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Abstract
A complete invariant for closed connected orientable 3-manifolds is an invariant

such that any two closed connected orientable 3-manifolds are homeomorphic if
and only if the invariants are equal. Further, if we can reconstruct the 3-manifold
from the invarinat, then it is faithfully-complete. In this paper, we construct a
faithfully-complete non-negative rational invariant for closed connected orientable
3-manifolds which we call the complete genus. The value of the complete genus
is greater than or equal to the Heegaard genus. This construction is made by
using the faithfully-complete lattice point invariant for closed connected orientable
3-manifolds in [6]. We also construct a faithfully-complete non-negative rational
invariant smaller than or equal to 1

2 which we call the complete arith-genus to
obtain a two-variable holomorphic function which classifies all the closed connected
orientable 3-manifolds.
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1. Introduction

It is classcially well-known (cf. B. von Kerékjártó [9]) that every closed con-
nected orientable surface F is characterized by the maximal number, say n(� 0) of
mutually disjoint simple loops �i (i = 1, 2, . . . , n) in F such that the complement
F − ∪n

i=1�i is connected. This number n is called the genus of F . We consider a
union L0 of n mutually disjoint 0-spheres in the 2-sphere S2 (namely, a set of 2n

points in S2) as an S0-link with n components. Then the surface characterization
stated above is dual to the statement that F is obtained as the 1-handle surgery
manifold χ(L0) of S2 along an S0-link L0 with n components for some n � 0. Let
M2 be the set of (the unoriented types of) closed connected orientable surfaces, and
L0 the set of (unoriented types of) S0-links. Since any two S0-links with the same
component number are the same link, we have a well-defined embedding

α0 : M2 −→ L0

sending a surface F ∈ M2 to an S0-link L0 ∈ L0 such that χ(L0) = F . Further,
let X0 be the set of non-negative integers, and G0 the set of (isomorphism classes
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of) the link groups π1(S2 − L0) of all S0-links L0 ∈ L0. Then we have further two
natural embeddings

σ0 : L0 −→ X0,

π0 : L0 −→ G0

such that σ0(L0) = n for an S0-link L0 with n components and π0(L0) = π1(S2 −
L0), respectively, so that we have the composite embeddings

g = σ0
α = σ0α0 : M2 −→ X0,

π0
α = π0α0 : M2 −→ G0.

For every surface F ∈ M2, the number g(F ) = n is equal to the genus of F , and
the group π0

α(F ) is a free group of rank 2n − 1 (n � 1) or the trivial group {1}
(n = 0). Thus, the genus g(F ) determines the S0-link α0(F ), the group π0

α(F ) and
the surface F itself.

As we did in the paper [6], an analogous classification is possible for closed
connected orientable 3-manifolds in place of closed connected orientable surfaces,
although the existence of lots of non-trivial links in the 3-sphere S3 makes the clas-
sification complicated. Here, for convenience we explain an idea of this classification
of [6] briefly. Let M be the set of (unoriented types of) closed connected orientable
3-manifolds, and L the set of (unoriented types of) links in S3. The set X of lattice
points is the disjoint union of Zn for all n = 1, 2, 3, . . . where Z is the set of integers.
An element x ∈ Zn is called a lattice point of length �(x) = n. We consider the
set X as a well-ordered set as it is explained in §2. Since every lattice point x ∈ X

induces the closed braid diagram clβ(x), we can introduce an equivalence relation
∼ in X so that x ∼ y if and only if clβ(x) and clβ(y) are the same link in L modulo
split additions of trivial links. Let [x] be the equivalence class of x ∈ X. Using
this well-order of X and the Alexander theorem that every link is deformed into a
closed braid form(cf. [1]), we can define a map

σ : L −→ X,

injective modulo split additions of trivial links, so that for every L ∈ L, σ(L) is the
initial element of the equivalence class [x] for a lattice point x ∈ X with cl(x) = L.
In particular, the restriction of σ to the subset Lp of prime links is injective, so that
we can consider Lp as a well-ordered set by the order induced from X. The length
�(L) of a prime link L ∈ Lp is the length �(σ(L)). Let G be the set of (isomorphism
types of) the link groups π1(S3 − L) for all links L in S3. Let π : L → G be the
map sending a link L to the link group π1(S3 − L). Let Lπ be the subset of Lp

consisting of a π-minimal link, that is, a prime link L which is the initial element
of the subset

{L′ ∈ Lp|π1(S3 − L′) = π1(S3 − L)}

2



of Lp. We are interested in this subset Lπ since it has a crucial property that the
restriction of π to Lπ is injective. Since the restriction of σ to Lπ is also injective,
we can consider Lπ as a well-ordered set by the order induced from the order of X.
In [5], we showed that the set

Lπ(M) = {L ∈ Lπ|χ(L, 0) = M}

is not empty for every 3-manifold M ∈ M, where χ(L, 0) denotes the 0-surgery
manifold of S3 along L . By R. Kirby’s theorem [10] on the Dehn surgery of
framed links, we note that the set Lπ(M) is defined in terms of only links so that
any two π-minimal links in Lπ(M) are related by two kinds of Kirby moves and
choices of orientations of S3, although the definition of Lπ(M) above depends on
homeomorphisms on 3-manifolds. Sending M to the initial link of Lπ(M), we have
an embedding

α : M −→ L

with χ(α(M), 0) = M for every 3-manifold M ∈ M which induces two embeddings

σα = σα : M −→ X,

πα = πα : M −→ G.

To calculate the group πα(M), we proposed a program on the classification
problem (see J. Hempel [3]) of M and classified the prime links of lengths � 7
and the 3-manifolds of lengths � 7 in [6], where the length �(M) of a 3-manifold
M ∈ M is the length �(σα(M)). The prime links in Lp of lengths � 10 and the
3-manifolds in M of lengths � 10 will be enumerated in [7] and [8], respectively,
where our enumeration of Lp is based on the well-order of X and differtent from
the enumerations of J. H. Conway [2] and D. Rolfsen [13].

By a special featur of the 0-surgery, the S0-link α(M) ∩ S2 in S2 produces a
surface χ(α(M)∩S2) naturally embedded in M with α0(χ(α(M)∩S2)) = α(M)∩S2

for every 2-sphere S2 in S3 meeting the link α(M) transversely. In this sense, the
embedding α is an extension of the embedding α0. In this construction, we can
reconstruct the link α(M), the group πα(M) and the 3-manifold M itself from the
lattice point σα(M) ∈ X, and thus we have constructed the embeddings α, σα,
and πα analogous to the embeddings α0, σ0

α, and π0
α, respectively. In general, we

say that an invariant I(M) of a 3-manifold M ∈ M taking a value in an algebraic
system is complete if I(M) = I(M ′) means M = M ′ in M. The complete invariant
I(M) is faithfully-complete if M can be reconstructed from the data of I(M). For
example, πα(M) is a complete invariant taking the value in groups and σα(M) is a
faithfully-complete invariant taking the value in lattice points.

The main work of this paper is to propose a faithfully-complete invariant g(M)
taking the value in the set Q0+ of non-negative rational numbers and called the
complete genus of M by using the complete invariant σα(M). For this purpose, we
embed a subset ∆+ of X containing the image σ(Lp) into the set Q0+ in §3. This
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set ∆+ is a natural generalization of the delta set ∆ defined in [6], as it is explained
in §2. In §4, we shall give a table of complete genera of all the 3-manifolds with
lengths � 7 together with some extra data for convenience. Some properties of this
complete genus are as follows (see §5 for more detailed properties):

Properties of the complete genus.

(1) We have an equality g(M) � h(M) for every M ∈ M, where h(M) denotes
the Heegaard genus of M ∈ M.

(2) g(S3) = 0, g(S1×S2) = 1 and g(M) belongs to the open interval (n− 1
2 , n)

or (n, n + 1
2
) with n � 3 for every M ∈ M with M �= S3, S1 × S2.

(3) For every integer n � 3, there are only finitely many 3-manifolds M ∈ M

such that g(M) belongs to (n − 1
2 , n + 1

2 ).
(4) From the value of g(M), we can reconstruct the lattice point σα(M), the

link α(M), the group πα(M) and the 3-manifold M itself.

Since for every positive integer n, there are infinitely many 3-manifolds M ∈ M

with h(M) = n, we see from the property (2) that the inequality of (3) must be far
from the equality in general. In §6, as a variant of the complete genus g(M), we
shall propose a related faithfully-complete invariant a(M) of a 3-manifold M ∈ M

which takes the value in non-negative rational numbers smaller than or equal to
1
2 and is called the complete arith-genus of M . The following properties of this
complete arith-genus are given in §6:

Properties of the complete arith-genus.

(1) a(S3) = 0, a(S1 × S2) = 1
2 and 0 < a(M) < 1

2 for every M ∈ M with
M �= S3, S1 × S2.

(2) We can reconstruct from the value of a(M) the complete genus g(M), the
lattice point σα(M), the link α(M), the group πα(M) and the 3-manifold
M itself.

The list of complete arith-genera of all the 3-manifolds with lengths � 7 is also
made in §6. A reason why we introduce this complete arith-genus is because using
it, we can construct a holomorphic function µ(u, z) with C2 the absolute convergence
domain which classifies all the 3-manifolds M ∈ M. This construction is also done
in §6.

We mention here some analogous invariants derived from different viewpoints:
J. Milnor and W. Thurston defined in [11] non-negative real-valued invariants of
closed connected 3-manifolds by the property that if Ñ → N is a degree n(� 2)
connected covering of a closed connected 3-manifold N , then the invariant of Ñ is
n times the invariant of N . Since by this property any two homotopy equivalent,
non-homeomorphic lens spaces must have the same invariant, we see that these
invariants are not any complete invariants. Also, Y. Nakagawa defined in [12] a
family of integer-valued complete invariants of the set of knots by using R. W.
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Ghrist’s universal template, although at present the computation of Nakagawa’s
invariants and a generalization to L appear difficult.

2. The range of prime links in the set of lattice points

In this section, we are interested in a subset of X containing the image σ(Lp).
For this purpose, we need some notations on lattice points given in [6]. For a lattice
point x = (x1, x2, . . . , xn) of length n, we denote the lattice points (xn, . . . , x2, x1)
and (|x1|, |x2|, . . . , |xn|) by xT and |x|, respectively. Let |x|p be a permutation
(|xj1 |, |xj2 |, . . . , |xjn |) of the coordinates |xj | (j = 1, 2, . . . , n) of |x| such that

|xj1 | � |xj2 | � · · · � |xjn |.
Let min |x| = min1�i�n |xi| and max |x| = max1�i�n |xi|. The dual lattice point
δ(x) = (x′

1 , x
′
2, . . . , x

′
n) of x is defined by

x′
i =

{
sign(xi)(max |x| + 1 − |xi|) xi �= 0
0 xi = 0.

Defining δ0(x) = x and δn(x) = δ(δn−1(x)) inductively, we note that δ2(x) �= x in
general, but δn+2(x) = δn(x) for all n � 1. For a lattice point y = (y1, y2, . . . , ym)
of length m, we denote by (x,y) the lattice point

(x1, x2, . . . , xn, y1, y2, . . . , ym)

of length n + m. For an integer m and a positive integer n, we denote by mn

the lattice point (m,m, . . . ,m) of length n. Also, we take −mn = (−m)n. The
canonical order of X is a well-order determined as follows: Namely, the well-order
in Z is defined by

0 < 1 < −1 < 2 < −2 < 3 < −3 < . . .

(understood as an order counted on the real line along a spiral curve in the complex
number plane starting from the origin and rounding counterclockwise). This order
of Z is extended to a well-order in Zn for every n � 2 as follows: Namely, for
x1,x2 ∈ Zn we define x1 < x2 if we have one of the following conditions (1)-(3):

(1) |x1|p < |x2|p by the lexicographic order (on the natural number order).
(2) |x1|p = |x2|p and |x1| < |x2| by the lexicographic order (on the natural

number order).
(3) |x1| = |x2| and x1 < x2 by the lexicographic order on the well-order of Z

defined above.

Finally, for any two lattice points x1,x2 ∈ X with �(x1) < �(x2), we define x1 < x2.
The following subset of X is defined in [6]:

Definition 2.1. The delta set ∆ is the subset of X consisting of 0(∈ Z), 1n (n � 2)
and all the lattice points x = (x1, x2, . . . , xn) (n � 2) with the following conditions
(1)-(8) simultaneously:
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(1) x1 = 1, |xn| � 2 and n/2 � max |x| � 2.
(2) For every integer k such that 1 < k < max |x|, there is an index i with

|xi| = k.
(3) For every index s, there is no index t (s � t) such that |xi| = |xs| if and

only if s � i � t.
(4) If |xi| > |xi+1|, then |xi| − 1 = |xi+1|.
(5) If |xi| = |xi+1|, then sign(xi) = sign(xi+1).
(6) If x is written as (x′,y,x′′) where |y| is (k, (k + 1)m, k), (km, k + 1, k) or

(k, k + 1, km) for some k,m � 1 and neither |x′| nor |x′′| has k as any
coordinate, then y is equal to ±(k,−ε(k + 1)m, k), ±(εkm,−(k + 1), k) or
±(k,−(k + 1), εkm) for some ε = ±1, respectively. In particular, if m = 1,
then we have ε = 1.

(7) If x is written as (x′,y,x′′) where |y| = (k+1, km, k+1) for some k,m � 1,
then y = ±(k + 1, εkm, k + 1) for some ε = ±1. Further if m = 1, then we
have ε = −1.

(8) x is the initial element (in the canonical order) of the set of the lattice
points obtained from every lattice point of ±x, ±xT , ±δ(x) and ±δ(x)T by
cyclically permuting the coordinates.

The following lemma is also proved in [6]:

Lemma 2.2. The image σ(Lp)(⊂ X) is contained in ∆.

Remark 2.3. If we can replace ∆ by a smaller subset of X containing σ(Lp), our
classification arguments on Lp and M would be simpler. For example, let ∆∗ be
the subset of X obtained from ∆ by replacing the condition (3) by the following
condition (which is more restrictive):

(3∗) Any cyclic permutation of the coordinates of x is not written as (x′,x′′)
with max |x′| < min |x′′|.

Then we still have σ(Lp) ⊂ ∆∗ ⊂ ∆ (see [7]).

The extended delta set is a subset ∆+ of X consisting of the zero 0 ∈ Z (which
is a lattice point of length 1) and all the lattice points x = (x1, x2, . . . , xn) ∈ X of
lengths n � 2 such that x1 = 1 and |xi| � n/2 (i = 2, 3, . . . , n). By definition, we
have

σ(Lp) ⊂ ∆ ⊂ ∆+.

For most arguments of this paper, we shall discuss the extended delta set ∆+ rather
than ∆.
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3. Embedding the extended delta set into the set of non-negative rational
numbers

For a lattice point x = (x1, x2, . . . , xn) ∈ ∆+, we define the rational number

ζ(x) = n +
x2

(n + 1)n−1
+ · · · + xn

n + 1
.

We note that ζ(0) = 1. For a rational number r, let int(r) denote the maximal
integer which does not exceed r. We show the following lemma:

Lemma 3.1. The map x �→ ζ(x) induces an embedding

ζ : ∆+ −→ Q0+

such that for every x = (x1, x2, . . . , xn) ∈ ∆+ with n � 2 we have the following
properties (1)-(3):

(1) For n � k + 1 � 2, let εn,k be the rational number defined by

εn,k =

{
ζ(x)− n (k = 1)
ζ(x)− n − ( xn−k+2

(n+1)k−1 + · · · + xn

n+1 ) (k � 2).

Then we have

|εn,k| � 1
2(n + 1)k−1

− 1
2(n + 1)n−1

,

where the equality holds if and only if x2 = · · · = xn−k+1 = ±n
2 .

(2) We have |ζ(x)− n| < 1
2 and int(ζ(x) + 1

2 ) = n.
(3) We can reconstruct the lattice point x ∈ ∆+ from the value of ζ(x).

Further, for any integer n � 2, there are only finitely many x ∈ ∆+ such that
ζ(x) ∈ (n − 1

2 , n + 1
2 ).

Proof. To show (1), we note that |xi| � n/2 for all i. Then we have

|εn,k| = | x2

(n + 1)n−1
+ · · · + xn−k+1

(n + 1)k
|

� n

2
(

1
(n + 1)n−1

+ · · · + 1
(n + 1)k

)

=
n

2
· 1
(n + 1)n−1

(
1 + (n + 1) + · · · + (n + 1)n−k−1

)
=

n

2
· 1
(n + 1)n−1

· (n + 1)n−k − 1
n

=
1

2(n + 1)k−1
− 1

2(n + 1)n−1
.
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This inequality � is replaced by the equality = if and only if x2 = · · · = xn−k+1 =
±n

2 , showing (1). To show (2), we note by (1) taking k = 1 that

|ζ(x)− n| � 1
2
− 1

2(n + 1)n−1
<

1
2
.

This also implies that

int(ζ(x) +
1
2
) = n.

To show that ζ is an embedding, we note that ζ(x) �= ζ(0) = 1 and that if the value
of ζ(x) is given, then the length n(� 2) of x is determined uniquely. We assume

ζ(x)− n =
x′

2

(n + 1)n−1
+ · · · + x′

n

n + 1

for arbitrary integres x′
i with |x′

i| � n/2 (i = 2, 3, . . . , n). Then inductively we have

x′
i − xi ≡ 0 (mod n + 1) (i = 2, 3, . . . , n).

Since
|x′

i − xi| � |x′
i| + |xi| � n

2
+

n

2
= n,

we must have x′
i − xi = 0(i = 2, 3, . . . , n). Since x1 = 1 for n � 2, we see that

the map ζ : ∆+ → Q0+ is injective. To see (3), we note that x2 is determined by
|x2| � n

2 and
x2 ≡ (n + 1)n−1(ζ(x) − n) (mod n + 1).

Similarly, xk (k � 3) is inductively determined by |xk| � n
2 and

xk ≡ (n + 1)n−k+1(ζ(x) − n − x2

(n + 1)n−1
− · · · − xk−1

(n + 1)n−k+2
) (mod n + 1),

showing (3). Finally, if ζ(x) ∈ (n − 1
2 , n + 1

2), then we have int(ζ(x) + 1
2 ) = n

and the length n of x is determined. Since there are only finitely many lattice
points of length n in ∆+, there are only finitely many lattice points x ∈ ∆+ with
ζ(x) ∈ (n − 1

2
, n + 1

2
). �

4. The table of genera of 3-manifolds with up to 7 lengths

By the classification of [6], if �(M) = 1, 2, then we have M = S1 × S2, S3,
respectively. The reason on �(M) = 2 is because we take the 3-sphere S3 as the
0-surgery manifold of S3 along the Hopf link 22

1, so that we have σα(S3) = 12.
However, we can also take S3 as the 3-manifold without doing the 0-surgery of S3

along a link. In this paper, we adopt this viewpoint and introduce the empty lattice
point ∅∅∅ ∈ ∆ ⊂ ∆+ ⊂ X of length 0, the empty link ∅ ∈ L to define

α(S3) = ∅, σα(S3) = ∅∅∅, ζ(∅∅∅) = 0.
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Also, we have πα(S3) = {1} by introducing the trivial group {1} to the set G of
link groups. In this viewpoint, we note that there is no 3-manifold M ∈ M with
�(M) = 2. Then we make the following definition of complete genus:

Definition 4.1. The complete genus g(M) of a 3-manifold M ∈ M is given by the
identity

g(M) = ζ(σα(M)).

It is direct that g(S3) = 0 and g(S1 ×S2) = 1. We shall confirm in Theorem 5.2
that g(M) is a faithfully-complete invariant. Since σα(M) ⊂ ∆ and every initial
segment of ∆ is a finite set, there are only finitely many 3-manifolds with length
n for every n � 0. According to the canonical well-order of X, we enumerate the
3-manifolds of length n as follows:

Mn,1 < Mn,2 < · · · < Mn,mn

for a non-negative integer mn depending only on n. Let xn,i = σα(Mn,i) ∈ ∆ and
gn,i = g(Mn,i). By [6], we reconstruct from xn,i the link α(Mn,i) = Ln,i ∈ L, the
group πα(Mn,i) = Gn,i ∈ G and the 3-manifold Mn,i itself. By (1) of Lemma 3.1,
we reconstruct xn,i from gn,i, so that we can construct from gn,i the lattice point
xn,i, the link Ln,i, the group Gn,i and the 3-manifold Mn,i itself.

In [6], we listed all the lattice points xn,i and the links Ln,i identified with the
notations in D. Rolfsen’s table [13] for all n � 7. In the following table, we list all
the genera gn,i together with xn,i andLn,i for all n � 7, where we note that there is
no 3-manifold of length 2 by the reason stated above (different from the list of [6]
at this point). For convenience, we also include the homological data in this table
by letting Hn,i = H1(Mn,i; Z).

Table 4.2.
g0,1 = 0, x0,1 = ∅∅∅, L0,1 = ∅, H0,1 = 0.

g1,1 = 1, x1,1 = 0, L1,1 = O, H1,1 = Z.

g3,1 = 3 + 5
42 = 3.3125, x3,1 = 13, L3,1 = 31, H3,1 = Z.

g4,1 = 4 + 31
53 = 4.248, x4,1 = 14, L4,1 = 42

1, H4,1 = Z2 ⊕ Z2.
g4,2 = 4 − 47

53 = 3.624, x4,2 = (1,−2, 1,−2), L4,2 = 41, H4,2 = Z.

g5,1 = 5 + 259
64 = 5.199845679..., x5,1 = 15, L5,1 = 51, H5,1 = Z.

g5,2 = 5 − 407
64 = 4.685956790..., x5,2 = (12,−2, 1,−2), L5,2 = 52

1, H5,2 = Z ⊕ Z.

g6,1 = 6 + 2801
75 = 6.16665675..., x6,1 = 16, L6,1 = 62

1, H6,1 = Z3 ⊕ Z3.
g6,2 = 6 + 4565

75 = 6.271613018..., x6,2 = (13, 2,−1, 2), L6,2 = 52, H6,2 = Z.
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g6,3 = 6 − 4549
75 = 5.729338965..., x6,3 = (13,−2, 1,−2), L6,3 = 62, H6,3 = Z.

g6,4 = 6 + 5209
75 = 6.309930386..., x6,4 = (12, 2, 12, 2), L6,4 = 63

3, H6,4 = Z2.
g6,5 = 6 − 4423

75 = 5.736835842..., x6,5 = (12,−2, 12,−2), L6,5 = 63
1, H6,5 = Z2.

g6,6 = 6 − 5452
75 = 5.675611352..., x6,6 = (12,−2, 1,−22), L6,6 = 63, H6,6 = Z.

g6,7 = 6 − 4552
75 = 5.729160468..., x6,7 = (1,−2, 1,−2, 1,−2), L6,7 = 63

2, H6,7 =
Z ⊕ Z ⊕ Z.
g6,8 = 6 + 6669

75 = 6.396798952..., x6,8 = (1,−2, 1, 3,−2, 3), L6,8 = 62
3, H6,8 =

Z2 ⊕ Z2.

g7,1 = 7 + 37449
86 = 7.142856597..., x7,1 = 17, L7,1 = 71, H7,1 = Z.

g7,2 = 7 + 62537
86 = 7.238559722..., x7,2 = (14, 2,−1, 2), L7,2 = 62

2, H7,2 = Z3 ⊕ Z3.
g7,3 = 7 − 62391

86 = 6.761997222..., x7,3 = (14,−2, 1,−2), L7,3 = 72
1, H7,3 = 0.

g7,4 = 7 − 61047
86 = 6.767124176..., x7,4 = (13,−2, 12,−2), L7,4 = 72

4, H7,4 = Z ⊕ Z.
g7,5 = 7 − 73335

86 = 6.720249176..., x7,5 = (13,−2, 1,−22), L7,5 = 72
2, H7,5 = 0.

g7,6 = 7 − 73167
86 = 6.720890045..., x7,6 = (12,−2, 12,−22), L7,6 = 72

5, H7,6 =
Z2 ⊕ Z2.
g7,7 = 7 − 62415

86 = 6.761905670..., x7,7 = (12,−2, 1,−2, 1,−2), L7,7 = 72
6, H7,7 =

Z ⊕ Z.
g7,8 = 7− 91695

86 = 6.650211334..., x7,8 = (12, 2,−1,−3, 2,−3), L7,8 = 61, H7,8 = Z.
g7,9 = 7 + 91697

86 = 7.349796295..., x7,9 = (12,−2, 1, 3,−2, 3), L7,9 = 76, H7,9 = Z.
g7,10 = 7 + 91526

86 = 7.349143981..., x7,10 = (1,−2, 1,−2, 3,−2, 3), L7,10 = 77,
H7,10 = Z.
g7,11 = 7 + 89286

86 = 7.34059906..., x7,11 = (1,−2, 1, 3,−22, 3), L7,11 = 73
1, H7,11 =

Z2.

5. Properties of the complete genus

For every 3-manifold M ∈ M with M �= S3, S1×S3, we have n = �(M) � 3. Let
xn be the nth coordinate of the lattice point σα(M) ∈ ∆. By the definition of ∆,
we have xn �= 0. We say that the 3-manifold M is positive or negative, respectively,
according to if xn > 0 or xn < 0. Every 3-manifold M ∈ M is obtained from two
handlebodies by pasting along the boundaries which is referred to as a Heegaard
splitting of M . The Heegaard genus, h(M) of M is the minimum of the genera of
such handlebodies. The following relationship between a bridge presentation of a
link L ∈ L(see [4]) and Heegaard splittings of the Dehn surgery manifolds along L

is a folk result (although we could not find the proof).

Lemma 5.1. Let a link L ∈ L have a g-bridge presentation. Then every Dehn
surgery manifold M along L admits a Heegaard splitting of genus g.

Proof. Since S3 is a union of two 3-balls B, B′ pasting along the boundary spheres
such that T = L ∩B and T ′ = L ∩ B′ are trivial tangles of g proper arcs in B and
B′, respectively. Let N(T ) be a tubular neighborhood of T in B, V = cl(B−N(T )),
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and V ′ = B′ ∪ N(T ). By construction, V and V ′ are handlebodies of genus g and
forms a Heegaard splitting of S3. To complete the proof, it suffices to show that the
Dehn surgery from S3 to M along L just changes V ′ into another handlebody V ′′,
so that V and V ′′ forms a Heegaard splitting of M of genus g. Since T ′ is a trivial
tange in B′ of g proper arcs, there are g − 1 proper disks Di (i = 1, 2, . . . , g − 1)
in B′ which split B′ into a 3-manifold regarded as a tubular neighborhood N(T ′)
of T ′ in B′. Then the union N(L) = N(T ) ∪ N(T ′) is regarded as a tubular
neighborhood of L in S3. The Dehn surgery from S3 to M along L just changes
N(L) into another union of solid tori without changing the boundary ∂N(L). Thus,
we obtain a desired handlebody V ′′ by pasting along the disks corresponding to Di

(i = 1, 2, . . . , g − 1). �

By convention, we have max |∅∅∅| = −1. We show the following theorem:

Theorem 5.2. The complete genus g(M) of every M ∈ M is a faithfully-complete
invariant such that we have

h(S3) = g(S3) = �(S3) = 0,

h(S1 × S2) = g(S1 × S2) = �(S1 × S2) = 1

and the following properties for every M ∈ M with M �= S3, S1 × S2:

(1) We have

h(M) � max|σα(M)| + 1 � �(M)
2

+ 1.

(2) According to whether M is positive or negative, we have

n +
1

2(n + 1)
+

1
2(n + 1)n

< g(M) < n +
1
2
− 1

2(n + 1)n
or

n − 1
2

+
1

2(n + 1)n
< g(M) < n − 3

2(n + 1)
− 1

2(n + 1)n
,

respectively, where n = �(M)(� 3).
(3) For every integer n � 3, there are only finitely many 3-manifolds M ∈ M

such that g(M) belongs to the open interval (n − 1
2 , n + 1

2 ).
(4) We can reconstruct not only the 3-manifold M itself but also the lattice

point σα(M), the link α(M), the group πα(M) from the value of g(M).

Proof. By definition, we have h(S3) = g(S3) = �(S3) = 0 and h(S1 × S2) =
g(S1 × S2) = �(S1 × S2) = 1. By the property of σα in [6] and Lemma 3.1,
we see that g(M) is a faithfully-complete invariant and the properties (3) and (4)
hold. Since the link α(M) has a (max|σα(M)|+1)-bridge presentation, we see from
Lemma 5.1 that

h(M) � max|σα(M)| + 1 � n

2
+ 1,

11



showing (1). We show (2). By (1) of Lemma 3.1, we have

εn,2 = g(M) − n − xn

n + 1

and
|εn,2| <

1
2(n + 1)

− 1
2(n + 1)n−1

,

for some xi (2 � i � n − 1) is 1 and hence not to equal to ±n
2 . Hence we have

n +
2xn − 1
2(n + 1)

+
1

2(n + 1)n−1
< g(M) < n +

2xn + 1
2(n + 1)

− 1
2(n + 1)n−1

.

When M is positive, we have 2 � 2xn � n by a property of ∆ and hence

n +
1

2(n + 1)
+

1
2(n + 1)n−1

< g(M) < n +
1
2
− 1

2(n + 1)n
.

When M is negative, we have −n � 2xn � −4 by the property of ∆ and hence

n − 1
2

+
1

2(n + 1)n
< g(M) < n − 3

2(n + 1)
− 1

2(n + 1)n
. �

Here are some examples.

Example 5.3. (1) Let M = χ(31, 0) = M3,1 for the trefoil knot 31. Since the
bridge index of 31 is 2 and M is not any lens space, we see from Table 4.2 that

h(M) = max |σα(M)| + 1 = 2 <
�(M)

2
+ 1 = 2.5 and g(M) = 3 +

5
42

= 3.3125.

(2) Let M = χ(42
1, 0) = M4,1 for the (2, 4)-torus link 42

1. Since the bridge index of
42
1 is 2 and the first homology H1(M) has exactly 2 generators, we see from Table

4.2 that

h(M) = max |σα(M)| + 1 = 2 <
�(M)

2
+ 1 = 3 and g(M) = 4 +

31
53

= 4.248.

(3) Let M = χ(41, 0) = M4,2 for the figure eight knot 41. Since the bridge index of
41 is 2 and M is not any lens space, we see from Table 4.2 that

h(M) = 2, max |σα(M)| + 1 = 3 =
�(M)

2
+ 1 and g(M) = 4 − 47

53
= 3.624.

The following corollary follows from Theorem 5.2 and Example 5.3.

Corollary 5.4. For every M ∈ M with M �= S3, S1 × S2, we have

(1) �(M) < g(M) < �(M) + 1
2 if M is positive,

(2) �(M) − 1
2 < g(M) < �(M) if M is negative,

(3) �(M) = int(g(M) + 1
2 ),

(4) h(M) + 1 < g(M).
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Proof. (1) and (2) follows from (2) of Theorem 5.2. (3) is direct from (1) and
(2). To see (4), Example 5.3 shows that the inequality h(M) + 1 < g(M) holds for
�(M) < 5. Let �(M) � 5. If M be positive, then we have

g(M) > �(M) = (
�(M)

2
+ 1) + 1 + (

�(M)
2

− 2) > h(M) + 1,

for �(M )
2 + 1 � h(M) by (1) of Theorem 5.2 and that �(M) � 5. If M is negative

and �(M) is odd, then we write �(M) = 2s + 1 for s � 2. Since h(M) � s + 1 and
g(M) + 1

2 > 2s + 1, we have

g(M) � 2s +
1
2

= (s + 1) + 1 + (s − 3
2
) > h(M) + 1.

If M is negative and �(M) is even, then we write �(M) = 2s for s � 3. Since
h(M) � s + 1 and g(M) + 1

2 > 2s, we have

g(M) � 2s − 1
2

= (s + 1) + 1 + (s− 5
2
) > h(M) + 1. �

6. A holomorphic function classifying all the closed connected orientable
3-manifolds

For a lattice point x = (x1 , x2, . . . , xn) ∈ ∆+of length n > 1, we define the
rational number

ξ(x) =
∣∣∣∣ x1

(n + 1)n
+

x2

(n + 1)n−1
+ · · · + xn

n + 1

∣∣∣∣ .
In other words, ξ(x) is the absolute value of the rational number obtained from
ζ(x) by replacing the summand n with x1

(n+1)n . We define

ξ(∅∅∅) = 0 and ξ(0) =
1
2
.

A reason why we adopt this last identity comes from a geometric reason that the
trivial knot O is also represented by the closed braid clβ(1) and we have ξ(1) = 1

2 .
Let [0, 1

2 ]Q = [0, 1
2 ] ∩ Q. Then we show the following lemma:

Lemma 6.1. The map x �→ ξ(x) induces an embedding

ξ : ∆+ −→ [0,
1
2
]Q

such that

(1) we have 0 < ξ(x) < 1
2 for every x ∈ ∆+ with x �= ∅∅∅, 0, and

(2) we can reconstruct the lattice point x ∈ ∆+ from the value of ξ(x).
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Proof. Let x(�= ∅∅∅, 0) be in ∆+. By the proof of (2) of Lemma 3.1, we see that
ξ(x) < 1

2
. Let ξ(x) = m

(n+1)n . Since x1 = 1, we see that m ≡ 1 (mod (n + 1)), so
that (m, (n + 1)n) = 1. In particular, we have ξ(x) �= 0, and thus, 0 < ξ(x) < 1

2 ,
showing (1). To see (2), it suffices to show that x is reconstructed from the value of
ξ(x) uniquely. If we write ξ(x) = m

N with (m,N) = 1, then we have N = (n + 1)n

for n = �(x). By applying the argument of Lemma 3.1 to ξ(x), we find a unique
lattice point y ∈ X with ξ(y) = ξ(x) and y = ±x. Using x1 = 1, we have the
unique lattice point x ∈ ∆+. �

The complete arith-genus of a 3-manifold M ∈ M is the rational number

a(M) = ξ(σα(M)).

By Lemma 6.1, we have the following properties on the complete arith-genus:

(1) We have a(S3) = 0, a(S1 × S2) = 1
2 and 0 < a(M) < 1

2 for every M ∈ M with
M �= S3, S1 × S2.
(2) The complete arith-genus a(M) is a faithfully-complete rational invariant and
we can reconstruct from the value of a(M) the lattice point σα(M) ∈ X, the link
α(M), the group πα(M) and the 3-manifold M itself.

Let an,i = a(Mn,i). We have the following table on the complete arith-genera
an,i with n � 7 by computing the data of Table 4.2.

Table 6.2.
a0,1 = 0

a1,1 = 1
2 = 0.5

a3,1 = 21
43 = 0.328125

a4,1 = 156
54 = 0.2496

a4,2 = 234
54 = 0.3744

a5,1 = 1555
65 = 0.199974279...

a5,2 = 2441
65 = 0.313914609...

a6,1 = 19608
76 = 0.166665250...

a6,2 = 31956
76 = 0.271621518...

a6,3 = 31842
76 = 0.270652534...

a6,4 = 36464
76 = 0.309938886...

a6,5 = 30960
76 = 0.263155657...

a6,6 = 38163
76 = 0.324380147...

14



a6,7 = 31863
76 = 0.270831031...

a6,8 = 46684
76 = 0.396807452...

a7,1 = 299593
87 = 0.142857074...

a7,2 = 500297
87 = 0.238560199...

a7,3 = 499127
87 = 0.238002300...

a7,4 = 488375
87 = 0.232875347...

a7,5 = 586679
87 = 0.279750347...

a7,6 = 585335
87 = 0.279109478...

a7,7 = 499319
87 = 0.238093853...

a7,8 = 733559
87 = 0.349788188...

a7,9 = 733577
87 = 0.349796772...

a7,10 = 732209
87 = 0.349144458...

a7,11 = 714289
87 = 0.340599536...

For any complex numbers u and z, we define the formal power series

µ(u, z) =
∑

0�n( �=2)<+∞

mn∑
i=1

an,i

n!(i − 1)!
ui−1zn

=
1
2
z +

7
2 · 43

z3 +
13

2 · 54
z4 +

39
4 · 54

uz4 +
311

24 · 65
z5 +

2441
120 · 65

uz5

+
817

30 · 76
z6 +

2663
60 · 76

uz6 +
1769

80 · 76
u2z6 +

2279
270 · 76

u3z6 +
43

24 · 76
u4z6

+
12721

28800 · 76
u5z6 +

10621
172800 · 76

u6z6 +
11671

907200 · 76
u7z6 + · · · .

Then we have the following theorem.

Theorem 6.3. (1) For any complex numbers u and z, the formal power series
µ(u, z) is absolutely convergent, so that µ(u, z) is a holomorphic function with C2

the absolute convergence domain.
(2) We have the identity

∂i−1+n

∂ui−1∂zn
µ(0, 0) = an,i

for every n �= 2 and i � mn, so that the holomorphic function µ(u, z) contains all
the complete arith-genera an,i (n = 0, 1, 3, . . . , i = 1, 2, . . . ,mn) classifying all the
3-manifolds of M.

Proof. It suffices to check that µ(u, z) is absolutely convergent for every (u, z) ∈
C2. In fact, we have

∑
0�n( �=2)<+∞

mn∑
i=1

an,i

n!(i − 1)!
|ui−1| · |zn| � 1

2

+∞∑
n,i=0

|u|i
i!

|z|n
n!

=
1
2
e|u|+|z|. �
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