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Abstract

We show that every well-order in the set of integral vectors induces an embed-

ding from the set of closed connected orientable 3-manifolds into the set of links

which is a right inverse of the 0-surgery map and induces further two embeddings

from the set of closed connected orientable 3-manifolds into the well-ordered set of

integral vectors and into the set of link groups. In particular, the set of closed con-

nected orientable 3-manifolds is a well-ordered set by a well-order inherited from

the well-ordered set of integral vectors. To determine the embedding images of

every 3-manifold, we take the canonical well-order in the set of integral vectors and

propose a classification program on the well-ordered set of 3-manifolds which can be

carried out inductively. As an exercise, we do the classification for the 3-manifolds

with lengths up to 7. From this classification program, we find an answer to the

classification problem on the 3-manifolds assuming inductive partial solutions of

the homeomorphism problem on the 3-manifolds, the isomorphism problem on link

groups and the decision problem on primeness of links.
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1. Introduction

The homeomorphism problem, namely the problem giving an effective procedure

for determining whether two given 3-manifolds are homeomorphic and the classifi-

cation problem, namely the problem generating effectively a list containing exactly

one 3-manifold from every (unoriented) type of 3-manifolds are fundamental prob-

lems in the theory of 3-manifolds (see J. Hempel [6, p.169]). In this paper, we

consider the classification problem on closed connected orientable 3-manifolds by

establishing an embedding from the set of closed connected orientable 3-manifolds

into the set of links in the 3-sphere S3 which is a right inverse of the 0-surgery

map. For this purpose, let Z be the set of integers, and Zn the product of n

copies of Z whose element x = (x1 , x2, . . . , xn) ∈ Zn is called an integral vector of

length `(x) = n. The set X of integral vectors is the disjoint union of Zn for all

n = 1, 2, 3, . . . . Let Ω be a well-order in X, although we define in §2 the canon-

ical order Ωc, a particular well-order with a property that every initial segment
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is finite. The class of oriented links L′ in S3 such that there is a homeomorphism

h : S3 → S3 sending L to L′ is called the unoriented link type [L] of an oriented link

L in S3, and the oriented link type 〈L〉 of L moreover if h is orientation-preserving

both on the orientation of S3 and on the orientations of L and L′. Let L and
→

L be

the sets of unoriented link types and oriented link types in S3, respectively. A link

type will be identified with a link belonging to the link type unless confusion might

occur. Thus, L and
→

L are understood as the sets of unoriented links and oriented

links in S3, respectively. We have a canonical map

clβ : X −→
→

L
ι

−→ L

sending an integral vector to the closured link of the associated braid (see §1 for

the detail) which is independent of the well-order Ω, where ι :
→

L → L denotes the

forgetful surjection. On the other hand, the well-order Ω induces a map

σ : L −→ X

which is injective modulo split additions of trivial links, so that Ω defines a well-

order in L, also denoted by Ω. This construction of σ will be also done in §1. In

§3, we define the concept of a minimal link by using this well-order Ω of L. Let Lm

be the subset of L consisting of minimal links. Then we see that the restriction

σ|Lm : Lm −→ X

is an embedding (see Lemma 3.4), so that in the case of the canonical order Ω = Ωc

every initial segment of Lm as well as X is a finite set. The link group of a link L

in S3 is the fundamental group π1E(L) of the exterior E(L) = cl(S3 −N(L)) of L

with N(L) a tubular neighborhood of L in S3. Let G be the set of the isomorphism

types of the link groups for the links in L. The isomorphism type of a group will

be identified with a group belonging to the isomorphism type unless confusion might

occur. An Artin presentation is a finite group presentation

(x1 , x2, . . . , xn |xi = wixp(i)w
−1
i , i = 1, 2, . . . , n)

where p(1), p(2), . . . , p(n) are a permutation of 1, 2, . . . , n and wi (i = 1, 2, . . . , n)

are words in x1, x2, . . . , xn which satisfy the identity

n
∏

i=1

xi =
n

∏

i=1

wixp(i)w
−1
i

in the free group F on the letters x1, x2, . . . , xn. Then we have a braid b ∈ Bn

corresponding to the automorphism ϕ of F defined by

ϕ(xi) = wixp(i)w
−1
i (i = 1, 2, . . . , n),
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from which we see that the set G is characterized as the set of groups with Artin

presentation (see for example [9; p.83] as well as J. S. Birman [2;p.46]). If the

closured link cl(b) is prime or minimal, then we say that the Artin presentation is

prime or minimal, respectively. For the map

π : L −→ G

sending every link L to the link group π1E(L), we also see that the restriction

π|Lm : Lm −→ G

is an embedding (see Lemma 3.5). Let M and
→

M be the sets of unoriented types and

oriented types of closed connected oriented 3-manifolds, respectively. The type of a

closed connected oriented 3-manifold will be identified with a 3-manifold belonging

to the type unless confusion might occur. Let

χ0 : L −→ M

be the map sending a link L ∈ L to the 0-surgery manifold χ(L, 0) ∈ M. The

following theorem is our main theorem which is proved in §4:

Theorem 1.1. Any well-order Ω of X induces an embedding

α : M −→ Lm ⊂ L

and hence two embeddings

σα = σα :M −→ X,

πα = πα :M −→ G

which satisfy the following properties (1) and (2):

(1) χ0α = 1.

(2) If an integral vector σα(M) ∈ X is given, then the minimal link α(M) ∈ L with

a braid presentation, the 3-manifold M ∈ M with a 0-surgery description along a

minimal link and the link group πα(M) ∈ G with a minimal Artin presentation are

determined.

Further taking a well-order Ω in X such that every initial segment is finite, we have

the following properties (3) and (4):

(3) If a group πα(M) with a prime Artin presentation is given, then the integral

vector σα(M) is determined assuming a solution of the following problem:
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Problem. Let x1 < x2 < · · · < xn = x be the initial segment of the integral vector

x induced from the prime Artin presentation of πα(M). Find the smallest index

i such that the link clβ(xi) is prime and there is an isomorphism π1E(clβ(xi)) →

πα(M).

(4) If a 3-manifold M with the 0-surgery description along a minimal link is given,

then the integral vector σα(M) is determined assuming a solution of the following

problem:

Problem. Let x be an integral vector induced from a minimal link L, and

x1 < x2 < · · · < xn = x be the initial segment of x. Find the smallest index i such

that the link clβ(xi) is minimal and the 0-surgery manifold χ(clβ(xi), 0) is χ(L, 0).

The embedding σα makes the set M a well-ordered set by a well-order inherited

from the well-order Ω of L and denoted also by Ω. The length of a 3-manifoldM ∈ M

is the length of the integral vector σα(M) ∈ X. In §5, to determine the images α(M),

σα(M) and πα(M) of every M ∈ M, we take Ω = Ωc and propose a classification

program on M based on Theorem 1.1 which we can carry out inductively. As an

exercise, we carry out this classification for the 3-manifolds with lengths up to 7.

From this classification program, we find an answer to the classification problem

on M assuming inductive partial solutions of the homeomorphism problem on M,

the decision problem on primeness of links and the isomorphism problem on G. A

lifting of the embedding α to the oriented version is discussed in §6 together with an

observation on a relationship between oriented 3-manifold invariants and oriented

link invariants.

This paper is a growing up version of a part of the research announcement “Link

corresponding to closed 3-manifold ”a revised version of whose remaining part will

appear in [10] (see http://www.sci.osaka-cu.ac.jp/˜kawauchi/index.htm).

2. Representing links in the set of integral vectors

For an integral vector x = (x1, x2, . . . , xn) of length n, we denote the integral

vector (xn, . . . , x2, x1) of length n, the integers min15i5n |xi| and max15i5n |xi|

by xT , min |x| and max |x|, respectively. Further, for an integral vector y = (y1,

y2, . . . , ym) of length m, we denote by (x,y) the integral vector

(x1, x2, . . . , xn, y1, y2, . . . , ym)

of length n+m. Let
→

L be the set of oriented links. By the Alexander theorem (see

J. S. Birman [2]), every oriented link L is represented by the closured link cl(b) of

an s-string braid b ∈ Bs for some s = 1. Let σi (i = 1, 2, . . . , s− 1) be the standard

generators of the s-string braid group Bs. By convention, we regard the sign of the

crossing point of the diagram σi as +1. When b 6= 1 in Bs, we write

b = σε1
i1
σε2

i2
. . . σεr

ir
, εi = ±1 (i = 1, 2, . . . , r).
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Then we define the integral vector x(b) of the braid b by the identity

x(b) = (ε1i1, ε2i2, . . . , εrir) ∈ Zr ⊂ X.

When b = 1, we understand that x(b) = 0 ∈ Z ⊂ X. For a non-zero integral vector

x = (x1, x2, . . . , xn) ∈ X, let xij
(j = 1, 2, . . . ,m; i1 < i2 < · · · < im) be the set of

the non-zero integers in the corodinates xi (i = 1, 2, . . . , n) of x. Then the integral

vector

x̃ = (xi1 , xi2 , . . . , xim
)

is called the core of x. When x is a zero vector, we understand the core x̃ = 0. We

note that for every non-zero integral vector x, there is a unique braid b ∈ Bs for

every s = max |x|+ 1 such that x(b) = x̃. The braid b is called the associated braid

with index s of x and denoted by β(s)(x), and in particular for s = max |x| + 1,

called the associated braid of x and denoted by β(x). The associated braid with

index s of any zero vector of X is understood as 1 ∈ Bs, and in particular the

associated braid as 1 ∈ B1. Taking the closured link clβ(x) of the braid β(x), we

obtain a map

clβ : X −→
→

L.

By definition, the closured link clβ(s)(x) with s > max |x|+ 1 is obtained from the

closured link clβ(x) by adding a trivial link of (s − max |x| − 1) components. An

equivalence relation ∼ in X is introduced as follows:

Definition 2.1. Two integral vectors x and y in X are related as x ∼ y if we have

clβ(x) = clβ(y) in
→

L modulo split additions of trivial links.

It is direct to see that the relation ∼ is an equivalence relation in X. Let X/ ∼

be the quotient set of X by ∼, and 〈x〉 the equivalence class of an integral vector

x ∈ X by ∼. We define a map

σ̃ :
→

L −→ X/ ∼

by

σ̃(cl(b)) = 〈x(b)〉,

which is a well-defined surjection and injective modulo split additions of trivial

links.

We can describe the equivalence relation ∼ only in terms of X by using the braid

group presentation and the Markov theorem (see J. S. Birman [2]), as stated in the

following lemma:

Lemma 2.2. The relations (1)-(6) below are in the equivalence relation ∼ in X. If

x ∼ y in X, then y is obtained from x by applying the relations (1)-(6) in a finite

time.

(1) (x, 0) ∼e x, x ∼e (x, 0) for all x ∈ X,
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(2) (x,y,−yT ) ∼e x, x ∼e (x,y,−yT ) for all x,y ∈ X,

(3) (x, y) ∼e x, x ∼e (x, y) for all x ∈ X and y ∈ Z such that |y| > max |x|,

(4) (x,y, z) ∼e (x, z,y) for all x,y, z ∈ X such that min |y| > max |z| + 1 or

min |z| > max |y| + 1,

(5) (x, εy, y + 1, y) ∼e (x, y + 1, y, ε(y + 1)) for all x ∈ X and y ∈ Z such that

y(y + 1) 6= 0 and ε = ±1,

(6) (x,y) ∼e (y,x) for all x,y ∈ X.

Proof. The relation (1) is in ∼ since β(x, 0) = β(x). For (2), we take β(s)(x) and

β(s)(y) in Bs for some s. Then we have

β(s)(x,y,−yT ) = β(s)(x)β(s)(y)β(s)(y)−1 = β(s)(x)

in Bs and hence

clβ(x,y,−yT ) = clβ(x)

in
→

L modulo split additions of trivial links, showing that (2) is in ∼. For (3), let

s = |y| + 1. Then by the Markov theorem,

clβ(x, y) = clβ(s)(x)

in
→

L and the last link is equal to clβ(x) modulo split additions of trivial links,

showing that (3) is in ∼. For (4), we take β(s)(x), β(s)(y) and β(s)(z) in Bs for

some s. By the assumption on y and z, we have

β(s)(x, z,y) = β(s)(x)β(s)(y)β(s)(z) = β(s)(x)β(s)(z)β(s)(y) = β(s)(x, z,y)

in Bs which shows that

clβ(x,y, z) = clβ(x, z,y)

in
→

L modulo split additions of trivial links. Thus, (4) is in ∼. For (5), consider

β(s)(x) and σε
j (j = |y|, ε′ = sign(y)) in Bs for some s. Let ε′ = +1. Then

β(s)(x, εy, y + 1, y) = β(s)(x)σε
jσj+1σj

and the last braid is equal to

β(s)(x)σj+1σjσ
ε
j+1 = β(s)(x, y + 1, y, ε(y + 1))

in Bs by a well-known braid relation. Hence we have

clβ(x, εy, y + 1, y) = clβ(x, y + 1, y, ε(y + 1))

in
→

L modulo split additions of trivial links, showing that (5) is in ∼. For ε′ = −1,

a similar argument gives the desired result since sign(y + 1) = −1 by assumption.

For (6), let β(s)(x) and β(s)(y) in Bs for some s. Then we have

clβ(s)(x)β(s)(y) = clβ(s)(y)β(s)(x)
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by the Markov theorem and hence

clβ(x,y) = clβ(y,x)

in
→

L modulo split additions of trivial links, showing that (6) is in ∼.

Next, we assume x ∼ y. Let s and s′ be the indices of the associated braids

b = β(x) and b′ = β(y), respectively. Applying the relation (3) to x or y, we can

assume that s = s′ and cl(b) = cl(b′) in
→

L. Then the Markov theorem says that we

have b = b′ in Bs with a suitable s after finitely many applications of the Markov

equivalences:

b1b2 ↔ b2b1 (b1, b2 ∈ Bm) and bσ±1
m ↔ b (b ∈ Bm ⊂ Bm+1)

for any m. This is equivalent to saying that b = b′ ∈ Bs after finitely many

applications of the relations (3) and (6) to x and y. Using a well-known group

presentation of Bs with generators σi (j = 1, 2, . . . , s− 1) and relators

(i) (bibj)(bjbi)
−1 (|i− j| = 2) and (ii) (bibi+1bi)(bi+1bibi+1)

−1 (1 5 i 5 s− 1)

(see [2]), we can write b(b′)−1 in the free group F on the letters σi (j = 1, 2, . . . , s−1)

as follows:

b(b′)−1 =

n
∏

k=1

RεkWk

k ,

where RεkWk

k = WkR
εkW−1

k for εk = ±1 and Rk denotes a relator of (i) or (ii) and

Wk is a word in the free group F . Since b = b(b′)−1b′ in F , the solution of the word

problem on the free group guarantees us to change x into (x,−yT ,y) by finitely

many applications of (2) and (6). Noting that

x(RεkWk

k ) = (x(Wk),x(Rεk

k ),−x(Wk)T ),

and

x(Rk) = (i, j,−i,−j), x(R−1
k ) = (j, i,−j,−i)

in (i) and

x(Rk) = (i, i+1, i,−(i+1),−i,−(i+1)), x(R−1
k ) = (i+1, i, i+1,−i,−(i+1),−i)

in (ii), we can change (x,−yT ,y) into y by finitely many applications of (2), (4),

(5) and (6). �

Using the forgetful surjection ι :
→

L → L for the set L of unoriented links, we also

introduce an equivalence relation ≈ in X more relaxed than ∼.

Definition 2.3. Two integral vectors x and y in X are related as x ≈ y if we have

clβ(x) = clβ(y) in L modulo split additions of trivial links.
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It is direct to see that the relation ≈ is an equivalence relation in X. By definition,

we have the natural surjection

˜̃σ : L −→ X/ ≈

which is injective modulo split additions of trivial links. Since L = L′ in
→

L means

L = L′ in L, we have also the natural surjection

X/ ∼ −→ X/ ≈

denoted also by ι so that the following square is commutative:

→

L
σ̃

−−−−→ X/ ∼

ι





y





y

ι

L
˜̃σ

−−−−→ X/ ≈ .

In this diagram, we denote ˜̃σ(cl(b)) = [x(b)] and ι〈x〉 = [x]. To determine a class

[x] ∈ X/ ≈, it is desired to describe the equivalence relation ≈ only in terms of X.

At present, what we can say about ≈ is only the following lemma:

Lemma 2.4. We have the following (1) and (2):

(1) For any x,y ∈ X such that x ∼ y, we have x ≈ y.

(2) For all x ∈ X, we have

x ≈ xT ≈ −x ≈ −xT .

Proof. (1) is direct from the surjection ι : X/ ∼→ X/ ≈ . For (2), let −L denote

the inverse of an oriented link L, and ±L̄ the mirror image of ±L. Then we have

L = −L = L̄ = −L̄ in L. Taking L = cl(b) for a braid b, we have

σ̃(L) = 〈x(b)〉, σ̃(−L) = 〈x(b)T 〉, σ̃(L̄) = 〈−x(b)〉, σ̃(−L̄) = 〈−x(b)T 〉.

Then the commutative square preceding to Lemma 2.4 shows (2). �

The following remark says that (1) and (2) of Lemma 2.4 are sufficient to char-

acterize the equivalence relation ≈ in the set of knots:

Remark 2.5. Let X1 be the subset of X consisting of an integral vector x whose

closured link clβ(x) is a knot. Then every relation x ≈ y for x,y ∈ X1 is generated

by the equivalence relation ∼ and the relations in (2) of Lemma 2.4. In fact, let

K = clβ(x) and K ′ = clβ(y). If x ≈ y, then we have [K] = [K ′] modulo split
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additions of trivial links. Then there is an oriented knot K ′′ which is one of the

knots ±K and ±K̄ such that K ′′ = K ′ in
→

L modulo split additions of trivial links.

Thus, we have x′′ ∼ x′ for the integral vector x′′ which is one of ±x, ±xT . More

generally, for oriented links L,L′ in S3, we have L = L′ in L modulo split additions

of trivial links if and only if we have L = L′ in
→

L modulo split additions of trivial

links after a suitable choice of orientations of L and S3. By counting Lemma 2.4,

this implies that in order to know the class ˜̃σ(L) ∈ X/ ≈ of an oriented link L in S3

with r(= 2)-components Ki (i = 1, 2, . . . , r), it suffices to know a braid presentation

of the link (−L′) ∪ (L− L′) for every sublink L′ of L with 1 5 #L′ 5 r
2 besides a

braid presentation of L, where #L′ denotes the number of components of L′.

The well-order Ω of X induces an embedding

˜̃
Ω : X/ ≈ −→ X

sending [x] to the initial element of the class [x] in the well-order Ω. By letting

σ =
˜̃
Ω˜̃σ, we obtain a map

σ : L −→ X

which is injective modulo split additions of trivial links. By the length of a link

L ∈ L, we mean the length of the integral vector σ(L). By using σ, the well-order

of L is defined as follows: Namely, two distinct links L1, L2 ∈ L have the order

L1 < L2 if and only if either σ(L1) < σ(L2) or σ(L1) = σ(L2) and #(L1) < #(L2)

holds. Since the map σ is defined by Ω, we may say that this well-order in L is

induced from Ω and denoted also by Ω. We now define the canonical order Ωc in

X as follows: Namely, the well-order in Z is defined by

0 < 1 < −1 < 2 < −2 < 3 < −3 < . . .

which is understood as an order counted on the real line along a spiral curve in the

complex plane starting from the origin and rounding counterclockwise. This order

of Z is extended to a well-order in Zn as the lexicographic order for every n = 2. For

any two elements x1,x2 ∈ X with `(x1) < `(x2), we define x1 < x2. This order Ωc

makes X a well-ordered set. [In fact, let S be any non-empty subset of X. Let S` be

the subset of S consisting of integral vectors with the smallest length, say n. Since

Zn is a well-ordered set as defined above, we can find the initial integral vector of

S` which is the initial integral vector of S by definition.] From the construction of

σ, we see that the length of a link L in Ω = Ωc is nothing but the minimal crossing

number among the braids representing L. As a consequence, we see that there are

only finitely many non-splittable links with the same length and the prime links

with up to n lengths for any given n are included in the prime links with up to n

crossings. Thus, the classification table of prime links would be useful (see J. H.

Conway [4], D. Rolfsen [12] for earlier link tables). Also, the braiding algorithm of

S. Yamada [14] would be useful to deform a link into a closed braid form. In §5, we
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explain how to make the table of prime links with lengths up to any fixed number

identified with the integral vectors in Ω = Ωc, and as a demonstration, we make

the table for the prime links with lengths up to 7.

3. Minimal links

Let Ki(i = 1, 2, . . . , r) be the components of an oriented link L in S3. A coloring

f of L is a function

f : {Ki| i = 1, 2, . . . , r } −→ Q ∪ {∞}.

By a meridian-longitude system of L on N(L), we mean a pair of a meridian system

m(L) = {mi| i = 1, 2, . . . , r } and a longitude system `(L) = {`i| i = 1, 2, . . . , r } on

N(L) such that (mi, `i) is the meridian-longitude pair of Ki on N(Ki) for every i.

We can specify the orientations of m(L) and `(L) from those of L and S3 uniquely.

Let f(Ki) = ai

bi
for coprime integers ai, bi for every i where we take ai = ±1 and

bi = 0 when f(Ki) = ∞. Then we have a (unique up to isotopies) simple loop si

on ∂N(Ki) with [si] = ai[mi] + bi[`i] in the first integral homology H1(∂N(Ki)).

We note that if the different choice f(Ki) = −ai

−bi
is made, then only the orientation

of si is changed. The Dehn surgery manifold of a colored link (L, f) is the oriented

3-manifold

χ(L, f) = E(L) ∪s1=1×∂D2
1
S1 ×D2

1 · · · ∪sr=1×∂D2
r
S1 ×D2

r

with the orientation induced from E(L) ⊂ S3, where ∪si=1×∂D2
i

denotes a pasting

of S1 × ∂D2
i to ∂N(Ki) so that si is identified with 1× ∂D2

i . In this construction,

the 3-manifold χ(L, f) ∈ M is uniquely determined from the colored link (L, f). In

this paper, we are particularly interested in the 0-surgery manifold, that is, χ(L, f)

with f = 0. For every link L ∈ L, we consider the subset

{L}π = {L′ ∈ L| π1E(L′) = π1E(L)}

of L. Here are some examples on {L}π.

Example 3.1. (1) For every prime knot K ∈ L, we have {K}π = {K} by the

Gordon-Luecke theorem [5] and W. Whitten [13]. However, for example if K is the

trefoil knot, then {K#K}π = {K#K,K#K̄} where K̄ denotes the mirror image

of K.

(2) Let L be the Whitehead link obtained from the Hopf link O∪O′ by replacing

O′ with the untwisted double D of O′: L = O ∪ D. Further, let Lm be the link

obtained by replacing D with the m-full twist Dm of D along O for every m ∈ Z

where we take L0 = L. Then we have

{L}π = {Lm | m ∈ Z}.
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To see (2), let L′ ∈ {L}π. Since E(L) is a hyperbolic 3-manifold and hence

π1E(L) = π1E(L′) means E(L) = E(L′) (see W. Jaco [7]), the meridian system

on L′ indicates a coloring f of L. Since the linking numer of O and D are 0, we

have f(O) = 1
m

and f(D) = 1
n

for some integers m,n ∈ Z. If m or n is not 0, then

we can assume that m 6= 0 since O and D are interchangeable. If m 6= 0, then we

obtain Lm by taking m full twists along O. Since any twisted doubled knot K ′ is

non-trivial and χ(K′, 1
n
) 6= S3 for n 6= 0, we must have n = 0, giving the desired

result. On this example, one may note that since the linking numer of Lm is 0, the

longitude system of Lm coincides with the longitude system of L in ∂E(L), so that

χ(Lm, 0) = χ(L, 0) for every m.

We consider L as a well-ordered set by the well-order Ω (defined from the well-

order Ω of X in §2). The following definition is needed to choose exactly one link

in the set {L}π for a link L ∈ L:

Definition 3.2. A link L ∈ L is minimal if L is the initial element of the prime

link subset of {L}π in the well-order Ω.

The following remark gives a reason why we restrict ourselves to a link in S3:

Remark 3.3. For a certain torus knot L ∈ L, there are homotopy torus knot

spaces E′, not the exterior of any knot in S3, such that π1(E
′) = π1E(L) (see J.

Hempel [6,p.152]).

Let Lm be the subset of L consisting of minimal links. Since a minimal link is a

prime link by definition, we have the following lemma:

Lemma 3.4. The restriction

σ|Lm : Lm −→ X

is injective.

For the map π : L → G sending a link to the link group, we have the following

lemma:

Lemma 3.5. The restriction

π|Lm : Lm −→ G

is injective.

Proof. For L,L′ ∈ Lm, assume that π1E(L) = π1E(L′). Since both L and L′

are minimal in {L}π = {L′}π, we have L 5 L′ and L = L′ by definition. Hence

L = L′. �

11



The following question is related to determining when a given prime link is

minimal:

Question 3.6 When does π1E(L) = π1E(L′) mean E(L) = E(L′) for prime links

L,L′ ∈ L ?

This question is known to be yes for a large class of prime links, including all

prime knots by W. Whitten [13], and prime links L such that E(L) does not contain

any essential embedded annulus, in particular, hyperbolic links, by the Johannson

Theorem (see W. Jaco [7]). Here is another class of links.

Proposition 3.7 For links L,L′ ∈ L, assume that E(L) is a special Seifert mani-

fold (that is, a Seifert manifold without essential embedded torus) and there is an

isomorphism π1E(L) → π1E(L′). Then there is a homeomorphism E(L) → E(L′).

Proof. By a classification result of G. Burde-K. Murasugi [3], the Seifert structure

of E(L) comes from a Seifert structure on S3. By [7], the orbit surface of the Seifert

manifold E(L) is

(i) the disk with at most two exceptional fibers,

(ii) the annulus with at most one exceptional fiber, or

(iii) the disk with two holes and no exceptional fibers.

In particular, π1E(L) and hence π1E(L′) are groups with non-trivial centers, so

that E(L′) is also a special Seifert fibered manifold with the same orbit data as

E(L). In the case (i), both L and L′ are torus knots and π1E(L) ∼= π1E(L′)

implies L = L′ (confirmed for example by the Alexander polynomials) and hence

E(L) = E(L′). In the cases of (ii) without exceptional fiber and (iii), we have

E(L) = E(L′) = S1×C for the annulus or the disk with two holes C . Assume that

E(L) and E(L′) are in the case of (ii) with one exceptional fiber. Let (p, q) and

(r, s) be the types of the exceptional fibers of E(L) and E(L′), respectively, where

p, r = 2, (p, q) = 1, (r, s) = 1. Let

π1E(L) = (t, a, b|ta = bt, tb = bt, tq = ap) and

π1E(L′) = (t, a, b|ta = bt, tb = bt, ts = ar)

be the fundamental group presentations of E(L) and E(L′), respectively, obtained

from S1×C with C the disk with two holes by adjoining a fibered solid torus around

the exceptional fiber. Let ψ : π1E(L) → π1E(L′) be an isomorphism. Considering

the central group which is the infinite cyclic group generated by t, we see that

ψ(t) = t±1. Replacing −s with s if necessarily, we may have ψ(t) = t. In the

quotient groups, ψ induces an isomorphism

ψ∗ : (a|ap = 1) ∗ (b|−) ∼= (a|ar = 1) ∗ (b|−).
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Hence p = r and ψ(a) = tmaε for some integer m and ε = ±1. Then

tq = ψ(ap) = tmpaεp = tmpaεr = tmp+εs

and hence q ≡ ±s (mod p), which shows the types (p, q) and (r, s) are equivalent.

Thus, there is a fiber-preserving homeomorphism E(L) → E(L′). �

Here is a remark on minimal links.

Remark 3.8 The connected sum L of two copies of the Hopf link, and L′ the

(3, 3)-torus link. Then σ(L) = (1, 1, 2, 2) and σ(L′) = (1, 1, 2, 1, 1, 2) in the order

Ω = Ωc (cf. §5). Although E(L) = E(L′) and L < L′, the link L′ is a minimal link.

We note that χ(L, 0) = S3 and χ(L′, 0) = P 3 (the projective 3-space) (cf. §5).

4. Proof of Theorem 1.1

The following lemma is a folklore result obtained by the Kirby calculus (see R.

Kirby [11]):

Lemma 4.1. The map χ0 : L → M is a surjection.

Proof. For every M ∈ M, we have a colored link (L, f) with the components Ki

(i = 1, 2, . . . , r) such that χ(L, f) = M and f(Ki) = mi is an even integer for all

i (see S. J. Kaplan [8]). Let L1 = L ∪ L0 be the split union of the oriented link L

and a negative Hopf link L0. Let f1 be the coloring of L1 obtained from f and the

0-coloring of L0. If sign(mi) = +1, then we take a fusion K ′
i of Ki and mi

2 parallel

copies of L0. If sign(mi) = −1, then we take a fusion K ′
i of Ki and

|mi|
2 parallel

copies of L0 with the orientations of all the parallel copies of one component of L0

reversed. Replacing Ki with K ′
i for all i with mi 6= 0, we obtain an oriented link

L′
1 from L1 such that χ(L′

1, 0) = χ(L1, f1) = M . �

Let Lm(M) be the subset of Lm consisting of a minimal link L such that χ(L, 0) =

M . It is not so easy to find a minimal link in Lm(M) for a given M ∈ M in general.

If one consider a prime link L ∈ L with χ(L, 0) = M and then take the initial

element L0 of the set {L}π, then the link L0 need not be prime, as it is noted

in Remark 3.8. Thus, L0 should be taken as the initial element of the prime link

subset of {L}π. In this case, L0 is a minimal link in Lm(χ(L0)), but in general we

cannot guarantee that χ(L0, 0) = M , as we note in the following example:

Example 4.2. There are hyperbolic links L,L′ ∈ L such that E(L) = E(L′),

χ(L, 0) 6= χ(L′, 0) and {L}π = {L′}π = {L,L′}. Thus, if L < L′ in the well-order

Ω, then the link L is minimal, but L 6∈ L(χ(L′, 0)). To see this assertion, let

LH = O1 ∪ O2 be the Hopf link with coloring f such that f(O1) = 0, f(O2) = 1.

Then χ(LH , f) = S3 and the dual colored link (L′
H , f

′) is given by L′
H = LH and
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f ′(O1) = −1 and f ′(O2) = 0. By Remark 3.7 of [10], we have a normal imitation

q : (S3, L∗
H) → (S3, LH) and dual normal imitation q′ : (S3, L′∗

H) → (S3, L′
H) such

that E(L′∗
H) = E(L∗

H), the links L∗
H and L′∗

H are totally hyperbolic componentwise

distinct, and every homeomorphism h : E(L′′) → E(L∗
H) extends to a homeomor-

phism h+ : (S3, L′′) → (S3, L∗
H) or h+′ : (S3, L′′) → (S3, L′∗

H). Then χ(L∗
H , 0)

and χ(L′∗
H , 0) are homology 3-spheres, for they are normal imitations of χ(LH , 0) =

χ(L′
H , 0) = S3. Since χ(L′

H , 0) = χ(LH , f
′′) with f ′′(O1) = −1, f ′′(O2) = ∞, we

can assume from Theorem 3.1(2) of [10] that χ(L∗
H , 0) and χ(L∗

H , f
′′q) = χ(L′∗

H , 0)

are distinct and hyperbolic because f 6= 0, f ′′. Thus, we can take L∗
H and L′∗

H as L

and L′, respectively.

In spite of Example 4.2, we can show the following lemma:

Lemma 4.3. For every M ∈ M, the set Lm(M) is an infinite set.

Proof. By Lemma 4.1, we take a disconnected link L in S3 such that χ(L, 0) = M .

Let M 6= S3. By a result of [10], there are infinitely many normal imitations

qi : (S3, L∗
i ) −→ (S3, L) (i = 1, 2, 3, . . . )

such that

(1) χ(L∗
i , 0) = χ(L, 0) = M ,

(2) L∗
i is (totally) hyperbolic, and

(3) every homeomorphism h : E(L∗
i ) → E(L′) for a link L′ in S3 extends to a

homeomorphism h+ : (S3, L∗
i ) → (S3, L′).

Then L∗
i is minimal by (2) and (3), so that L∗

i ∈ Lm(M), i = 1, 2, 3, . . . . For

M = S3, let L be a Hopf link. Then χ(L, 0) = S3 and the dual link L′ of the Dehn

surgery is also the Hopf link. By Remark 3.7 of [10], there are infinitely many pairs

of normal imitations

qi :(S3, L∗
i ) −→ (S3, L),

q′i :(S3, L′∗
i ) −→ (S3, L′) (i = 1, 2, 3, . . . )

such that

(1) χ(L∗
i , 0) = χ(L, 0) = S3 = χ(L′, 0) = χ(L′∗

i , 0),

(2) E(L∗) = E(L′∗
i ),

(3) L∗
i and L′∗

i are (totally) hyperbolic,

(4) every homeomorphism h : E(L∗
i ) → E(L′′) for a link L′′ in S3 extends to a

homeomorphism h+ : (S3, L∗
i ) → (S3, L′′) or h′+ : (S3, L′∗

i ) → (S3, L′′).

Thus, {L∗
i }π = {L∗

i , L
′∗
i } for every i, and we can take a minimal link, say L∗

i in

{L∗
i }π for every i, so that L∗

i ∈ Lm(S3), i = 1, 2, 3, . . . . �

We are in a position to prove Theorem 1.1.
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Proof of Theorem 1.1. Since Lm(M) 6= ∅ by Lemma 4.3, we can take the initial

element Lm(M) of Lm(M) for every M ∈ M. Using that the set Lm(M) is uniquely

determined by M and Ω, we see that the well-order Ω of X induces a map

α : M −→ L

sending a 3-manifold M to the link Lm(M). This map α must be injective be-

cause of the 0-surgery manifold χ(α(M), 0) = M . Combining this result with

Lemmas 3.4 and 3.5, we obtain the embeddings σα and πα. If an integral vector

x = σα(M) is given, then we obtain the link α(M) = clβ(x) with braid presen-

tation, the 3-manifold M = χ(clβ(x),0) with 0-surgery description and the link

group π1E(clβ(x)) with Artin presentation associated with the braid β(σα(M)),

completing the proof of the first half. If a link group G = πα(M) with a prime

Artin presentation is given, then we have a braid b such that G is the link group of

the prime closured link cl(b). Let xi (i = 1, 2, . . . , n) be the integral vectors smaller

than or equal to the integral vector x(b). By using a solution of the problem in

(3), let xi0 be the smallest integral vector such that clβ(xi0) is a prime link and

there is an isomorphism π1E(clβ(xi0)) → G among xi (i = 1, 2, . . . , n). Then the

link clβ(xi0 ) is minimal by this construction. Thus, the desired integral vector

σα(M) = xi0 is obtained, proving (3). If a minimal link L with χ(L, 0) = M is

given, let x be an integral vector induced from a braid b representing L, and xi

(i = 1, 2, . . . , n) be the integral vectors smaller than or equal to x. By using a

solution of the problem in (4), we take the smallest integral vector xi0 in the in-

tegral vectors xi (i = 1, 2, . . . , n) such that the link clβ(xi0) is a minimal link and

χ(clβ(xi0), 0) = M . Thus, the desired integral vector σα(M) = xi0 is obtained,

proving (4). �

As a matter of fact, we can construct many variants of the embedding α : M → L.

Here are remarks on constructing some embeddings α.

Remark 4.4. If we take the subset Lh ⊂ L consisting of hyperbolic links (possibly

with infinite volume) which are determined by the exteriors and Lh(M) = {L ∈

Lh |χ(L, 0) = M}, then we still have an embedding

α : M → Lh ⊂ L

with χ0α = 1 such that σα and πα are embeddings by the proof of Theorem 1.1

using Lh(M) instead of Lm(M). (For this proof, we use that Lh(S3) contains the

Hopf link and the set Lh(M) for M 6= S3 is infinite by Lemma 4.3.) In this case, the

links α(S1 × S2), α(S3) and α(M) for every M 6= S1 × S2, S3 are the trivial knot,

the Hopf link and a hyperbolic link of finite volume, respectively. If we take the

subset L(M) ⊂ L consisting of links L with χ(L, 0) = M , then the proof of Theorem

1.1 using L(M) instead of Lm(M) shows the existence of an embedding α : M → L
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with χ0α = 1. However, in this case, the maps σα and πα are no longer injective.

In fact, in the canonical order Ω = Ωc, if Mn is the connected sum of n copies of

S1 × S2, then σα(Mn) = 0 for every n. If K#K is the granny knot and K#K̄ is

the square knot where K is a trefoil knot, then we see that α(χ(K#K, 0)) = K#K

and α(χ(K#K̄, 0)) = K#K̄. Thus, we have πα(χ(K#K, 0)) = πα(χ(K#K̄, 0))

although χ(K#K, 0)) 6= χ(K#K̄, 0).

5. A classification program.

We consider the following mutually related three embeddings already established:

α :M −→ L,

σα :M −→ X,

πα :M −→ G.

Throughout this section, we take the canonical order Ω = Ωc. By the embedding

σα and a property of Ωc, we can attach without overlapping to every 3-manifold M

in M a lable (n, i) where n denotes the length of M and i denotes that M appears

as the ith 3-manifold of length n, so that we have

Mn,1 < Mn,2 < · · · < Mn,mn

for a positive integer mn <∞. Let

α(Mn,i) = Ln,i ∈ L, πα(Mn,i) = Gn,i ∈ G and σα(Mn,i) = xn,i ∈ X.

Our classification program is to enumerate the 3-manifolds Mn,i for all n =

1, 2, . . . and i = 1, 2, . . . ,mn together with the data Ln,i, Gn,i and xn,i, but by

Theorem 1.1 (2) it is sufficient to give the integral vector xn,i, because we can

easily construct Ln,i, Mn,i and Gn,i by Ln,i = clβ(xn,i), Mn,i = χ(Ln,i) and

Gn,i = π1E(Ln,i). We proceed the argument by induction on the length n. For any

integer x, we have x ∼ 0. In fact, if x 6= 0, then

x ∼ (x,0) ∼ (0, x) ∼ 0

by (1),(3) and (6) of Lemma 2.2. Since the trivial knot O is the closured link of the

associated braid of 0 and χ(O, 0) = S1 × S2, we have the classification of M with

length 1:

m1 = 1, M1,1 = S1 × S2, L1,1 = O and G1,1 = Z.

To explain our classification of M with any length n, we assume that the classi-

fication of M with lengths 5 n− 1 are done. To enumerate integral vectors needed

for our purpose, we need some notinos.
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Definition 5.1. An integral vector x = (x1, x2, . . . , xn) is reducible if

(1) min |x| = 0 and `(x) > 1,

(2) there is an integer m such that min |x| < m < max |x| and m 6= |xi| for all

i, or

(3) min x < maxx and there is a pair of integers k, s with 1 5 k 5 s 5 n such

that |xk| = |xi| = |xs| for all i with k 5 i 5 s and |xj | 6= |xs| for all j with

j < k or j > s.

In Definition 5.1, we note that the core x̃ of x has a shorter length in (1), the

closured link L = clβ(x) is a split link in (2), and L is not a prime link or we

have x ∼ (xk, xk+1, . . . , xs) whose length is shorter than n in (3). Here is another

relation.

Lemma 5.2 (Duality relation).

x = (x1, x2, . . . , xn) ∼ x′ = (x′1, x
′
2, . . . , x

′
n),

where

x′i =

{

sign(xi)(max |x| + 1 − |xi|) xi 6= 0

0 xi = 0.

Proof. The integral vector x′ is obtained by changing the numbering 1, 2, . . . ,m of

the strings of the associated braid b of x (with m = max |x|+1) into m,m−1, . . . , 1

and then overturning the braid diagram. Since this deformation does not change

the link type of cl(b) in
→

L, we have x ∼ x′ by Definition 2.1 �

We also use the following notion:

Definition 5.3. An integral vector x ∈ X is quasi-minimal if it is minimal in the

class [x] with respect to the deformations given in Lemmas 2.2, 2.4 and the duality

relation except for the three deformations increasing the length stated in (1),(2),(3)

of Lemma 2.2.

We note that a quasi-minimal integral vector x is not necessarily the initial element

of the class [x]. The first step of our classification program is as follows:

Step 1. Enumerate a set of integral vectors of length n containing all the irreducible

quasi-minimal integral vectors of length n.

It would make our work simple to take a set of integral vectors in Step 1 as small as

possible. It is recommended to enumerate first the integral vectors x with entries xi

(i = 1, 2, . . . , n) in the following conditions (because every irreducible quasi-minimal

integral vector except 0 has these conditions):

(1) x1 = 1 and the number of i with |xi| = 1 is greater than or equal to the

number of j with |xj | = |x|.

17



(2) Except the casse that |xi| = 1 for all i, there is no pair k, s with k 5 s such

that

|xk| = |xi| = |xs| (k 5 i 5 s) and |xj | 6= |xk| = |xs| (j < k, s < j).

(3) max(|xi−1| − 1, 1) 5 |xi| 5 n
2 (i = 2).

Then we select integral vectors as small as possible by using Lemmas 2.2, 2.4 and

the duality relation. The reason why we can impose these conditions on the integral

vectors comes from the duality relation and Lemmas 2.2, 2.4 for (1), the reducibility

condition for (2) and Lemma 2.4, the reducibility condition and the duality relation

for (3).

The following list of integral vectors of lengths 5 7 is thus made.

Example 5.4. The following list contains all the irreducible quasi-minimal integral

vectors of lengths 5 7:

length 1: 0,

length 2: (1, 1),

length 3: (1, 1, 1),

length 4: (1, 1, 1, 1), (1,−2, 1,−2),

length 5: (1, 1, 1, 1, 1), (1, 1, 2,−1, 2), (1, 1,−2, 1,−2),

length 6: (1, 1, 1, 1, 1, 1), (1, 1, 1, 2,−1, 2), (1, 1, 1,−2, 1,−2), (1, 1, 2, 1, 1, 2),

(1, 1, 2,−1,−1, 2), (1, 1,−2, 1, 1,−2), (1, 1,−2, 1,−2,−2),

(1,−2, 1,−2, 1,−2), (1,−2, 1, 3,−2, 3),

length 7: (1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 2,−1, 2), (1, 1, 1, 1,−2, 1,−2),

(1, 1, 1, 2, 1, 1, 2), (1, 1, 1, 2,−1,−1, 2), (1, 1, 1,−2, 1, 1,−2),

(1, 1, 1,−2, 1,−2,−2), (1, 1, 1,−2,−1,−1,−2), (1, 1, 2,−1,−3, 2,−3),

(1, 1,−2, 1, 1,−2,−2), (1, 1,−2, 1,−2, 1,−2), (1, 1,−2, 1, 3,−2, 3),

(1,−2, 1,−2, 3,−2, 3).

Let D̄n be the set consisting of the closured link diagram clβ(x) of an integral

vector x of length n in Step 1. Let Lj be the subset of L consisting of prime links of

length j. The set Ln consists of an element represented by a member of D̄n but not

belonging to the sets Lj (j = 1, 2, . . . , n− 1) (already constructed by our inductive

hypothesis). Step 2 is the following procedure:

Step 2. Construct Ln from D̄n.
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The closuredlink clβ(x) of an integral vector x of length n admits a braided link

diagram with crossing number 5 n. Thus, if a list of prime links with crossing

number up to n is available, then this enumeration procedure would not be so

difficult. In the following example, the main work is only to identify the integral

vectors of length n 5 7 in Example 5.4 with prime links in Rolfsen’s table [12].

Example 5.5. The following list gives the elements of the sets Ln of lengths n 5 7

together with the corresponding integral vectors.

L1 : O σ(O) = 0.

L2 : 22
1 σ(22

1) = (1, 1).

L3 : 31 σ(31) = (1, 1, 1).

L4 : 42
1 < 41

σ(42
1) = (1, 1, 1, 1),

σ(41) = (1,−2, 1,−2).

L5 : 51 < 52
1

σ(51) = (1, 1, 1, 1, 1),

σ(52
1) = (1, 1,−2, 1,−2).

L6 : 62
1 < 52 < 62 < 63

3 < 63
1 < 63 < 63

2 < 62
3

σ(62
1) = (1, 1, 1, 1, 1, 1),

σ(52) = (1, 1, 1, 2,−1, 2),

σ(62) = (1, 1, 1,−2, 1,−2),

σ(63
3) = (1, 1, 2, 1, 1, 2),

σ(63
1) = (1, 1,−2, 1, 1,−2),

σ(63) = (1, 1,−2, 1,−2,−2),

σ(63
2) = (1,−2, 1,−2, 1,−2),

σ(62
3) = (1,−2, 1, 3,−2, 3).

L7 : 71 < 62
2 < 72

1 < 72
7 < 72

8 < 72
4 < 72

2 < 61 < 72
5 < 72

6 < 76 < 73
1

σ(71) = (1, 1, 1, 1, 1, 1, 1),

σ(62
2) = (1, 1, 1, 1, 2,−1, 2),

σ(72
1) = (1, 1, 1, 1,−2, 1,−2),

σ(72
7) = (1, 1, 1, 2, 1, 1, 2),

σ(72
8) = (1, 1, 1, 2,−1,−1, 2),

σ(72
4) = (1, 1, 1,−2, 1, 1,−2),

σ(72
2) = (1, 1, 1,−2, 1,−2,−2),

σ(61) = (1, 1, 2,−1,−3, 2,−3),

σ(72
5) = (1, 1,−2, 1, 1,−2,−2),
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σ(72
6) = (1, 1,−2, 1,−2, 1,−2),

σ(76) = (1, 1,−2, 1, 3,−2, 3),

σ(73
1) = (1,−2, 1,−2, 3,−2, 3).

The integral vectors (1, 1, 2,−1, 2), (1, 1, 2,−1,−1, 2) and (1, 1, 1,−2,−1,−1,−2)

of Example 5.4 are removed from the list, since the closured links are seen to be 42
1,

63
3, 72

7, respectively. The links 72, 73, 74, 75, 77, 7
2
3 in Rolfsen’s table of [12] are also

excluded from the list since these links turn out to have the lengths greater than 7.

In Steps 3 and 4, powers of low dimensional topology techniques will be seriously

tested.

Step 3. Construct the subset Lm
n ⊂ Ln by removing every link L ∈ Ln such that

π1E(L) = π1E(L′) for a link L′ ∈ Lj with j < n or L′ ∈ Ln with L′ < L.

From construction, we see that the set Lm
n consists of minimal links of length n.

Among the links in Example 5.5, we see that E(42
1) = E(72

7) and E(52
1) = E(72

8)

by taking one full twist along a component and that except these identities, all

the links have mutually distinct link groups by using the following lemma on the

Alexander polynomials:

Lemma 5.6. Let A(t1, t2, . . . , tr) and A′(t1, t2, . . . , tr) be the Alexander polyno-

mials of oriented links L and L′ with r components. If there is a homeomorphism

E(L) → E(L′), then there is an automorphism ψ of the multiplicative free abelian

group with generators ti (i = 1, 2, . . . , r) such that

A′(t1, t2, . . . , tr) = ±ts1

1 t
s2

2 . . . tsr

r A(ψ(t1), ψ(t2), . . . , ψ(tr)), si ∈ Z(i = 1, 2, . . . , r).

The proof of this lemma is direct from the definition of Alexander polynomial(see

[9]). Thus, we obtain the following example:

Example 5.7. We have Lm
n = Ln for n 5 6 and

Lm
7 = {71, 6

2
2, 7

2
1, 7

2
4, 7

2
2, 61, 7

2
5, 7

2
6, 76, 7

3
1}.

Let Mn be the subset of M consisting of a 3-manifold of length n, and LM

n the

set obtained from Lm
n by removing a minimal link L such that χ(L, 0) ∈ Mj for an

index j < n or χ(L, 0) = χ(L′, 0) for a minimal link L′ ∈ Lm
n with L′ < L. The

following step is the final step of our classification program:

Step 4. Construct the set LM

n .

Let Li (i = 1, 2, . . . , r) be the minimal links of the set LM

n , ordered by Ωc. Then we

have Mn,i = χ(Li, 0), α(Mn,i) = Li (i = 1, 2, . . . , r). An important notice is that
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every 3-manifold in M appears once as Mn,i without overlaps. As we shall show

later, the 0-surgery manifolds of the minimal links of Example 5.7 are mutually

non-homeomorphic, so that we have the complete list of 3-manifolds in M with

lengths 5 7 as it is stated in Example 5.8.

Example 5.8.

M1,1 = χ(O, 0), x1,1 = 0,

M2,1 = χ(22
1, 0), x2,1 = (1, 1),

M3,1 = χ(31, 0), x3,1 = (1, 1, 1),

M4,1 = χ(42
1, 0), x4,1 = (1, 1, 1, 1),

M4,2 = χ(41, 0), x4,2 = (1,−2, 1,−2),

M5,1 = χ(51, 0), x5,1 = (1, 1, 1, 1, 1),

M5,2 = χ(52
1, 0), x5,2 = (1, 1,−2, 1,−2),

M6,1 = χ(62
1, 0), x6,1 = (1, 1, 1, 1, 1, 1),

M6,2 = χ(52, 0), x6,2 = (1, 1, 1, 2,−1, 2),

M6,3 = χ(62, 0), x6,3 = (1, 1, 1,−2, 1,−2),

M6,4 = χ(63
3, 0), x6,4 = (1, 1, 2, 1, 1, 2),

M6,5 = χ(63
1, 0), x6,5 = (1, 1,−2, 1, 1,−2),

M6,6 = χ(63, 0), x6,6 = (1, 1,−2, 1,−2,−2),

M6,7 = χ(63
2, 0), x6,7 = (1,−2, 1,−2, 1,−2),

M6,8 = χ(62
3, 0), x6,8 = (1,−2, 1, 3,−2, 3).

M7,1 = χ(71, 0), x7,1 = (1, 1, 1, 1, 1, 1, 1),

M7,2 = χ(62
2, 0), x7,2 = (1, 1, 1, 1, 2,−1, 2),

M7,3 = χ(72
1, 0), x7,3 = (1, 1, 1, 1,−2, 1,−2),

M7,4 = χ(72
4, 0), x7,4 = (1, 1, 1,−2, 1, 1,−2),

M7,5 = χ(72
2, 0), x7,5 = (1, 1, 1,−2, 1,−2,−2),

M7,6 = χ(61, 0), x7,6 = (1, 1, 2,−1,−3, 2,−3),

M7,7 = χ(72
5, 0), x7,7 = (1, 1,−2, 1, 1,−2,−2),

M7,8 = χ(72
6, 0), x7,8 = (1, 1,−2, 1,−2, 1,−2),

M7,9 = χ(76, 0), x7,9 = (1, 1,−2, 1, 3,−2, 3),

M7,10 = χ(73
1, 0), x7,10 = (1,−2, 1,−2, 3,−2, 3).

To see that the 3-manifolds in Example 5.8 are mutually non-homeomorphic, we

first check the first integral homology. It is computed as follows:

(1) H1 = Z: M1,1, M3,1, M4,2, M5,1, M6,2, M6,3, M6,6, M7,1, M7,6, M7,9.

(2) H1 = Z ⊕ Z: M5,2, M7,4, M7,8.
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(3) H1 = Z2: M6,4, M6,5, M7,10.

(4) H1 = Z ⊕ Z ⊕ Z: M6,7.

(5) H1 = Z2 ⊕ Z2: M4,1, M6,8, M7,7.

(6) H1 = Z3 ⊕ Z3: M6,1, M7,2.

(7) H1 = 0: M2,1, M7,3, M7,5.

For (1), since the Alexander polynomial of a knot K is an invariant of the homol-

ogy handle χ(K,0), we see that the homology handles of (1) are mutually distinct.

For (2), since the Alexander polynomial of an oriented link L with all the link-

ing numbers 0 is also an invariant of χ(L, 0) in the sense of Lemma 5.6, these

3-manifolds are mutually distinct. For (3), we note that M6,4 = P 3 the projec-

tive 3-space, M6,5 = χ(31,−2) (where we take 31 the positive trefoil knot) and

M7,10 = χ(41,−2). We take the connected double covering spaces M̃ of M = M6,4,

M6,5 and M7,10. The homology H1(M̃) for M = M6,4, M6,5 or M7,10 is respectively

computed as 0, Z3, Z5, showing that these 3-manifolds are mutually distinct. For

(4), we have nothing to prove. Note that M6,7 = T 3. For (5), we compare the

first integral homologies of the three kinds of connected double coverings of every

M = M4,1, M6,8, M7,7. For M = M4,1, it is the quaternion space Q and we have

H1(M̃) = Z4 for every connected double covering space M̃ of M . For M = M6,8,

we have H1(M̃ ; Z3) = Z3 for every connected double covering space M̃ of M . On

the other hand, for M = M7,7, we have H1(M̃) = Z16 and H1(M̃ ; Z3) = 0 for some

connected double covering space M̃ of M . Thus, these 3-manifolds are mutually

distinct. For(6), we use the following lemma:

Lemma 5.9. Let T = Zp ⊕ Zp for an odd prime p > 1. If the linking form

` : T × T −→ Q/Z is hyperbolic, then the hyperbolic Zp-basis e1, e2 of T is unique

up to unit multiplications of Zp.

Proof. Let e′1, e
′
2 be another hyperbolic Zn-basis of T . Let e′i = ai1e1 + ai2e2.

Then

0 = `(e′i, e
′
i) =

2ai1ai2

p
(mod 1),

1

p
= `(e′1, e

′
2) =

a11a22 + a12a21

p
(mod 1).

By these identities, we have either e′1 = a11e1 and e′2 = a22e2 with a11a22 = 1 in

Zp or e′1 = a12e2 and e′2 = a21e1 with a12a21 = 1 in Zp. �

By this lemma, there are just two connected Z3-coverings M̃ of every M = M6,1,

M7,2 associated with a hyperbolic direct summand Z3 of H1(M) = Z3 ⊕ Z3. In

other words, the covering M̃ is associated with a Z3-covering covering of the exterior

E(L) lifting one torus boundary component trivially, where L = 62
1, 6

2
2. Since the

link L is interchangeable, it is sufficient to check one covering for each M . For

22



M = M6,1 we have H1(M̃) = Z12 ⊕Z4 and for M = M7,2 we have H1(M̃) = Z⊕Z.

Thus, these 3-manifolds are distinct. For (7), the Dehn surgery manifolds chi(72
1, 0)

and χ(72
2) are the boundaries of Mazur manifolds (which are normal imitations of

S3) and identified with the Brieskorn homology 3-spheres Σ(2, 3, 13), Σ(2, 5, 7) by

S. Akbult and R. Kirby [1]. Hence, we have M2,1 = S3, M7,3 = Σ(2, 3, 13) and

M7,5 = Σ(2, 5, 7) and these 3-manifolds are mutually distinct. Thus, we see that

the 3-manifolds of Example 5.8 are mutually distinct.

For the Poincaré homology 3-sphere Σ which is not a normal imitation of S3,

the prime link α(Σ) must have at least 10 components. [To see this, assume that

α(Σ) has r components. Using that Σ is a homology 3-sphere and Σ = χ(α(Σ),0),

we see that Σ bounds a simply connected 4-manifold W with an r× r non-singular

intersection matrix whose diagonal entries are all 0. Since the Rochlin invariant

of Σ is non-trivial, it follows that the signature of W is an odd multiple of 8 and

r is even. Hence r = 8. If r = 8, then the intersection matrix is a positive or

negative definite matrix which is not in our case. Thus, we have r = 10.] Since

χ(31, 1) = Σ for the positive trefoil knot 31, an answer to the following question on

Kirby calculus (see [8, 11,12]) will help in understanding the link α(Σ):

Question. How is the canonical order Ωc understood among the colored links ?

Examining Steps 1-4, we have the following corollary to the classification pro-

gram:

Corollary 5.10. The classification problem on M is solved assuming inductive

partial solutions of the homeomorphism problem on M, the decision problem on

primeness of links and the isomorphism problem on G.

6. Notes on the oriented version and oriented 3-manifold invariants.

Let
→

M be the set of closed connected oriented 3-manifolds. Combining the map

σ̃ :
→

L → X/ ∼ with the embedding
→

Ω : X/ ∼ → X sending the class 〈x〉 to the

initial element of 〈x〉, we have a map

→
σ :

→

L −→ X

which is injective modulo split additions of trivial links. Using this map
→
σ , we

have a well-order in
→

L induced from a well-order Ω in X by a method similar to the

unoriented version. This well-order in
→

L is also denoted by Ω. Writing

→

L
m

= ι−1Lm ⊂
→

L,

we see that the embedding α : M → L in Theorem 1.1 lifts to an embedding

→
α :

→

M −→
→

L
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such that χ0
→
α = 1 and

→
α(−M) = −

→
α(M) for every M ∈

→

M, where the map

χ0 :
→

L →
→

M denotes a natural lift of the map χ0 : L → M. In fact, for any M ∈
→

M,

the link L0 = clβσα(M) is canonically oriented and we have χ(L0, 0) = ±M , where

−M denotes the same M but with the orientation reversed. If M = −M , then we

define
→
α(M) = L0. If M 6= −M , then we define

→
α(M) so as to satisfy

{
→
α(M),

→
α(−M)} = {L0,−L̄0}

and χ(
→
α(M), 0) = M as desired. As a related question, it would be interesting to

know whether or not there is an oriented link L ∈
→

L with L = −L̄ and χ(L, 0) = M

for every M ∈
→

M with M = −M .

For an algebraic system Λ, an oriented 3-manifold invariant in Λ is a map
→

M → Λ

and an oriented link invariant in Λ is a map
→

L → Λ. Let Inv(
→

M,Λ) and Inv(
→

L,Λ)

be the sets of oriented 3-manifold invariants and oriented link invariants in Λ,

respectively. Then we have χ0
→
α = 1. We consider the following sequence

Inv(
→

M,Λ)
χ

#

0−→ Inv(
→

L,Λ)
→

α
#

−→ Inv(
→

M,Λ)

of the dual maps
→
α

#
and χ#

0 of
→
α and χ0. Since the composite

→
α

#
χ#

0 = 1,

we see that χ#
0 is injective and

→
α

#
is surjective, both of which imply that every

oriented 3-manifold invariant can be obtained from an oriented link invariant. More

precisely, if I is an oriented 3-manifold invariant, then χ#
0 (I) is an oriented link

invariant. Conversely, if J is an oriented link invariant, then
→
α

#
(J) is an oriented

3-manifold invariant and every oriented 3-manifold invarint is obtained in this way.

Here are two examples creating an oriented 3-manifold invariant from an oriented

link invariant when we use the right inverse
→
α of χ0, defined by the canonical order

Ωc.

Example 6.1. Let λ ∈ Inv(
→

L,Z) be the signature invariant sign(V +V ′), and P ∈

Inv(
→

L,Z[t, t−1]) the one variable Alexander polynomial det(tV − V ′) (an invariant

up to units ±tm, m ∈ Z) of an oriented link, where V denotes a Seifert matrix

associated with a connected Seifert surface of the link (see [9]). For the right

inverse
→
α of

→
χ , defined by the canonical order Ωc, we have the oriented 3-manifold

invariants

λ→
α

=
→
α

#
(λ) ∈ Inv(

→

M,Z) and P→
α

=
→
α

#
(P ) ∈ Inv(

→

M,Z).

For some 3-manifolds, these invariants are calculated as follows:

(6.1.1) λ→
α
(S1 × S2) = 0, P→

α
(S1 × S2) = 1.

(6.1.2) λ→
α
(S3) = −1, P→

α
(S3) = t− 1.

(6.1.3) λ→
α
(±Q) = ∓3, P→

α
(±Q) = (t − 1)(t2 + 1) (we note that Q 6= −Q).

(6.1.4) λ→
α
(P 3) = −4, P→

α
(P 3) = (t− 1)2.

(6.1.5) λ→
α
(T 3) = 0, P→

α
(T 3) = (t − 1)4.
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