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Abstract

By the topological imitation theory, we construct, from a given colored link, a
new colored link with the same Dehn surgery manifold. In particular, we construct
a link with a distinguished coloring whose Dehn surgery manifold is a given closed
connected oriented 3-manifold except the 3-sphere. As a result, we can naturally
generalize the difference between the Gordon-Luecke theorem and the property P
conjecture to a difference between a link version of the Gordon-Luecke theorem
and the Poincaré conjecture. Similarly, we construct a link with a π1-distinguished
coloring whose Dehn surgery manifold is a given non-simply-connected closed con-
nected oriented 3-manifold. We also construct a link with just two colorings whose
Dehn surgery manifolds are the 3-sphere.
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0. Introduction

The main purpose of our argument is to change a disconnected link L in the

3-sphere S3 with a coloring fL into an imitation link L∗ in S3 with the induced col-

oring f∗
L without changing the Dehn surgery manifold by the topological imitation

theory developed in [4−15]. An early imitation technique in [6] enabled us to make

the Dehn surgery manifolds of S3 along (L, f) and (L∗, f∗
L) the same manifold, and

since then we have looked for additional conditions on (L∗, f∗) in answers to our

needs (see [5,10, 13]). We say that a coloring fL of a link L in S3 is distinguished (or

π1-distinguished, respectively) if χ(L, f) 6= χ(L, fL) (or π1(χ(L, f)) 6= π1(χ(L, fL)),

respectively) for every coloring f of L with f 6= fL (see Definition 2.3 for the accu-

rate definition). A typical result of this paper is that for every disconnected colored

link (L, fL) such that fL(L) ⊂ Q and χ(L, fL) 6= S3, there is a normal imitation

q : (S3, L∗)→ (S3, L) such that χ(L∗, fLq) = χ(L, fL), every sublink of L∗ is a hy-

perbolic link and the colorings fLq and ∞ of L∗ are distinguished (see Corollaries

3.3 and 3.4). By this result, we can generalize the difference between the Gordon-

Luecke theorem [1] (saying that the coloring ∞ of every non-trivial knot in S3 is

distinguished) and the property P conjecture to a difference between a link version

of the Gordon-Luecke theorem and the Poincaré conjecture. In other words, the

coloring ∞ of every non-trivial knot (with ∞ distinguished by the Gordon-Luecke
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theorem) is π1-distinguished if and only if the property P conjecture is true, and

our result shows that the coloring ∞ of every link in S3 with ∞ distinguished

is π1-distinguished if and only if the Poincaré conjecture is true (see Remark 3.6

later). On the other hand, for every disconnected colored link (L, fL) such that

fL(L) ⊂ Q and χ(L, fL) = S3, we have a normal imitation q : (S3, L∗)→ (S3, L)

such that χ(L∗, fLq) = χ(L, fL) = S3 and every sublink of L∗ is a hyperbolic link

and distinct from any sublink of L (see Corollary 3.5 for the detail). The existence

of a colored link imitation (L∗, f∗) of a colored link (L, f) with the same Dehn

surgery manifold but with L∗ distinct componentwise from L has been promised in

[7, p.151].

Throughout this paper, we extensively consider a link as a link in an ambient

manifold M that is a compact connected oriented 3-manifold such that the bound-

ary ∂M is empty or consists of tori. To save words, we regard two ambient manifolds

Mi (i = 1, 2) with an orientation-preserving homeomorphism M1
∼= M2 as the same

manifold M1 = M2, and two links Li in ambient manifolds Mi (i = 1, 2) with an

orientation-preserving homeomorphism h : (M1, L1) ∼= (M2, L2) as the same link

L1 = L2 in the same ambient manifold M1 = M2, unless confusion might occur.

In §1, we review some basic concepts and results in the topological imitation

theory which are used in this paper. In §2, we explain links with a distinguished

coloring and with a π1-distinguished coloring. In §3, the statement of the main

theorem (Theorem 3.1) and the corollaries cited above are proved here by assuming

Theorem 3.1. §4 is devoted to the proof of Theorem 3.1.

The content of this paper is a revised version of a part of the research an-

nouncement “Link corresponding to closed 3-manifold”(see http://www.sci.osaka-

cu.ac.jp/˜kawauchi/index.htm) a growing up version of whose remaining part will

appear in [17].

1. Reviews on topological imitations of links

We grant the link L to be empty only in this section. We briefly explain some

concepts and results of topological imitations of the pair (M,L) for a link L in an

ambient manifold M and refer more detailed accounts of topological imitations to

[4− 15].

Let I = [−1, 1]. The concept of a topological imitation arose from an interpre-

tation of reflection. Namely, for a link L in M , an involution α on (M,L) × I =

(M × I, L× I) is called a reflection in (M,L) × I if

(1) α((M,L) × 1) = (M,L) × (−1), and

(2) the fixed point set Fix(α, (M,L) × I) of α in (M,L) × I is the pair for a

link in an ambient manifold.

The reflection α is standard if α(x, t) = (x,−t) for all (x, t) ∈ M × I, and normal

if α(x, t) = (x,−t) for all (x, t) ∈ ∂(M × I)∪N(L)× I for a tubular neighborhood

N(L) of L in M . The reflection α is isotopically standard if h−1αh is standard for

an auto-homeomorphism h of M × I which is isotopic to the identity by an isotopy
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keeping ∂(M × I) ∪ N(L) × I fixed for a tubular neighborhood N(L) of L in M .

Further, the reflection α is isotopically almost standard if L 6= ∅ and α defines an

isotopically standard reflection in (M,L −K)× I for every component K of L. A

reflector of a reflection α in (M,L)× I is an embedding

φα : (M∗, L∗) −→ (M,L) × I

with φα(M∗, L∗) = Fix(α, (M,L) × I). We note that L ∗ is a link in the ambient

manifold M∗.

Definition 1.1. An imitation of (M,L) is the composite

q : (M∗, L∗)
φα−→ (M,L) × I

proj
−→ (M,L)

where φα : (M∗, L∗)→ (M,L) × I is reflector of a reflection α in (M,L)× I.

We also call (M∗, L∗) an imitation of (M,L) (with imitation map q). The imi-

tation map q induces epimorphisms

π1(M
∗) −→ π1(M) and

π1(M
∗ − L∗) −→ π1(M − L)

whose kernels are perfect groups, and isomorphisms

H∗(M
∗;Z) ∼= π1(M ;Z) and

H∗(M
∗ − L∗;Z) ∼= H∗(M − L; Z)

. Further, the restriction

q|∂M∗ : ∂M∗ → ∂M

is a homotopy equivalence. These properties pass to any lift

q̃ : (M̃∗, L̃∗) −→ (M̃, L̃)

of q associated with every covering M̃ over M . The orientation of (M,L) induces

an orientation of the pair (M∗, L∗) by q. If the reflection α is normal, then we say

that the imitation

q : (M∗, L∗) −→ (M,L)

is a normal imitation. If α is isotopically almost standard, then we say that the

imitation

q : (M∗, L∗) −→ (M,L)

is an AID (=almost identical) imitation. A normal imitation

q′ : (M∗′, L∗′) −→ (M,L)
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is imitation-homotopic to a normal imitation

q : (M∗, L∗) −→ (M,L)

if for a reflector φ : (M∗, L∗) → (M,L) × I of a normal reflection α in (M,L) × I

with q = projφ there is an auto-homeomorphism h of M ×I isotopic to the identity

by an ambient isotopy keeping ∂(M×I)∪N(L)×I fixed such that q′ = projφ′ for a

reflector φ′ : (M∗′, L∗′)→ (M,L)× I of the normal reflection h−1αh in (M,L)× I.

If q : (M∗, L∗)→ (M,L) is an AID imitation, then the restricted normal imita-

tion

q|(M∗,L∗−K∗) : (M∗, L∗ −K∗) −→ (M,L −K)

for every component K of L and K∗ = q−1(K), is imitation-homotopic to the

identical imitation 1(M,L−K) : (M,L−K)→ (M,L−K). In particular, in the case

of AID imitation, we can identify M∗ with M and L∗ with (L−K)∪K∗ for every

component K of L. From construction, we see that if q∗ : (M∗∗ , L∗∗) → (M∗, L∗)

and q : (M∗, L∗) → (M,L) are normal (or AID, respectively) imitations, then

there is a normal (or AID, respectively) imitation q∗∗ : (M∗∗, L∗∗) → (M,L) with

q∗∗ = qq∗ on a tubular neighborhood N(L∗∗) of L∗∗ in M∗∗. The exterior of a link

(M,L) is the compact manifold E(L) = cl(M − N(L)). An ambient manifold M

is called a hyperbolic 3-manifold if M − ∂M is a complete hyperbolic 3-manifold.

Except for the hyperbolic 3-manifolds S1×D2 and S1× S1× [0, 1], the hyperbolic

3-manifold M has a finite volume (see [16, C.7.2] for an explanation). Unless

otherwise stated, hyperbolic 3-manifolds are assumed to have finite volomes. The

volume and the isometry group of a hyperbolic 3-manifold M are denoted by Vol(M)

and Isom(M) respectively, which are topological invariants of M by the Mostow

rigidity theorem (see G. D. Mostow [19], W. P. Thurston [22, 23]). A hyperbolic

3-manifold M is said to be asymmetric if the isometry group Isom(M) is trivial.

An imitation q : (M∗, L∗) → (M,L) is called a hyperbolic asymmetric imitation if

the exterior E(L∗) is hyperbolic and asymmetric. The following lemma is proved

in [6] except the asymmetry condition which is proven in [7].

Lemma 1.2. Let L be a disconnected oriented link in an ambient manifold M .

Then for any positive number C , there is a hyperbolic asymmetric AID imitation

q : (M,L∗) −→ (M,L)

with Vol(E(L∗)) > C .

From a technical reason, we need the following lemma:

Lemma 1.3. Let q : M∗ → M be an imitation such that M is a hyperbolic

3-manifold. Then there is a connected sum decomposition M∗ = M ′#S such that

(1) the connected summand M ′ is an irreducuble 3-manifold, and if ∂M∗ is not

empty, then it is a Haken manifold with incompressible boundary (consisting

of torus components),
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(2) the restriction q|M ′

o
: M ′

o → M of q to the compact punctured manifold

M ′
o of M ′ used for the connected sum extends to a map q′ : (M ′, ∂M ′) →

(M,∂M) whose lift

q̃′ : (M̃ ′, ∂M̃ ′) −→ (M̃, ∂M̃ )

associated with every covering M̃ of M is a homology equivelence,

(3) the connected summand S is a homology 3-sphere and q#(π1(So)) = {1}

for the punctured manifold So of S used for the connected sum.

Proof. We use the homology equivalence property of imitation in [4], saying that

the lift q̃ : M̃∗ → M̃ of the imitation map q associated with every covering M̃ of

M induces isomorphisms

q̃∗ : H∗(M̃
∗;Z) ∼= H∗(M̃ ;Z),

q̃∗ : H∗(M̃
∗, ∂M̃∗;Z) ∼= H∗(M̃ , ∂M̃ ;Z).

First, we show the following assertion:

(1.3.1) If there is a connected sum decomposition M∗ = M∗
1 #M∗

2 , then we have

q#(π1((M
∗
i )o)) = {1} for some i where (M∗

i )o denotes the punctured manifold of

M∗
i used for the connected sum.

If there is a connected sum decomposition M∗ = M∗
1 #M∗

2 with q#(π1((M
∗
i )o)) 6=

{1} for i = 1 and 2, then we consider the universal covering M̃ of M whose interior

is homeomorphic to the 3-space R3. Let q̃ : M̃∗ → M̃ be the associated lifting of q.

Let S2 be a 2-sphere in M̃∗ lifting the 2-sphere defining the connected sum M∗ =

M∗
1 #M∗

2 . By the homology equivalence property, we see that M̃∗ is connected

and H1(M̃
∗;Z) = 0, so that S2 splits M̃∗ into two connected submanifolds Xi

(i = 1, 2). Using that π1(M) is a torsion-free group and hence q#(π1((M
∗
i )o)) is

an infinite group for i = 1, 2, we see that Xi is not compact for i = 1 and 2. This

implies that S2 represents a non-zero element of H2(M̃
∗;Z), contradicting that

H2(M̃
∗;Z) = H2(M̃ ;Z) = 0. This proves (1.3.1).

By applying (1.3.1) and the homology equivalence property to a prime decom-

position of M∗ (cf. J. Hempel [2]), we can conclude that there is a connected sum

decomposition M∗ = M ′#S such that M ′ is a prime 3-manifold and S is a closed

3-manifold with q#(π1(So)) = {1}. Since q#(π1(M
′
o)) = π1(M) is a non-abelian

hyperbolic group, we see that M ′ is an irreducible 3-manifold. If ∂M ′ is not empty,

then M ′ is a Haken manifold with incompressible boundary, because the restriction

q|∂M∗ : ∂M∗ = ∂M ′ −→ ∂M

of the imitation map q is a homotopy equivalence (see [4]) and ∂M is incompress-

ible in M , showing (1) (cf. W. Jaco [3] for an account on Haken manifold and

incompressibility). Let

W = M∗ × [0, 1] ∪s
j=1 h2

j
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be a cobordism from M∗ = M∗×0 to M ′ such that h2
j (j = 1, 2, . . . , s) are mutually

disjoint 2-handles on the connected summand S × 1 of M∗ × 1 whose surgery

produces S3 which is a connected summand of M ′. Because q#(π1(So)) = {1}, the

map q : M∗ → M extends to a map F : W → M . Let q′ = F |M ′ : M ′ → M . For

every covering M̃ →M , we have a map

F̃ : W̃ −→ M̃

lifting F and extending the liftings q̃ : M̃∗ → M̃ and q̃′ : M̃ ′ → M̃ of q and

q′, respectively. By excision, we see that Hd(W̃ , M̃∗;Z) = Hd(W̃ , M̃ ′;Z) = 0 for

d 6= 2. Assuming that S is a homology 3-sphere, shown later, we have natural

isomorphisms

Hd(M̃∗;Z)
∼=
−→ Hd(W̃ ;Z)

∼=
←− Hd(M̃

′;Z)

for d 6= 2 and natural monomorphisms

H2(M̃
∗;Z) −→ H2(W̃ ;Z) and H2(M̃

′;Z) −→ H2(W̃ ;Z)

with the same image. Then the isomorphism q̃∗ : H∗(M̃
∗;Z) ∼= H∗(M̃ ;Z) induces

an isomorphism (q̃′)∗ : H∗(M̃
′;Z) ∼= H∗(M̃ ;Z). When ∂M ′ is not empty, the

restriction q̃′|∂M ′ : ∂M ′ → ∂M is a homotopy equivalence, and hence by the five

lemma we have an isomorphism

(q̃′)∗ : H∗(M̃
′, ∂M̃ ′;Z) −→ H∗(M̃ , ∂M̃),

showing (2) by assuming (3). For the universal covering space M̃ of M , we have

that H1(M̃
∗;Z) = 0 and M̃∗ contains an infinitely many copies of S as connected

summands. Thus, we have H1(S;Z) = 0 and hence S is a homology 3-sphere,

showing (3). �

2. Links with a distinguished coloring and with a π1-distinguished col-

oring

Let Ki(i = 1, 2, . . . , r) be the components of a link L in M . A meridian system

m(L) on a tubular neighborhood N(L) = ∪r
i=1N(Ki) of L in M is always defined as

a system consisting of a meridian m(Ki) of N(Ki) for every i = 1, 2, . . . , r. On the

other hand, a longitude system `(L) on N(L) is not uniquely specified in general. A

framed link is a link L in an ambient manifold M such that a longitude system `(L)

of L in M is specified on a tubular neighborhood N(L) as a system consisting of a

longitude `(Ki) of N(Ki) for every i = 1, 2, . . . , r. By a meridian-longitude system

of a framed link L, we mean a pair of a meridian system m(L) and a longitude

system `(L) on N(L) such that m(Ki) meets `(Ki) transversely in a single point

for every i. We can specify the orientations of m(L) and `(L) from those of L

and M uniquely. When M = S3, we have a canonical meridian-longitude system

(m(L), `(L)) of L by taking a canonical longitude `(Ki) on N(Ki) characterized
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by that `(Ki) is null-homologous in the exterior E(Ki) = cl(S3 − N(Ki). Unless

otherwise stated, we will consider a link L in S3 as a framed link by taking a

canonical meridian-longitude system of L. We note that if (M,L) is a framed link

and q : (M,L∗) → (M,L) is a normal imitation, then L∗ is a framed link by a

unique meridian-longitude system induced from that of L by q, so that a colored

link (L, f) induces a unique colored link (L∗, fq).

Definition 2.1. A coloring f of a framed link L is a map

f : {Ki| i = 1, 2, . . . , r } −→ Q+,

where Q+ = Q ∪ {∞, ∅} for the set Q of rational numbers and the symbols ∞, ∅

with the identities −∞ = ∞, −∅ = ∅, ∞ + c = c +∞ = ∞ and ∅+ c = c + ∅ = ∅

for all c ∈ Q.

Let f(L) be the subset of Q+ consisting of the elements f(Ki) ∈ Q+ for all i. A

coloring f of L is the constant coloring c for an element c ∈ Q+ if f is the constant

map to c, i.e., f(Ki) = c for all i. A colored link (L′, f ′) is equivalent to a colored

link (L, f) if there is an orientation-preserving homeomorphism h : M → M such

that f(Ki) = f ′h(Ki) for all i. A coloring f of L is finite if f(L) ⊂ Q ∪ {∅}, and

regular if f(L) ⊂ Q ∪ {∞}.
The size of a rational number c = a

b
with a, b coprime integers is the integer

ρ(c) = |a|+|b|. The sizes of the symbols ∅ and∞ are defined as ρ(∅) = 0 and ρ(∞) =

1 by convention. The size ρ(f) of a coloring f of L is the set of the sizes ρ(f(Ki))

for all i. For an integer J , we denote by ρ(f) = J or ρ(f) > J , respectively, the

inequality ρ(f(Ki)) = J for all i or ρ(f(Ki)) > J for all i, respectively. Similarly,

we denote by ρ(f) 5 J or ρ(f) < J , respectively, the inequality ρ(f(Ki)) 5 J for

all i or ρ(f(Ki)) < J for all i, respectively. By re-indexing the components Ki

(i = 1, 2, . . . , r), let Ki (i = 1, 2, . . . , u) be the components of L with f(Ki) 6= ∅.

Let f(Ki) = ai

bi

for coprime integers ai, bi for i 5 u where we take ai = ±1 and

bi = 0 when f(Ki) = ∞. Then we have a simple loop si on ∂N(Ki) (unique

up to isotopies) such that we have [si] = ai[mi] + bi[`i] in H1(∂N(Ki);Z) for the

meridian-longitude pair (mi, `i) of Ki on N(Ki). We note that if the other choice
−ai

−bi

of f(Ki) is made, then only the orientation of si is changed.

Definition 2.2. The Dehn surgery manifold of a colored link (L, f) is the oriented

3-manifold

χ(L, f) = E(L) ∪s1=1×∂D2

1

S1 ×D2
1 · · · ∪su=1×∂D2

u
S1 ×D2

u

with the orientation induced from E(L) ⊂M , where ∪si=1×∂D2

i

denotes a pasting

of S1 × ∂D2
i to ∂N(Ki) so that si is identified with 1× ∂D2

i .

By definition, we have χ(L, f) = E(L) if f = ∅ and χ(L, f) = M if f = ∞.

In this construction, the oriented 3-manifold χ(L, f) up to orientation-preserving
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homeomorphisms is independent of choices of orientations of the simple loops si and

hence determined uniquely from the colored link (L, f) up to equivalences. We see

by W. B. R. Lickorish [18] and A. H. Wallace [24] that for every ambient manifold

M , we have a link L in S3 and a finite coloring f of L such that χ(L, f) = M where

the number of the components Ki of L with f(Ki) = ∅ is equal to the number of

components of ∂M .

Definition 2.3. A coloring fL of a framed link L in an ambient manifold M is

distinguished if we have χ(L, fL) 6= χ(L, f) for every coloring f ′ of L with f 6= fL,

and π1-distinguished if the fundamental groups π1(χ(L, fL)) and π1(χ(L, f)) are

not isomorphic to each other for every coloring f of L with f 6= fL.

For example, the coloring∞ of any framed link L in M with a trivial component

is not distinguished. A characterization of the distinguished coloring ∞ is given as

follows:

Lemma 2.4. The constant coloring ∞ of a framed link L in an ambient manifold

M is distinguished if and only if every homeomorphism h : E(L′) → E(L) from

the exterior E(L′) of any link L′ in M to E(L) sends every meridian system m(L′)

to a meridian system m(L) setwise, so that h extends to a homeomorphism h+ :

(M,L′)→ (M,L).

Proof. To prove the “only if”part, we consider a pair (M,L′) with a homeomor-

phism h : E(L′)→ E(L). Since the constant coloring ∞ of (M,L) is distinguished,

the image h(m(L′)) must be equal to a meridian-system m(L) in E(L) up to orienta-

tions of m(L). Hence we can extend h to a homeomorphism h+ : (M,L′)→ (M,L).

To prove the “if”part, suppose that the constant coloring ∞ of a framed link L is

not distinguished. Then there is a coloring f 6=∞ of (M,L) such that χ(L, f) = M ,

and the dual link of L in χ(L, f) is a link L′ in M with E(L′) = E(L) such that the

meridian system m(L′) of (M,L′) up to orientations is not homologous to m(L) in

∂E(L). �

A link L in M is determined by the exterior E(L) if there is a homeomorphism

(M,L′) ∼= (M,L) for every link L′ in M with a homeomorphism E(L′) ∼= E(L). By

Lemma 2.4, every link with the constant coloring ∞ distinguished is determined

by the exterior. For example, a trivial knot and a Hopf link are examples of links

determined by the exteriors but having the constant coloring ∞ not distinguished.

A link (M,L) is totally hyperbolic if every non-empty sublink Ls is a hyperbolic link

in M , that is, if the exterior E(Ls) is a hyperbolic 3-manifold. If q : (M,L∗) →

(M,L) is a normal imitation of a framed link L, then we can consider L∗ as a

framed link so that the imitation map q preserves meridian-longitude systems of L∗

and L. Further, if M = S3, then q preserves canonical meridian-longitude systems

of L∗ and L by the homology equivalence property in [4]. If f is a coloring of a
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framed link L in M , then fq is a coloring of the framed link L∗ in M .

3. Statement of the main theorem (Theorem 3.1) and its consequences

In this section, we explain the basic result (Theorem 3.1) on the Dehn surgery

description of a disconnected colored link. Its consequences are shown by assuming

Theorem 3.1 here. The basic result is stated as follows:

Theorem 3.1. Let L be a disconnected framed link in an ambient manifold M .

For every finite regular coloring fL of L, any positive integer J with ρ(fL) 5 J and

any positive number C , we have a normal imitation

q : (M,L∗) −→ (M,L)

such that

(1) χ(L∗, fLq) = χ(L, fL),

(2) the Dehn surgery manifolds χ(L∗, fq) for all distinct colorings f of L with

ρ(f) 5 J and f 6= fL,∞ are mutually distinct hyperbolic asymmetric 3-

manifold with volumes greater than C ,

(3) the Dehn surgery manifold χ(L∗, fq) for every coloring f of L with ρ(f) � J

is a normal imitation of a hyperbolic asymmetric 3-manifold with volume

greater than C , and

(4) the fundamental group π1(χ(L∗, fq)) for every coloring f of L with f 6=

fL,∞ is not isomorphic to the fundamental group π1(χ(L, f ′)) for every

coloring f ′ of L.

(5) the fundamental group π1(χ(L∗, fq)) for every coloring f of L with f 6=

fL,∞ is not isomorphic to the fundamental group π1(χ(L, f ′)) for every

coloring f ′ of L.

It is convenient to add the following properties to Theorem 3.1:

Corollary 3.2. In Theorem 3.1, we have the following additional properties:

(1) L∗ is a totally hyperbolic link in M ,

(2) the fundamental group π1(χ(L∗, fq)) for every coloring f of L with f 6=

fL,∞ admits an epimorphism onto a non-abelian hyperbolic group,

(3) L∗ is distinct from L componentwise.

Proof. (1) follows from (2) of Theorem 3.1 by considering all colorings f of L such

that f(L) ⊂ {∞, ∅} but f 6= ∞, for ρ(f) 5 1 5 J . (2) follows from the properties

(2), (3) of Theorem 3.1 combined with a property of imitation map. To see (3), we

consider any two components K,K ′ of L (possibly K = K ′) and the colorings f

and f ′ of L such that

f(L −K) = f ′(L−K ′) = {∞} and f(K) = f ′(K′) = ∅.
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Then by (4), χ(L∗, fq) = E(K∗) is not homeomorphic to χ(L, f ′) = E(K′). �

Counting this corollary, we obtain the following three corollaries from Theorem

3.1:

Corollary 3.3. Assume that χ(L, fL) 6= M for a finite regular coloring fL of a

disconnected framed link L in an ambient manifold M . Then we have a normal

imitation

q : (M,L∗) −→ (M,L)

such that

(1) L∗ is totally hyperbolic and distinct from L componentwise,

(2) χ(L∗, fLq) = χ(L, fL), and

(3) the colorings fLq and ∞ of L∗ are distinguished.

Corollary 3.4. Let L be a disconnected framed link in an ambient manifold

M . Assume that the fundamental group π1(χ(L, fL)) is not isomorphic to the

fundamental group π1(M) for a finite regular coloring fL of L. Then we have a

normal imitation

q : (M,L∗) −→ (M,L)

such that

(1) L∗ is totally hyperbolic and distinct from L componentwise,

(2) χ(L∗, fLq) = χ(L, fL), and

(3) the colorings fL and ∞ of L∗ are π1-distinguished.

Corollary 3.5. Let L be a disconnected framed link in an ambient manifold M ,

and fL a finite regular coloring of L such that χ(L, fL) = M . Then we have a

normal imitation

q : (M,L∗) −→ (M,L)

such that

(1) L∗ is totally hyperbolic and distinct from L componentwise,

(2) χ(L∗, fLq) = χ(L, fL) = M , and

(3) the fundamental group π1(χ(L∗, fq)) for every coloring f of L with f 6=

∞, fL is not isomorphic to the fundamental group π1(χ(L, f ′)) for every

coloring f ′ of L.

Further, here are three remarks on Corollaries 3.3 and 3.5.

Remark 3.6. For every closed ambient manifold M with M 6= S3, we have lots of

disconnected links L in S3 with finite regular colorings fL such that χ(L, fL) = M

and the colorings fL and ∞ of L are distinguished by combining a well-known fact

of W. B. R. Lickorish [18] and A. H. Wallace [24] with Corollary 3.3. If the constant
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coloring ∞ is π1-distinguished for every link in S3 with the constant coloring ∞

distinguished, then the fundamental group π1(M) must be non-trivial, implying

that the Poincaré conjecture is affirmative. Counting Corollary 3.2, we see that

one can impose on the coloring fL above that π1(χ(L, f ′)) admits an epimorphism

onto a non-abelian hyperbolic group for every coloring f ′ of L with f ′ 6= fL,∞.

Remark 3.7. In Corollary 3.5, we take M = S3 and fL(L) ⊂ Q. Then by

Corollary 3.5, we have that χ(L∗, fLq) = S3 and L∗ is a totally hyperbolic link. A

similar example is recently given by M. Teragaito [21]. In our case, let (L′, f ′
L) be

the dual colored link of I, fL) in S3 (obtained by the Dehn surgery along (L, fL)),

so that we have also χ(L′, f ′
L) = S3. From the construction of normal imitation,

we see that the normal imitation q : (S3, L∗)→ (S3, L) induces a normal imitation

q′ : (S3, L̄′∗)→ (S3, L′).

Further, we have E(L′∗) = E(L∗), and by taking a large integer J in Theorem

3.1, we can see from Corollary 3.2 that L′∗ is totally hyperbolic and componentwise

distinct from L∗. We see also from (3) of Corollary 3.5 combined with the argument

of Lemma 2.4 that every homeomorphism h : E(L′′) → E(L∗) for any link L′′ in

S3 sends the meridian system m(L′′) to the meridian system m(L∗) or m(L′∗)

setwise, so that h extends to a homeomorphism h+ : (S3, L′′) → (S3, L∗) or h+′ :

(S3, L′′) → (S3, L′∗). Thus, we have constructed infinitely many pairs of exactly

two componentwise distinct totally hyperbolic links with the same exterior.

4. Proof of Theorem 3.1

The following lemma is obtained by combining Lemma 1.2 with the idea of [13,

Lemma 2.1]:

Lemma 4.1. For any disconnected framed link (M,L), any positive number C

and any positive integer J , there is an AID imitation

q : (M,L∗) −→ (M,L)

such that

(1) χ(L∗, fq) is a hyperbolic asymmetric 3-manifold with volume greater than

C for every finite coloring f of L with ρ(f) 5 J ,

(2) χ(L∗, fq) and χ(L∗, f ′q) are distinct, i.e., χ(L∗, fq) 6= ±χ(L∗, f ′q), for every

pair of distinct finite colorings f, f ′ of L with ρ(f), ρ(f ′) 5 J .

Proof. When M = S3, the proof is proved in [13, Lemma 2.1] except the volume

condition which can be easily added in the topological imitation theory. Since the

present proof is parallel to the argument of [13, Lemma 2.1], we give here only

the outline of the proof. Let L+ be a meridian addition link of L, that is a link
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obtained from L by adding a meridian loop to every component of L. We note that

the sublink L+ − L is canonically framed by which we consider L+ a framed link

extending the framed link L. By Lemma 6.1 we have a hyperbolic asymmetric AID

imitation

q+ : (M, (L+)∗) −→ (M,L+)

with Vol(E(L+)∗) > C for every given positive number C . For any finite coloring

f of L and a positive integer n, let fn be the finite coloring of L+ such that

fn(K) =

{

f(K) + n (if K ⊂ L)
1
n

(if K ⊂ L+ − L).

We note that χ(L+, fn) = χ(L, f) and χ(L+ − L, 1
n
) = M . Since

lim
n→+∞

ρ(fn(K)) = +∞

for every component K of L+ and there are only finitely many colorings f of L

with ρ(f) 5 J , we see from Thurston’s hyperbolic Dehn surgery argument ([22,

23]) that if we take n sufficiently large, then the AID imitation

q = χ(q+; (L+ − L,
1

n
)) : (M,L∗) −→ (M,L)

obtained by taking the Dehn surgery manifold χ(L+−L, 1
n
) = M has the property

that for every finite coloring f of L with ρ(f) 5 J the Dehn surgery manifold

χ(L∗, fq) is a hyperbolic asymmetric 3-manifold with volume greater than C and

the dual link in χ(L∗, fq) of the sublink obtained from L∗ by removing the sublink

L∗
∅
⊂ L∗ consisting of a component K∗ with fq(K∗) = ∅ consists of short geodesics.

This last condition together with the Mostow rigidity theorem ([19,22,23]) implies

that χ(L∗, fq) 6= ±χ(L∗, f ′q) for every pair of distinct colorings f, f ′ of L with

ρ(f), ρ(f ′) 5 J (see [13, Lemma 2.1]). �

In Lemma 4.1, if f is an infinite coloring of L, then we have χ(L∗, fq) = χ(L, f)

by a property of the AID imitation q. We used first this property in an argument of

Dehn surgery of [6, Corollary 4.1], which is also developed in the following lemma:

Lemma 4.2. Let Ls and Lc
s = L − Ls be non-empty sublinks of a framed link

(M,L). For any positive number C , any positive integer J and any finite regular

coloring fL of L, we have a normal imitation

q : (M,L∗) −→ (M,L)

where L∗ is written as L∗
s ∪ Lc

s such that

(1) the restriction

q|(M,L∗−K∗) : (M,L∗ −K∗) −→ (M,L−K)
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for every knot K∗ ⊂ L∗
s and the knot K = q(K∗) ⊂ Ls is imitation-

homotopic to the identical imitation,

(2) χ(L∗, fq) = χ(L, f) for every coloring f of L such that f(K) = fL(K) for

a knot K ⊂ Lc
s,

(3) the Dehn surgery manifolds χ(L∗, fq) for all distinct colorings f of L such

that ρ(f) 5 J , f |Ls
is a finite coloring of Ls, and f(K) 6= fL(K) for any

knot K ⊂ Lc
s are mutually distinct hyperbolic asymmetric 3-manifolds with

volumes greater than C .

Proof. We consider the Dehn surgery manifold M ′ = χ(Lc
s, fL|Lc

s
) and the framed

link L′ = Ls ∪L′c
s in M ′ where Lc′

s denotes the dual framed link obtained from the

link Lc
s by the Dehn surgery operation M →M ′. We apply Lemma 6.1 to (M ′, L′)

to obtain an AID imitation

q′ : (M ′, (L′)∗) −→ (M ′, L′)

where (L′)∗ can be written as L∗
s ∪ Lc′

s . By the dual Dehn surgery operation

M ′ →M , the AID imitation q′ induces a normal imitation

q : (M,L∗) −→ (M,L)

where L∗ can be written as L∗
s ∪Lc

s. (1) follows directly, since the normal imitation

q′|(M ′,(L′)∗−K∗) : (M ′ , (L′)∗ −K∗) −→ (M ′, L′ −K)

is imitation-homotopic to the identical imitation. Since the coloring f of L in (2)

changes into an infinite coloring f ′ of the framed link (M ′, L′), we obtain (2) from

the remark preceding to this lemma. Since the coloring f of L in (3) changes into

a finite coloring f ′ of the framed link (M ′, L′), (3) follows from the properties of

Lemma 6.1 with a large positive integer J . �

An important observation on Lemma 4.2 is that the coloring f of (3) may be ∞

on Lc
s.

Lemma 4.3. Let (M,L) be a disconnected framed link. For any positive number

C , any positive integer J and any finite regular coloring fL of L, we have a normal

imitation

q : (M,L∗) −→ (M,L)

such that

(1) χ(L∗, fLq) = χ(L, fL),

(2) the Dehn surgery manifolds χ(L∗, fq) for all distinct colorings f of L such

that ρ(f) 5 J and f 6= fL,∞ are mutually distinct hyperbolic asymmetric

3-manifolds with volumes greater than C .
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Proof. Let Li (i = 1, 2, . . . ,m) be all the non-empty sublinks of L such that

Lc
i = L − Li is not empty for all i. Inductively, we take positive numbers Ci

(i = 1, 2, . . . ,m) and m normal imitations

qi : (M,L∗
i ∪ Lc∗

i ) −→ (M,L∗
i−1 ∪ Lc∗

i−1) (i = 1, 2, . . . ,m)

which satisfy the following conditions:

(i) L∗
0 = L1, Lc∗

0 = Lc
1, C1 = C .

(ii) When we regard L∗
i−1, Lc∗

i−1 and Ci as Ls, Lc
s and C in Lemma 6.2 respec-

tively, we take q and L∗ in Lemma 6.2 as qi and L∗
i ∪Lc∗

i where we take L∗
i

and Lc∗
i so that

qiqi−1 . . . q1(L
∗
i ) = Li, qiqi−1 . . . q1(L

c∗
i ) = Lc

i .

(iii) ‖E(L∗
i ∪ Lc∗

i )‖ > Ci = ‖E(L∗
i−1 ∪ Lc∗

i−1)‖ (i = 1, 2, . . . ,m).

Taking L∗ = L∗
m ∪ Lc∗

m , we have a composite normal imitation

q : (M,L∗) −→ (M,L)

such that q = qmqm−1 . . . q1 on a tubular neighborhood N(L∗) of L∗ in M . We

show that this normal imitation q has the properties (1) and (2). (1) follows directly

from (2) of Lemma 6.2. To see (2), let f be a coloring of L such that ρ(f) 5 J and

f 6= fL,∞. Let Lf=fL
be the sublink of L consisting of a component K of L with

f(K) = fL(K), and Lf=∞ the sublink of L consisting of a component K of L with

f(K) =∞. By the assumption that f 6= fL,∞, the sublinks Lf=fL
and Lf=∞ are

disjoint proper sublinks of L (which may be empty). We take the largest index i

such that Lf=fL
⊂ Li and Lf=∞ ⊂ Lc

i . By (1) and (2) of Lemma 6.2, we have

χ(L∗, fq) = χ(L∗
i ∪ Lc∗

i , fqiqi−1 . . . q1).

By (3) of Lemma 6.2, the Dehn surgery manifolds χ(L∗
i ∪ Lc∗

i , fqiqi−1 . . . q1) for

all distinct colorings f with ρ(f) 5 J and f 6= fL,∞ such that Lf=fL
⊂ Li and

Lf=∞ ⊂ Lc
i are mutually distinct hyperbolic asymmetric 3-manifolds with volumes

greater than Ci. Since the volumes of these hyperbolic 3-manifolds is smaller than

or equal to Ci+1, we see (2). �

Proof of Theorem 3.1 except (4). For J1 = J , by Lemma 4.3 we have a normal

imitation

q1 : (M,L∗1) −→ (M,L)

such that [χ(L∗1, fLq1)] = [χ(L, fL)] and the Dehn surgery manifolds χ(L∗1, fq1)

for all distinct colorings f of L such that ρ(f) 5 J1 and f 6= fL,∞ are mutually
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distinct hyperbolic asymmetric 3-manifolds with volumes greater than C . Then by

Thurston’s argument on hyperbolic Dehn surgery, there exists an integer J+
1 > J1

such that

(*) the Dehn surgery manifolds χ(L∗1, fq1) are mutually distinct hyperbolic 3-

manifolds with volumes greater than C for all distinct colorings f of L such that

f 6= fL,∞, ρ(f |Ls
) 5 J1 and ρ(f |L−Ls

) > J+
1 for a (possibly empty) sublink

Ls ⊂ L.

Let J2 = J+
1 . Let L have the r components Ki (i = 1, 2, . . . , r). Then by

continuing this process, there are integers Jj(j = 1, 2, . . . , r + 2) with Jr+2 >

Jr+1 > · · · > J1 = J and normal imitations

qj : (S3, L∗j) −→ (S3, L∗(j−1)) (j = 1, 2, . . . , r + 1)

where L∗0 = L such that

χ(L∗, fLqr+1qr . . . q1) = χ(L, fL)

and we have the following condition for every j = 1, 2, . . . , r + 1:

(**) The Dehn surgery manifolds χ(L∗j , fqjqj−1 . . . q1) are mutually distinct hy-

perbolic 3-manifolds with volumes greater than C for all distinct colorings f of L

such that f 6= fL,∞, ρ(f |Ls
) 5 Jj and ρ(f |L−Ls

) > Jj+1 for a (possibly empty)

sublink Ls ⊂ L.

Since the component number of L is r, for every coloring f of L we can find an

index j such that none of the sizes ρ(f(Ki)) for all i are in the half open interval

(Jj , Jj+1], so that every coloring f of L with f 6= fL,∞ satisfies the condition in

(**) for some j and hence the Dehn surgery manifold χ(L∗j , fqjqj−1 . . . q1) is a

hyperbolic 3-manifold with volume greater than C . Taking L∗ = L∗(r+1), we have

a composite normal imitation

q : (M,L∗) −→ (M,L)

such that q = qr+1qr . . . q1 on a tubular neighborhood N(L∗) of L∗ in M . Since the

Dehn surgery manifold χ(L∗, fq) is a normal imitation of the Dehn surgery manifold

χ(L∗j , fqjqj−1 . . . q1) for every coloring f and every j, the normal imitation q is a

desired imitation with Jr as J . This completes the proof of Theorem 3.1 except

(4). �

Proof of Theorem 3.1(4). For an ambient manifold M , the Gromov norm ‖M‖

is defined and is a constant multiple of the hyperbolic volume Vol(M) when M is a

hyperbolic 3-manifold (see W. P. Thurston [22, 23]). In Theorem 3.1, we consider
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the Dehn surgery manifold M∗ = χ(L∗, fq) for every f 6= ∞, fL as a normal

imitation of a hyperbolic 3-manifold H with the imitation map qH : M∗ → H such

that the Gromov norm ‖H‖ > C , where we take C = ‖E(L)‖. Then we have

C = ‖χ(L, f ′)‖ for all colorings f ′ of L by a property of the Gromov norm (see W.

P. Thurston [22, 23]). Suppose that π1(M
∗) is isomorphic to the fundamental group

π1(N) of the Dehn surgery manifold N = χ(L, f ′) for some coloring f ′ of L. By

Lemma 4.3, there is a connected sum M∗ = M ′#S such that M ′ is an irreducible

manifold with a degree one map q′H : (M ′, ∂M ′) → (H,∂H) and S is a homology

3-sphere. By a property of the Gromov norm (see W. P. Thurston [22, 23]), we

have ‖M ′‖ = ‖H‖ > C . Since ∂N has only torus components and every compact

oriented 3-manifold with a positive genus boundary component has a non-trivial

first homology, we see from Kneser’s conjecture (see J. Hempel [2]) that there is

a connected sum N = S ′#N ′ such that S ′ is a homology 3-sphere and N ′ is an

irreducible 3-manifold homotopy equivalent to M ′. Then we show that

‖N ′‖ = ‖M ′‖.

To see this, first, assume that ∂N is empty. Then ∂M ′ = ∂M is empty and we

have degree one maps N ′ →M ′ and M ′ → N ′, so that ‖N ′‖ = ‖M ′‖ by a property

of the Gromov norm. Next, assume that ∂N is not empty. Then M ′ and N ′ are

Haken manifolds with incompressible boundary consisting of torus components. By

the Johannson theorem (see W. Jaco [3, p.212]), the hyperbolic pieces of the torus

decompositions of N ′ and M ′ are mutually homeomorphic. By T. Soma [20], ‖N ′‖

and ‖M ′‖ are equal to the sums of the Gromov norms of the hyperbolic pieces of

the torus decompositions of N ′ and M ′, respectively. Hence we have ‖N ′‖ = ‖M ′‖

as desired.

Since there is a degree one map (N,∂N)→ (N ′, ∂N ′), we have

‖N‖ = ‖N ′‖ = ‖M ′‖ > C

by a property of the Gromov norm, which contradicts C = ‖N‖. Thus, we see that

π1(χ(L∗, fq)) = π1(M
∗) is not isomorphic to π1(N) = π1(χ(L, f ′)). �
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[17] A. Kawauchi, The classfification problem of closed orientable 3-manifolds,

preprint

(cf. http://www.sci.osaka-cu.ac.jp/˜kawauchi/index.htm).

[18] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds,

Ann. of Math., 76(1962), 531-540.

[19] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. Math. Studies,

78(1973), Princeton Univ. Press.

[20] T. Soma, The Gromov invariant of links, Invent. Math., 64(1981), 445-454.

[21] M. Teragaito, Links with surgery yielding the 3-sphere, J. Knot Theory Ram-

ifications, 11(2002), 105-108.

[22] W. P. Thurston, The geometry and topology of 3-manifolds, Lecture notes at

Princeton Univ. (1978-1980).

[23] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic

geometry, Bull. Amer. Math. Soc., 6(1982), 357-381.

[24] A. H. Wallace, Modifications and cobounding manifolds, Canadian J. Math.,

12(1960), 503-528.

17


