)$ for an integer $p \ge 3$ (see M. Teragaito [20]) and $BH_2(\tilde{E}, \partial \tilde{E}; Z) = 0$, the torsion linking ℓ_F is not zero by [7]. Hence we have $\mathcal{T}(F) \ge 1$ by Theorem 2.2. On the other hand, the S^2 -knot F has a Seifert hypersurface V homeomorphic to a punctured Lens space. Then there is a 1-handle h on F such that $h \subset V$ with $\operatorname{cl}(V-h)$ is a solid torus, so that the surface F_1 obtained from F by the embedded surgery along h is a trivial T^2 -surface which is a pseudo-ribbon surface-knot. Hence $\mathcal{T}(F) \le 1$ and $\mathcal{T}(F) = 1$. \Box

The following remark concerns the difference $\mathbb{T}(F) - \mathcal{T}(F)$:

Remark 4.4. For a surface-link F, $\mathcal{T}(F) = 0$ if and only if $\mathbb{T}(F) = 0$ if and only if F is pseudo-ribbon by the definitions. S. Satoh observed that the difference $\mathbb{T}(F) - \mathcal{T}(F)$ is positive for every non-pseudo-ribbon surface-link F. In fact, we have $\mathbb{T}(F) \geq \mathcal{T}(F) > 0$ by the definitions. If $\mathbb{T}(F) = \mathcal{T}(F) > 0$, then we have a generic surface-link F' with $\mathcal{T}(F') = \mathbb{T}(F') = 1$ by taking $\mathcal{T}(F) - 1$ times of triple point cancelling operations. Then we see from a result of S. Satoh [16] that we find a simple double line connecting to the triple point and a branch point in $\rho(F')$, so that we can eliminate the triple point by moving this branch point along this double line, meaning that F' is a pseudo-ribbon surface-link, contradicting to $\mathcal{T}(F') = 1$. Hence $\mathbb{T}(F) - \mathcal{T}(F) > 0$. S. Satoh and A. Shima [17] showed that $\mathbb{T}(S(3_1)) = 4$ for the S^2 -knot $S(3_1)$ obtained from the trefoil knot 3_1 by the 2-twist spinning. By Corollary 4.3, we have $\mathcal{T}(S(3_1)) = 1$, so that $\mathbb{T}(S(3_1)) - \mathcal{T}(S(3_1)) = 3$. There are open questions asking whether $\mathbb{T}(F) - \mathcal{T}(F) \geq 3$ for every non-pseudo-ribbon surface-knot F and whether there is a surface-knot F such that $\mathbb{T}(F) - \mathcal{T}(F)$ is greater than any previously given positive integer.

The inequality $\mathcal{T}(F_1 \# F_2) \leq \mathcal{T}(F_1) + \mathcal{T}(F_2)$ holds for any surface-knots F_1 and F_2 , and the equality does not appear to hold in general (see T. Kanenobu [6]). It is also an open question whether there is such an example.

From now, we shall establish an estimate of the triple point cancelling number of a general surface-link. Let $E = \operatorname{cl}(S^4 - N)$ be the knot-exterior of a surface-knot F in S^4 where $N = F \times D^2$ is a tubular neighborhood of F in S^4 with the specified trivialization. Let V_0 be the handlebody such that $\partial V_0 = F$. Let M_{ϕ} be the closed 4-manifold obtained from the exterior E and $V_0 \times S^1$ by attaching the boundaries by a homeomorphism $\phi : \partial E = F \times S^1 \to \partial V_0 \times S^1$ which preserves the S^1 -factor. Then M_{ϕ} is a closed connected oriented 4-manifold with $H_1(M_{\phi}; Z) \cong Z$, which we call a Z^{H_1} -manifold. We use the concept of exactness of Z^{H_1} -manifold in [8,9] in our argument.

Lemma 4.5. Let F be a pseudo-ribbon surface-knot in S^4 . Then there exists an attachment ϕ such that the Z^{H_1} -manifold M_{ϕ} is a spin exact Z^{H_1} -manifold.

Proof. Let V be a canonical Seifert hypersurface for F in S^4 . Let C be the image of the boundary homomorphism $\partial : H_2(V, F; Z) \longrightarrow H_1(F; Z)$. By Corollary 3.5, we have a subgroup \overline{C} of $H_1(F; Z)$ such that $\overline{C} \supset C$ and the natural monomorphism $H_1(F; Z)/C \longrightarrow H_1(V; Z)$ induces a monomorphism

$$H_1(F;Z)/\bar{C} \longrightarrow bH_1(V;Z).$$

Then \overline{C} is a self-orthogonal complement of $H_1(F; Z)$ with respect to the intersection form Int : $H_1(F; Z) \times H_1(F; Z) \longrightarrow Z$. Let x_i, y_i be a Z-basis for $H_1(F; Z)$ such that x_i $(i = 1, 2, \ldots, g)$ is a Z-basis for \overline{C} and $\operatorname{Int}(x_i, x_j) = \operatorname{Int}(y_i, y_j) = 0$ and $\operatorname{Int}(x_i, y_j) = \delta_{ij}$ for all i, j. Let K_i^x and K_i^y be simple loops on F such that $K_i^x \cap K_j^x = K_i^y \cap K_j^y = K_i^x \cap K_j^y = \emptyset$ for all i, j with $i \neq j$ and $K_i^x \cap K_i^y$ is one point for all i. Let V_0 be a handlebody with $\partial V_0 = F$ such that K_i^x $(i = 1, 2, \dots, g)$ bound mutually disjoint meridian disks D_i (i = 1, 2, ..., g) in V_0 . Let $\overline{V} = V \cup V_0$ be a closed oriented 3-manifold pasting F with these data which produces a Z^{H_1} manifold M_{ϕ} . From the homology exact sequence of the pair (V, V), we obtain a natural isomorphism $bH_1(V;Z) \cong H_1(\bar{V};Z)$. When we regard V as V^+ in E_V , we see from Theorem 3.1 that the simple loop $K_i^x \subset V^+$ bounds a compact oriented surface F_i in E_V . Let $\overline{F}_i = F_i \cup D_i$ $(i = 1, 2, \dots, g)$ be closed oriented surfaces in M_{ϕ} . Let $T_i = K_i^y \times S^1 \subset F \times S^1 = \partial E \subset M_{\phi}$ $(i = 1, 2, \dots, g)$. Then the closed oriented surfaces \overline{F}_i and T_i (i = 1, 2, ..., g) form a Z-basis for $H_2(M_{\phi}; Z)$ with $\operatorname{Int}(\bar{F}_i, \bar{F}_j) = \operatorname{Int}(T_i, T_j) = 0$ and $\operatorname{Int}(\bar{F}_i, T_j) = \delta_{ij}$ for all i, j with respect to the intersection form Int : $H_2(M_{\phi}; Z) \times H_2(M_{\phi}; Z) \longrightarrow Z$. [To see that $\operatorname{Int}(\bar{F}_i, \bar{F}_j) = 0$, we note that K_i^x (i = 1, 2, ..., g) represent torsion elements in $H_1(V; Z)$, which implies that for each i there is a non-zero integer m_i such that $m_i \bar{F}_i$ is homologous to a cycle $C_i + C'_i$ in M_{ϕ} where C_i is a cycle in \overline{V} and C'_i is a cycle in $\operatorname{int} E_V \subset S^4$. Then we have

$$m_i m_j \operatorname{Int}(\bar{F}_i, \bar{F}_j) = \operatorname{Int}(m_i \bar{F}_i, m_j \bar{F}_j) = 0$$

showing $\operatorname{Int}(\bar{F}_i, \bar{F}_j) = 0.$] In particular, M_{ϕ} is spin. Using a collar of \bar{V} in M_{ϕ} , we take mutually disjoint closed oriented surfaces \bar{F}'_i $(i = 1, 2, \ldots, g)$ in M_{ϕ} such that $\bar{F}'_i \cap \bar{V} = \emptyset$ and \bar{F}'_i is homologous to \bar{F}_i in M_{ϕ} . Since the normal disk bundle N'_i of \bar{F}'_i in M_{ϕ} is trivial, the leaf V^* of M_{ϕ} obtained by taking connected sums of \bar{V} and $\partial N'_i$ $(i = 1, 2, \ldots, g)$ in M_{ϕ} satisfies the condition that $tH_1(V^*; Z) = 0$ and the image of the natural homomorphism $H_2(V^*; Z) \longrightarrow H_2(M_{\phi}; Z)$ is a self-orthogonal complement with respect to the intersection form $\operatorname{Int} : H_2(M_{\phi}; Z) \times H_2(M_{\phi}; Z) \longrightarrow Z$. Let M'_{ϕ} be the 4-manifold obtained from M_{ϕ} by splitting along V^* . Then by $[8;(4.7.2)] tH_1(V^*; Z) = 0$ implies $tH_1(M'_{\phi}; Z) = tH_2(M_{\phi}, V^*; Z) = 0$. We see from [9] that V^* is an exact leaf of M_{ϕ} and thus M_{ϕ} is exact. \Box

For a finitely generated Λ -module H, let e(H) denote the minimal number of Λ -generators of H. By convention, e(0) = 0. We show the following theorem, which improves and generalizes Kamada's estimate in [5]:

Theorem 4.6. Let F be a surface-link with r components and total genus g. Then for every Λ -submodule H' of $H = H_1(\tilde{E}, \partial \tilde{E}; Z)$ such that D = H/H' is a (t-1)-divisible finite Λ -module, there is a Λ -submodule D' of D such that

$$e(D') \le \mathcal{T}(F)$$
 and $e(E^2(D/D')) \le g + e(H') - r + 1 + \mathcal{T}(F).$

Proof. Let m = e(H'). Let F' be a surface-link obtained from F by an embedded surgery along m mutually disjoint 1-handles representing Λ -generators for

H'. Let E' be the compact exterior of F' in S^4 . Then we see that $H_1(\tilde{E}';Z) \cong H/H' = D$, so that F' is a surface-knot of genus g' = g + m - (r - 1). Since the 1-handle surgery can be done apart from the triple points of $\rho(F)$, we obtain a pseudo-ribbon surface-knot F'' of genus

$$g'' = g' + T(F) = g + m - (r - 1) + T(F)$$

from F' by $\mathcal{T}(F)$ times of triple point cancelling operations. Let E'' be the knotexterior of F''. Then we have $H_1(\tilde{E}''; Z) \cong D/D'$ for a Λ -submodule D' of D with $e(D') \leq \mathcal{T}(F)$. By Theorem 2.2, we have a *t*-anti isomprphism

$$D/D' = H_1(\tilde{E}'';Z) = DH_1(\tilde{E}'';Z) \cong E^1(BH_2(\tilde{E}'',\partial\tilde{E}'';Z)).$$

Let M_{ϕ} be an exact Z^{H_1} -manifold obtained from F'' by Lemma 4.5. By an argument in [8], we have a Λ -isomorphism

$$E^1(BH_2(\tilde{M}_{\phi};Z)) \cong E^1(BH_2(\tilde{E}'',\partial\tilde{E}'';Z)).$$

Since M_{ϕ} is exact, we see from [9] that there is a splitting

$$BH_2(\tilde{M}_\phi; Z) \cong X \oplus \Lambda^{g''}$$

for a torsion-free Λ -module X with $E^0 E^0(X) = \Lambda^{g''}$, so that

$$E^1(BH_2(\tilde{E}'',\partial\tilde{E}'';Z)) \cong E^1(X)$$

and we have a t-anti isomorphism

$$E^{2}(D/D') = E^{2}(H_{1}(\tilde{E}'';Z)) \cong E^{2}E^{1}(X).$$

Using a natural Λ -epimorphism $\Lambda^{g''} \cong E^0 E^0(X) \to E^2 E^1(X)$ (see [7]), we have

$$e(E^2(D/D')) = e(E^2E^1(X)) \le g''.$$

A surface-link F is concordant to a surface-link F' if there is a proper locallyflat embedding $f : F \times [0,1] \to S^4 \times [0,1]$ such that $f(F \times 0) = F \times 0$ and $f(F \times 1) = F' \times 1$. Since the triple point cancelling number of every trivial surfacelink is zero, the following corollary also implies that every positive integer is the triple point cancelling number of a surface-link with any previously given genera of the components.

Corollary 4.7. For every surface-link F and every integer $m \ge \mathcal{T}(F)$, there is a surface-link F_* such that F_* is concordant to F and $\mathcal{T}(F_*) = m$.

Proof. Let S_n be the *n*-fold connected sum of any S^2 -knot in Corollary 4.3. Then we have $\mathcal{T}(S_n) \leq n$. Let F_n be any connected sum of F and S_n and $F_0 = F$. Then F_n is concordant to F, since every S^2 -knot is concordant to the trivial S^2 knot (see M. A. Kervaire [12]). Let E_n be the link-exterior of F_n in S^4 . Let $H_n = H_1(\tilde{E}_n, \partial \tilde{E}_n; Z)$. Then we have

$$H_n = H_0 \oplus [\Lambda/(p, t+1)]^n.$$

In Theorem 4.6, we take $H = H_n$ and $H' = H_0$. Then by Theorem 4.6, there is a finite Λ -submodule D' of $D = H/H' = [\Lambda/(p,t+1)]^n$ such that $e(D') \leq \mathcal{T}(F_n)$ and $e(E^2(D/D')) \leq g + e(H_0) - r + 1 + \mathcal{T}(F_n)$. Since t acts on D as the (-1)-multiple map, we have a Λ -isomorphism

$$E^2(D/D') = \hom(D/D', Q/Z) \cong D/D'.$$

Thus, we have

$$n = e(D) \le e(D') + e(D/D') \le 2\mathcal{T}(F_n) + g + e(H_0) - r + 1,$$

where g and r denote the total genus and the component number of F, respectively. Using that g, $e(H_0)$ and r are independent of n, we see that

$$\lim_{n \to +\infty} \mathcal{T}(F_n) = +\infty.$$

Using that $\mathcal{T}(F_{n+1}) \leq \mathcal{T}(F_n) + 1$ for all n, we find an integer n such that $\mathcal{T}(F_n) = m$ for every integer $m \geq \mathcal{T}(F)$. \Box

References

[1] J. Boyle, The turned torus knot in S^4 , J. Knot Theory Ramifications, 2(1993), 239-249.

[2] J. S. Carter and M. Saito, *Canceling branch points on projections of surfaces in* 4-space, Proc. Amer. Math. Soc., 116(1992), 229-237.

[3] J. S. Carter and M. Saito, *Reidemeister moves for surface isotopies and their interpretation as movies to movies*, J. Knot Theory Ramifications, 2(1993), 251-284.

[4] Z. Iwase, Dehn-surgery along a torus T^2 -knot, Pacific J. Math., 133(1988), 289-299.

[5] S. Kamada, 2-dimensional braids and chart descriptions, in: Topics in Knot Theory, NATO ASI Series, Mathematical and Physical Science, 399(1993), 277-287, Kluwer Academic Publishers.

[6] T. Kanenobu, Weak unknotting number of a composite 2-knot, J. Knot Theory Ramifications, 5(1996), 171-176.

[7] A. Kawauchi, Three dualities on the integral homology of infinite cyclic coverings of manifolds, Osaka J. Math., 23 (1986) 633-651.

[8] A. Kawauchi, *Torsion linking forms on surface-knots and exact 4-manifolds*, in: Knots in Hellas '98, Series on Knots and Everything, 24(2000), 208-228, World Sci. Publ. [9] A. Kawauchi, Algebraic characterization of an exact 4-manifold with infinite cyclic first homology, Journal Atti Sem. Mat. Fis. Univ. Modena, 48 (2000), 405-424.

[10] A. Kawauchi, An intrinsic Arf invariant on a link and its surface-link analogue, Proc. of the first topology meeting of Japan-Mexico (Molelia, July 1999), Topology and its Applications (to appear).

[11] A. Kawauchi, T. Shibuya and S. Suzuki, *Descriptions on surfaces in four-space*, *II: Singularities and cross-sectional links*, Math. Sem. Notes, Kobe Univ. 11(1983),31-69.

[12] M. A. Kervaire, *Le noeuds de dimensions supérieures*, Bull. Soc. Math. France, 93(1965), 225-271.

[13] C. Livingston, Indecomposable surfaces in 4-space, Pacific J. Math., 132(1988), 371-378.

[14] W. Magnus, A. Karrass and D. Solitar, *Combinatorial group theory*, Pure and Applied Mathematics, 13(1966), Interscience Publishers.

[15] D. Roseman, *Reidemeister-type moves for surfaces in four dimensional space*, in: Knot Theory, Banach Center Publications, 42(1998), 347-380.

[16] S. Satoh, *Lifting a generic surface in 3-space to an embedded surface in 4-space*, Topology and its Applications, 106(2000), 103-113.

[17] S. Satoh and A. Shima, *The 2-twist-spun trefoil has the triple point number four*, preprint.

[18] M. Sekine, Kawauchi's second duality and knotted surfaces in 4-sphere, Hiroshima J. Math., 19(1989) 641-651.

[19] A. Shima, Knotted Klein bottles with only double points, preprint.

[20] M. Teragaito, Fibered 2-knots and lens spaces, Osaka J. Math., 26(1989) 57-63.

[21] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87(1968), 56-88.

[22] T. Yajima, On simply knotted spheres in \mathbb{R}^4 , Osaka J. Math, 1(1964), 133-152.