
ON THE COHOMOLOGY OF TORUS MANIFOLDS

MIKIYA MASUDA AND TARAS PANOV

Abstract. A torus manifold is an even-dimensional manifold acted on by
a half-dimensional torus with non-empty fixed point set and some additional
orientation data. It may be considered as a far-going generalisation of toric
manifolds from algebraic geometry. The orbit space of a torus manifold
has a reach combinatorial structure, e.g., it is a manifold with corners pro-
vided that the action is locally standard. Here we investigate relationships
between the cohomological properties of torus manifolds and the combina-
torics of their orbit quotients. We show that the cohomology ring of a torus
manifold is generated by two-dimensional classes if and only if the quotient
is a homology polytope. In this case one retrieves the familiar picture from
toric geometry: the equivariant cohomology is the face ring of the nerve
simplicial complex and the ordinary cohomology is obtained by factoring
out certain linear forms. In a more general situation, we show that the odd-
degree cohomology of a torus manifold vanishes if and only if the orbit space
is face-acyclic. Although the cohomology is no longer generated in degree
two under these circumstances, it is still possible to identify the equivariant
cohomology with the face ring of an appropriate simplicial poset.

1. Introduction

Since the 1970s, algebraic geometers have studied equivariant algebraic com-
pactifications of the algebraic torus (C∗)n, nowadays known as complete toric
varieties. The study quickly grew in a separate branch of algebraic geometry,
“toric geometry”, incorporated many topological and convex-geometrical ideas
and constructions, and produced a spectacular array of applications. A toric
variety is a (normal) algebraic variety on which an algebraic torus acts with a
dense orbit. The variety and the action are fully determined by a combinatorial
object called fan [7].

With the appearance of pioneering work [6] of Davis and Januszkiewicz in the
beginning of 1990s, the ideas of toric geometry have started penetrating into
topology. The orbit space of a non-singular, complete (that is, compact), pro-
jective toric variety with respect to the action of the compact torus T n ⊂ (Cn)∗

can be identified with the simple polytope “dual” to the corresponding fan.
Moreover, the action of the compact torus on a non-singular toric variety is “lo-
cally standard”, that is, locally modelled by the diagonal action on Cn. Davis
and Januszkiewicz took these two characteristic properties as a starting point
for their topological generalisation of toric varieties, quasitoric manifolds. A
quasitoric manifold is a compact manifold M2n with a locally standard action
of T n whose orbit space is (combinatorially) a simple polytope. (Davis and
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Januszkiewicz used the term “toric manifold”, but by the time their work ap-
peared the latter had already been used in algebraic geometry as a synonym
of “non-singular toric variety”.) According to one of the main results of [6],
the cohomology ring of a quasitoric manifold M has the same structure as that
of non-singular complete toric variety, and is isomorphic to the quotient of the
Stanley–Reisner face ring of the orbit space by certain linear forms. In par-
ticular, the cohomology of M is generated by degree-two elements. For some
further topological results related to quasitoric manifolds see [4] and [3, Ch.5].

At the same time, the convex-geometrical notion of polytope, while playing
a very important role in geometrical considerations related to toric geometry,
appears to be less relevant to the topological study of torus actions. The orbit
quotient Q = M/T of a non-singular compact toric variety M has a combina-
torial structure of manifold with corners (this means that Q locally looks like
the positive cone Rn

+) in which all the faces, including Q itself, and all their
intersections are acyclic. We call such a manifold with corners a homology poly-
tope. It is a genuine polytope provided that the toric variety is projective, but
in general may fail to be so. This implies, in particular, that the class of qua-
sitoric manifolds does not cover all non-singular compact toric varieties (see [3,
§5.2] for more discussion on the relationships between toric varieties and qua-
sitoric manifolds). And one should expect that all the topological properties of
quasitoric manifolds would still hold if one weakens the condition on the torus
action by only requiring the orbit space to be a homology polytope. This is
justified by certain results of the present paper (see Theorem 7.3 below).

An alternative far-going topological generalisation of complete non-singular
toric varieties was introduced in [13] and [11] under the name of torus mani-
folds (or unitary toric manifolds in the earlier terminology). A torus manifold
is an even-dimensional manifold M acted on by a half-dimensional torus T
with non-empty fixed point set and some additional orientation data. Partic-
ular examples of torus manifolds include non-singular complete toric varieties
(otherwise known as toric manifolds) and quasitoric manifolds of Davis and
Januszkiewicz. On the other hand, the conditions on the action are signifi-
cantly weakened in comparison to quasitoric manifolds. Surprisingly enough,
torus manifolds admit a combinatorial treatment similar to toric varieties. It
relies on the notions of multi-fans and multi-polytopes, developed in [11] as an
alternative to fans associated with toric varieties.

The notion of torus manifold appears to be an appropriate template for
investigating relationships between the topology of torus action and the combi-
natorics of orbit quotient, which is being the main theme of the current paper.
Our first main result measures the extent of the analogy between the cohomo-
logical structure of non-singular complete toric varieties and torus manifolds.
We show (Theorem 7.3) that the cohomology of a torus manifold M is gener-
ated by its degree-two part if and only if M is locally standard and the orbit
space Q is a homology polytope. In this case the cohomology ring itself has a
structure familiar from toric geometry: it is isomorphic to the Stanley–Reisner
face ring of Q modulo certain linear forms. In particular, the cohomology is
generated in degree two.
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Next we study a more general class of torus manifolds with vanishing odd-
degree cohomology. Under these circumstances the equivariant cohomology of
M is a free finitely generated module over the equivariant cohomology of point,
H∗
T (pt) = Z[t1, . . . , tn]. This condition is known to algebraists as Cohen–Mac-

aulayness and is equivalent to M being equivariantly formal in the terminology
of [9]. The orbit space of a torus manifold with vanishing odd-degree cohomol-
ogy needs not to be a homology polytope, as a simple example of torus acting
on an even-dimensional sphere shows (see Example 2.4 below). We introduce a
weaker notion of face-acyclic manifold with corners Q, in which all the faces are
still acyclic, but their intersections may fail to be connected, and show (The-
orem 8.3) that the odd-degree cohomology of M vanishes if and only if M is
locally standard and the orbit space Q is face-acyclic. We also show that the
equivariant cohomology is isomorphic to the face ring of the simplicial poset
of faces of Q (note that the latter face ring is not generated by its degree-two
elements in general), and identify the ordinary cohomology accordingly (Theo-
rem 6.7 and Corollary 6.8).

At the end we establish Stanley’s conjecture on the characterisation of h-
vectors of Gorenstein* simplicial posets in the particular case of face posets of
orbit quotients for torus manifolds (Theorem 9.2). Unlike the case of Goren-
stein* simplicial complexes (which can be considered as an “algebraic approx-
imation” to triangulations of spheres), the conditions for an integer vector to
be an h-vector of a Gorenstein* simplicial poset are relatively weak. There
are Dehn–Sommerville equations saying that the h-vector is symmetric, and
its entries are non-negative. Apart from this, there are no conditions in odd
dimensions. In even dimensions there is one more troublesome condition; the
middle-dimensional entry of the h-vector must be even if at least one other entry
is zero. It is not hard to check that these conditions are sufficient, by providing
the corresponding examples of simplicial posets. Here we also show that those
simplicial posets can be realised as face posets of orbit quotients for torus man-
ifolds with vanishing odd-degree cohomology (so the corresponding h-vectors of
posets are the even Betti vectors of torus manifolds). Stanley’s conjecture [15]
was that those conditions are also necessary. Although we were unable to prove
this in full generality, we establish the conditions for h-vectors of posets asso-
ciated to torus manifolds with vanishing odd-degree cohomology. This is done
through the calculation of Stiefel–Whitney classes of torus manifolds.

We note that the characterisation of h-vectors for Gorenstein* simplicial
complexes, as well as for sphere triangulations, remains wide open.

The paper is organised as follows. In Section 2 we introduce main topo-
logical concepts, give few examples, and establish some basic facts about torus
manifolds. We also prove three pivotal statements (Lemmas 2.6–2.8) describing
different properties of fixed point sets. In Section 3 we discuss locally standard
torus actions. The main result here is Theorem 3.3 showing that a torus man-
ifold M is locally standard provided that Hodd(M) = 0. We also introduce a
canonical model for a torus manifold with given orbit space Q and distribution
of circle subgroups fixing characteristic submanifolds. Then we show that a
torus manifold is equivariantly diffeomorphic to its canonical model provided
that H2(Q) = 0. This extends the corresponding result for quasitoric manifolds
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due to Davis and Januszkiewicz. In Section 4 we develop the necessary appa-
ratus of “combinatorial commutative algebra”. Here we introduce face rings
of manifolds with corners and simplicial posets, and list their main algebraic
properties. We tried not to overload the notation with the poset terminology,
but a reader familiar with posets would recognise the notions of (semi)lattice,
meet, join, etc. In Section 5 we turn to the equivariant cohomology of torus
manifolds. We introduce certain key concepts and construct a map from the
face ring of orbit quotient to the equivariant cohomology of torus manifold,
which is later shown to be an isomorphism under certain conditions. Sections
6–8 contain the proofs of the main results quoted above. In Section 9 we prove
the above mentioned particular case of Stanley’s conjecture on Gorenstein*
simplicial posets.

2. Torus manifolds

The notation below is that of [11] and [13], with some additional specifica-
tions. For a topological space X with a topological action of a topological group
G, its equivariant cohomology with k coefficient (k a ring) is defined as

H∗
G(X;k) := H∗(EG×G X;k)

where EG is the total space of a universal principal G-bundle (on which G acts
freely) and EG×GX is the orbit space of EG×X by the diagonal action. The
space EG×G X is sometimes called the Borel construction on the G-space X.
Borel construction can be performed for a G-vector bundle. For instance, if E
is an oriented G-vector bundle over a G-space X, then the Borel construction
on E produces an oriented vector bundle over EG ×G X and its Euler class is
called the equivariant Euler class of E and denoted by eG(E). Note that eG(E)
lies in H∗

G(X; Z). Below we take integer coefficients, unless another coefficient
ring is specified in the notation.

2.1. Torus manifolds. LetM be a 2n-dimensional closed connected orientable
smooth manifold with an effective smooth action of an n-dimensional torus
T = (S1)n such that MT �= ∅. Since dimM = 2dimT and M is compact, the
fixed point set MT is a finite set of isolated points.

The map ρ collapsing M to a point induces a homomorphism ρ∗ : H∗
T (pt) =

H∗(BT )→ H∗
T (M) defining a canonical H∗(BT )-module structure on H∗

T (M).
As is well known, H∗(BT ) is a polynomial ring in n variables of degree two, in
particular Hodd(BT ) = 0. Since the fixed point set MT is non-empty, the map
ρ∗ is injective. However, H∗

T (M) is not necessarily free as an H∗(BT )-module.

Lemma 2.1. H∗
T (M) is free as an H∗(BT )-module (in fact, H∗

T (M) is isomor-
phic to H∗(BT )⊗H∗(M) as an H∗(BT )-module) if and only if Hodd(M) = 0.

Proof. Suppose Hodd(M) = 0. Then the Serre spectral sequence of the fibra-
tion ρ : ET ×T M → BT collapses and H∗(M) has no torsion, so H∗

T (M) is
isomorphic to H∗(BT )⊗H∗(M) and free as an H∗(BT )-module. This proves
the “if” part.
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To prove the “only if” part, we use the Eilenberg–Moore spectral sequence
of the bundle ET ×T M → BT with fibre M . It converges to H∗(M) and has

E∗,∗
2 = Tor∗,∗H∗(BT )

(
H∗
T (M),Z

)
.

Since H∗
T (M) is free as an H∗(BT )-module, we have

Tor∗,∗
H∗(BT )

(
H∗
T (M),Z

)
= Tor0,∗

H∗(BT )

(
H∗
T (M),Z

)
= H∗

T (M)⊗H∗(BT ) Z

= H∗
T (M)

/
(ρ∗(H>0(BT ))).

Therefore, E0,∗
2 = H∗

T (M)
/
(ρ∗(H>0(BT ))) and E−p,∗

2 = 0 for p > 0. It follows
that the Eilenberg–Moore spectral sequence collapses at the E2 term and

H∗(M) = H∗
T (M)/(ρ∗(H>0(BT ))).(2.2)

On the other hand, it follows from the localization theorem (see [12]) that the
kernel of the restriction map

H∗
T (M)→ H∗

T (MT ) = H∗(BT )⊗H∗(MT )

is the H∗(BT )-torsion subgroup and hence the restriction map is injective in
our case. Therefore Hodd

T (M) = 0 because MT is a finite set of isolated points.
This fact together with (2.2) proves that Hodd(M) = 0.

A closed, connected, codimension-two submanifold of M is called character-
istic if it is a connected component of the set fixed pointwise by a certain circle
subgroup of T and contains at least one T -fixed point. Since M is compact,
there are only finitely many characteristic submanifolds. We denote them by
Mi (i = 1, . . . ,m). For 2 � k � n, k different characteristic submanifolds inter-
sect transversally (if their intersection is non-empty) and the intersection is a
disjoint union of finite number of codimension-2k submanifolds fixed pointwise
by a codimension k subtorus. In particular, an intersection of n characteristic
submanifolds consists of finitely many T -fixed points.

Each Mi is orientable. Following [4], we say that M is omnioriented if an ori-
entation is specified for M and for every characteristic submanifold Mi. There
are 2m+1 choices of omniorientations and following [11] we say that M is a torus
manifold when it is omnioriented.

Here are two typical examples of torus manifolds.

Example 2.3. A complex projective space CP n has a natural T -action defined
in the homogeneous coordinates by

(t1, . . . , tn) · (z0 : z1 : · · · : zn) = (z0 : t1z1 : · · · : tnzn).
It has (n+ 1) characteristic submanifolds z0 = 0, . . . , zn = 0 and (n+ 1) fixed
points (1 : 0 : · · · : 0), . . . , (0 : · · · : 0 : 1). In this example the intersection of
any set of characteristic submanifolds is connected.

Example 2.4. Let S2n be the 2n-sphere identified with the following subset
in Cn × R: {

(z1, . . . , zn, y) ∈ Cn × R : |z1|2 + · · ·+ |zn|2 + y2 = 1
}
,
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and define a T -action by

(t1, . . . , tn) · (z1, . . . , zn, y) = (t1z1, . . . , tnzn, y).

This has n characteristic submanifolds z1 = 0, . . . , zn = 0, and two fixed points
(0, . . . , 0,±1). An intersection of k characteristic submanifolds is connected if
k � n− 1, but disconnected (in fact, consists of the two fixed points) if k = n.

If M is a torus manifold, then both M and Mi are oriented; so we have
a Gysin homomorphism H∗

T (Mi) → H∗+2
T (M) in the equivariant cohomology.

Denote by τi ∈ H2
T (M) the image of the identity element in H0

T (Mi). We may
think of τi as the Poincaré dual of Mi in the equivariant cohomology.

Proposition 2.5 (See section 1 of [13]). Let M be a torus manifold.
1. For each i = 1, . . . ,m, there is a unique element ai ∈ H2(BT ) such that

ρ∗(t) =
m∑
i=1

〈t, ai〉τi modulo H∗(BT )-torsions

for any element t ∈ H2(BT ).
2. The circle subgroup fixing the characteristic submanifold Mi coincides

with that determined by ai ∈ H2(BT ) via the identification H2(BT ) =
Hom(S1, T ).

3. If n different characteristic submanifolds Mi1, . . . ,Min have a T -fixed point
in their intersection, then the elements ai1 , . . . , ain form a basis of H2(BT )
over Z.

2.2. Cohomology of fixed point sets. In this paper we are mainly concerned
with torus manifolds which have vanishing odd degree cohomology or more
strongly have cohomology generated in degree two, see Examples 2.3, 2.4. The
following two lemmas show that these cohomological properties are inherited
by connected components of the fixed point set MH for any subtorus H ⊂ T .
These facts will enable us to use induction argument on dimension in later
sections.

Lemma 2.6. Let M be a torus manifold, H a subtorus of T and N a connected
component of MH . If Hodd(M) = 0, then Hodd(N) = 0 and hence NT �= ∅.

Proof. The first statement is equivalent to Hodd(MH) = 0. We note that if
S1 is a generic circle subgroup of H, then MS1

= MH . Let p be a prime and
G be an order p subgroup of the generic circle subgroup S1. The induced ac-
tion of G on H∗(M) is trivial because G is contained in the connected group
S1. Moreover Hodd(M ; Z/p) = 0 by assumption. It follows from [1, Theo-
rem VII.2.2] that Hodd(MG; Z/p) = 0. Repeating the same argument for MG

with the induced action of S1/G which is again a circle group, one concludes that
Hodd(MG; Z/p) = 0 for any p-subgroup G of S1. However, MG = MS1

(= MH)
if the order of G is sufficiently large, so we have Hodd(MH ; Z/p) = 0. Since p
is an arbitrary prime, this implies that Hodd(MH) = 0.

Finally, since Hodd(N) = 0, the Euler characteristic χ(N) of N is non-zero.
As is well-known χ(N) = χ(NT ), so NT must be non-empty.
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Lemma 2.7. Let M,H,N be as in Lemma 2.6. If H∗(M) is generated by
its degree-two part (as a ring), then the restriction map H∗(M) → H∗(N) is
surjective; in particular, H∗(N) is also generated by its degree-two part.

Proof. Since Hodd(M) = 0, we have Hodd(N) = 0 by Lemma 2.6; so it suffices
to prove that the restriction map H∗(M ; Z/p) → H∗(N ; Z/p) is surjective for
any prime p.

The argument below is similar to that used in the proof of Theorem VII.3.1
in [1, p. 379]. As in the proof of Lemma 2.6, let S1 be a generic circle subgroup
of H (so that MS1

= MH) and let G be the subgroup of S1 of prime order p.
Then the restriction map Hk

G(M ; Z/p)→ Hk
G(MG; Z/p) is an isomorphism for

sufficiently large k (see [1, Theorem VII.1.5]). Hence, for any connected com-
ponent N ′ of MG the restriction r : Hk

G(M ; Z/p) → Hk
G(N ′; Z/p) is surjective

if k is sufficiently large. Now consider the commutative diagram

H∗
G(M ; Z/p) r−−−→ H∗

G(N ′; Z/p) ∼= H∗(BG;Z/p)⊗H∗(N ′; Z/p)� �
H∗(M ; Z/p) s−−−→ H∗(N ′; Z/p)

.

By the assumption, H∗(M ; Z/p) is generated by elements in H2(M ; Z/p), say
v1, . . . , vd. Since Hodd(M ; Z/p) = Hodd(MG; Z/p) = 0 and χ(M) = χ(MT ) =
χ(MG), we have

∑
rankH i(M ; Z/p) =

∑
rankH i(MG; Z/p). Therefore, the

vertical map H∗
G(M ; Z/p) → H∗(M ; Z/p) in the above diagram is surjective

(see [1, Theorem VII.1.6]). Let ξj ∈ H∗
G(M ; Z/p) be a lift of vj , and wj := s(vj).

Let t be a non-zero element in H2(BG;Z/p). Any power of t is non-zero as is
well known. Since the above diagram is commutative and H1(N ′; Z/p) = 0 as
shown in the proof of Lemma 2.6, we have r(ξj) = αjt+wj for some αj ∈ Z/p.
Now let a ∈ H∗(N ′; Z/p) be an arbitrary element. Then there exist � and a
polynomial P (ξ1, . . . , ξd) such that

r
(
P (ξ1, . . . , ξd)

)
= t�a.

On the other hand,

r
(
P (ξ1, . . . , ξd)

)
= P (α1t+ w1, . . . , αdt+ wd) =

∑
k�0

tkQk(w1, . . . , wd)

for some polynomials Qk. Therefore, a = Q�(w1, . . . , wd), the restriction map
H∗(M ; Z/p) → H∗(N ′; Z/p) is surjective and H∗(N ′; Z/p) is generated by the
degree-two elements w1, . . . , wd.

Repeating the same argument for N ′ with the induced action of S1/G which
is again a circle group, one concludes that the restriction map H∗(M ; Z/p) →
H∗(N ′; Z/p) is surjective for any connected component N ′ of MG with G
any p-subgroup of S1. However, if the order of G is sufficiently large, then
MG = MS1

(= MH) and hence N ′ = N , so it follows that the restriction map
H∗(M ; Z/p) → H∗(N ; Z/p) is surjective for any connected component N of
MH . Since the prime p is arbitrary, this implies the lemma.



8 MIKIYA MASUDA AND TARAS PANOV

2.3. Intersection of characteristic submanifolds. A multiple intersection
of characteristic submanifolds fails to be connected in Example 2.4, but all mul-
tiple intersections of characteristic submanifolds are connected in Example 2.3.
In fact, we have the following statement.

Lemma 2.8. Suppose that H∗(M) is generated in degree two. Then all non-
empty multiple intersections of the characteristic submanifolds are connected
and have cohomology generated in degree two.

Proof. Since every characteristic submanifold Mi is a connected component
of the fixed point set of a circle subgroup of T , the cohomology H∗(Mi) is
generated by the degree-two part and the restriction map H∗(M)→ H∗(Mi) is
onto by Lemma 2.7. Then the restriction mapH∗

T (M)→ H∗
T (Mi) in equivariant

cohomology is also onto.
Now we prove the connectedness of multiple intersections. Suppose that the

intersection of k (1 < k � n) different characteristic submanifolds, Mi1 ∩ · · · ∩
Mik , is non-empty. Since Mi1 ∩· · ·∩Mik is fixed by a subtorus, every connected
component of Mi1 ∩ · · · ∩Mik has a T -fixed point by Lemma 2.6. Let N be a
connected component ofMi1∩· · ·∩Mik . For every i ∈ {i1, . . . , ik} let us consider
the embeddings ϕi : N →Mi and ψi : Mi →M , and look at the corresponding
Gysin homomorphisms in the equivariant cohomology:

H0
T (N)

ϕi!−−−→ H2k−2
T (Mi)

ψi!−−−→ H2k
T (M).

Since the restriction ψ∗
i : H∗

T (M) → H∗
T (Mi) is surjective, we have ϕi!(1) =

ψ∗
i (u) for some u ∈ H2k−2

T (M). Now we calculate

(ψi ◦ ϕi)!(1) = ψi!(ϕi!(1)) = ψi!
(
ψ∗
i (u)

)
= ψi!(1)u = τiu.

Hence, (ψi ◦ ϕi)!(1) is divisible by τi for every i ∈ {i1, . . . , ik}. By Proposition
3.4 of [13], the degree-2k part of H∗

T (M) is additively generated by monomials
τk1j1 . . . τ

kp

jp
with k1 + · · ·+kp = k and {j1, . . . , jp} such that Mj1 ∩· · ·∩Mjp �= ∅.

It follows that (ψi◦ϕi)!(1) is a non-zero integral multiple of τi1 . . . τik ∈ H2k
T (M).

By the definition of Gysin map, (ψi ◦ϕi)!(1) maps to zero under the restriction
map H∗

T (M) → H∗
T (x) for every point x ∈ (M\N)T . On the other hand,

the image of τi1 . . . τik under the restriction map H∗
T (M) → H∗

T (x) is non-zero
for every T -fixed point x ∈ Mi1 ∩ · · · ∩Mik . Thus, N is the only connected
component of the latter intersection. The second statement in the lemma follows
from Lemma 2.7.

3. Locally standard torus manifolds and orbit spaces

Let Q := M/T denote the orbit space of M and π : M → Q the quotient
projection. Define the facets of Q to be the orbit spaces of characteristic sub-
manifolds: Qi := π(Mi), i = 1, . . . ,m. Every facet is a closed connected subset
in Q of “codimension one”. We refer to a non-empty intersection of k facets as a
codimension-k preface, k = 1, . . . , n. Hence, a preface is the orbit space of some
non-empty intersection Mi1∩· · ·∩Mik of characteristic submanifolds. If H∗(M)
is generated in degree two, then all prefaces are connected by Lemma 2.8, but
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in general, prefaces of codimension > 1 may fail to be connected (see Exam-
ple 2.4). We refer to connected components of prefaces as faces. We also regard
Q itself as a codimension-zero face; other faces are called proper faces. A space
X is acyclic if H̃i(X) = 0 for all i. We say that Q is face-acyclic if all of
its faces (including Q itself) are acyclic. We call Q a homology polytope if all
its prefaces are acyclic (in particular, connected). Note that Q = M/T is a
homology polytope if and only if it is face-acyclic and all non-empty multiple
intersections of characteristic submanifolds Mi are connected.

3.1. Locally standardness. We say that a torus manifold M is locally stan-
dard if every point inM has an invariant neighbourhood U weakly equivariantly
diffeomorphic to an open subset W ⊂ Cn (invariant under the standard T n-
action on Cn). The latter means that there is an automorphism ψ : T → T and
a diffeomorphism f : U →W such that f(ty) = ψ(t)f(y) for all t ∈ T , y ∈ U .

Any point in the orbit space Q of a locally standard torus manifold M has a
neighbourhood diffeomorphic to an open subset in the positive cone

Rn
+ = {(y1, . . . , yn) ∈ Rn : yi � 0, i = 1, . . . , n}.

Moreover, this local diffeomorphism preserves the face structures in Q and Rn
+

(that is, a point from a codimension-k face of Q is mapped to a point with
at least k zero coordinates). By the definition, this identifies Q as a manifold
with corners, see e.g. [5, §6]. In particular, Q is a manifold with boundary
∂Q = ∪iQi. Let K denote the nerve of the covering of ∂Q by the facets.
Thus, K is an (n − 1)-dimensional simplicial complex on m vertices. The
(k − 1)-dimensional simplices of K are in one-to-one correspondence with the
codimension-k prefaces of Q.

Remark. A simple convex polytope is an example of a manifold with corners
and it is a homology polytope. A quasitoric manifold [6], [3] can be defined as
a locally standard torus manifold (forgetting the omniorientation) whose orbit
space is a simple convex polytope with the standard face structure. The nerve
is the boundary complex of the dual simplicial polytope.

Example 3.1. The torus manifold CP n with the T -action in Example 2.3 is
locally standard and the map

(z0 : z1 : · · · : zn)→
1∑n

i=0 |zi|2
(|z1|2, . . . , |zn|2)

induces a face preserving homeomorphism from the orbit space CP n/T to a
standard n-simplex which is a simple polytope, in particular, a homology poly-
tope.

Example 3.2. The torus manifold S2n with the T -action in Example 2.4 is
also locally standard and the map

(z1, . . . , zn, y)→ (|z1|, . . . , |zn|, y)
induces a face preserving homeomorphism from the orbit space S2n/T to the
space

{(x1, . . . , xn, y) ∈ Rn+1 : x2
1 + · · · + x2

n + y2 = 1, x1 � 0, . . . , xn � 0}.
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This space is not a simple polytope (even not a homology polytope) but a
manifold with corners and face-acyclic.

Here is a sufficient condition for a torus manifold M to be locally standard.

Theorem 3.3. A torus manifold M is locally standard if Hodd(M) = 0.

Proof. Step 1. We show that no point in M has a non-trivial finite isotropy
group. Suppose that there is a point x ∈M whose isotropy group Tx is a non-
trivial finite group. Then, Tx contains a non-trivial cyclic subgroup G of prime
order, say p, and let N be the connected component of MG containing the point
x. Since N contains x and Tx is finite, the principal isotropy group of N is finite.
On the other hand, the proof of Lemma 2.6 shows that Hodd(N ; Z/p) = 0,
in particular, the Euler characteristic of N is non-zero. Therefore N has a
T -fixed point, say y. The tangential T -representation TyM at y is faithful,
dimM = 2dimT and TyN is a proper T -subrepresentation of TyM . It follows
that there is a subtorus T ′ (of positive dimension) which fixes TyN and does not
fix the complement of TyN in TyM . Clearly, T ′ is the principal isotropy group of
N and this contradicts the observation above that the principal isotropy group
of N is finite.

Step 2. If the isotropy group Tx is trivial, then it is obvious that M is locally
standard around the point x. Suppose that the isotropy group Tx is non-trivial.
Then dimTx > 0 by Step 1. Let H be the identity component of Tx and let
N be the connected component of MH containing x. By Lemma 2.6, N has
a T -fixed point, say y. Looking at the tangential representation at y, one sees
that the induced action of T/H on N is effective. By Step 1, no point of N has
a non-trivial finite isotropy group for the induced action of T/H. This means
that Tx = H and since x and y are both in the same connected component N
fixed pointwise by Tx, the Tx-representation in TxM agrees with the restriction
of the tangential T -representation TyM to Tx. This implies that M is locally
standard around x.

3.2. Canonical model. We assume that a torus manifold M is locally stan-
dard. Then the orbit space Q is a manifold with corners. The facets of Q are
the quotient images Qi of characteristic submanifolds Mi (i = 1, . . . ,m). Let

Λ: {1, . . . ,m} → H2(BT ) = Hom(S1, T ) ∼= Zn(3.4)

be a map sending i to ai in Proposition 2.5. The circle subgroup determined
by ai, that is ai(S1), is the one which fixes Mi. Because of Proposition 2.5, the
map Λ satisfies the following non-singular condition:

If Qi1 ∩ · · · ∩Qik is non-empty, then Λ(i1), . . . ,Λ(ik) span
a k-dimensional unimodular subspace of Hom(S1, T ) ∼= Zn.

Given a point x ∈ Q, the smallest face which contains x is an intersection of
some facets Qi1∩· · ·∩Qik , and we define T (x) to be the subtorus of T generated
by circle subgroups Λ(i1)(S1), . . . ,Λ(ik)(S1). We introduce the identification
space

MQ(Λ) := T ×Q/∼,(3.5)
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where (t, x) ∼ (t′, x′) if and only if x = x′ and t−1t′ ∈ T (x). The space MQ(Λ)
admits a natural action of T and is a closed manifold because the map Λ
satisfies the non-singular condition above and Q is a manifold with corners. The
following is a straightforward generalisation of a Davis–Januszkiewicz result [6,
Prop. 1.8].

Lemma 3.6. Let M be a locally standard torus manifold with orbit space Q and
the map Λ in (3.4). If H2(Q) = 0, then there is an equivariant homeomorphism

MQ(Λ)→M

covering the identity on Q.

Remark. Like in the Davis–Januszkiewicz case, it follows that a torus manifold
whose orbit quotient Q satisfies H2(Q) = 0 is determined by Q and Λ.

Proof. The idea is to construct a continuous map f : T ×Q→M taking T × q
onto π−1(q) for each point q ∈ Q. This is done by subsequent “blowing up the
singular strata”. The condition on the second cohomology group guarantees
that the resulting principal T -bundle over Q is trivial. Then the map f descends
to the required equivariant homeomorphism. See [6] for details.

4. Face rings of manifolds with corners and simplicial posets

To study the (equivariant) cohomology rings of torus manifolds we need an
algebraic digression. Here we review a notion of face ring generalising the
classical Stanley–Reisner face ring to combinatorial structures more general
than simplicial complexes. We consider two cases, which are in a sense dual to
each other: “nice” manifolds with corners and simplicial posets. The latter one
is more general, however for applications to torus manifolds we just need the
former one. The face ring of a manifold with corners is also a little easier to
visualise, so we start with considering this case.

The relationship between nice manifolds with corners and simplicial posets
is similar to that between simple polytopes and simplicial complexes. Face
rings of simplicial posets were introduced and studied in [15]. Most of the
statements in this section follow from the general theory of ASL’s (algebras
with straightening law) and Hodge algebras as explained in [15] and [2, Ch. 7],
however our treatment is independent and geometrical.

4.1. Nice manifolds with corners. First assume that Q is a homology poly-
tope (or even a simple convex polytope) with m facets Q1, . . . , Qm. Let k be a
ground commutative ring with unit. Then the Stanley–Reisner face ring of its
nerve K can be identified with the ring

k[Q] = k
[
v
Q1
, . . . , v

Qm

]/(
v
Qi1
· · · v

Qik
= 0 if Qi1 ∩ · · · ∩Qik = ∅

)
.

We refer to k[Q] as the face ring of Q.
For arbitrary pair of faces G,H of Q the intersection G ∩ H is a unique

maximal face contained in both G and H. On the other hand, there is a
unique minimal face that contains both G and H, which we denote G ∨ H.
Let k[v

F
: F a face] be the graded polynomial ring with one 2k-dimensional

generator v
F

for every proper codimension-k face F . We also identify v
Q

with
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the unit and v� with zero. The following proposition gives another presentation
of k[Q], by extending both the set of generators and relations, and will be used
for a subsequent generalisation of k[Q] to arbitrary manifolds with corners.

Proposition 4.1. There is a canonical isomorphism of rings

k[vF : F a face]/IQ ∼= k[Q],

where IQ is the ideal generated by all

v
G
v
H
− v

G∨H
v
G∩H

.

Proof. The identification is established by the map sending v
F

to
∏
Qi⊃F vQi

.

Now let Q be an arbitrary connected manifold with corners. We also assume
that Q is nice, that is, every codimension-k face is contained in exactly k facets.
Note that the orbit space of a locally standard torus manifold is always nice. In
a nice manifold with corners, all faces containing a given face form a Boolean
lattice (like in the case of Rn

+).

Remark. By the definition of manifold with corners, every codimension-k face
is contained in at most k facets. A 2-disc with one 0-face and one 1-face on the
boundary gives an example of manifold with corners which is not nice.

The intersection of two faces G and H in a manifold with corners may
be disconnected, but every its connected component is a face of codimension
codimG+codimH. We regard G∩H as the set of its connected components; so
the notation E ∈ G∩H is used below for connected components E in the inter-
section. The following proposition shows that the face G∨H is still well-defined
provided that G ∩H �= ∅.

Proposition 4.2. For every two faces G and H with non-empty intersection,
there is a unique minimal face G ∨H that contains both G and H.

Proof. Take any E ∈ G∩H. The statement follows from the fact that the poset
of faces containing E is a Boolean lattice.

Now we use the interpretation from Proposition 4.1 to introduce a more
general version of k[Q].

Definition 4.3. The face ring of a nice manifold with corners Q is the quotient

k[Q] := k[v
F

: F a face]/IQ,
where IQ is the ideal generated by all

v
G
v
H
− v

G∨H
·

∑
E∈G∩H

v
E
.

In particular, if G and H are transversal, that is, codimG ∩H = codimG+
codimH, then G ∨H = Q, so we get the identity

vGvH =
∑

E∈G∩H
vE in k[Q].
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Remark. The nerve K of Q is a simplicial complex and the face ring k[Q] agrees
with the classical Stanley–Reisner face ring k[K] of the simplicial complex K if
all non-empty multiple intersections of facets in Q are connected, but otherwise
they differ in general.

Below we give a sequence of statements describing algebraic properties of
k[Q] and emphasising its analogy with the classical Stanley–Reisner face ring.

Lemma 4.4. Every element a ∈ k[Q] can be written as

a =
∑

G1⊃···⊃Gn

Avα1
G1
· · · vαn

Gn

where A ∈ k are some coefficients, the sum is taken over all chain of faces
G1 ⊃ · · · ⊃ Gn with codimGi = i, and αi are some non-negative integers.

Proof. We may assume that a = v
H1
v
H2
· · · v

Hk
(some Hi may coincide), and it

is enough to show that it can be written as
∑
v
G1
· · · v

Gl
with G1 ⊃ · · · ⊃ Gl

for every summand (without making any assumptions on codimensions, but
allowing some Gi to coincide). By induction we may assume that H2 ⊃ · · · ⊃
Hk. Now we apply the relation from Definition 4.3 and replace a by

v
H1∨H2

( ∑
E∈H1∩H2

v
E

)
v
H3
· · · v

Hk
.

Now the first two faces in every summand are ordered. Then we replace each
v
E
v
H3

by v
E∨H3

(
∑

G∈E∩H3
v
G
). Since H1 ∨H2 ⊃ E ∨H3, we get the first three

faces in a linear order. Proceeding in this fashion we finally end up in a sum of
monomials corresponding to ordered sets of faces.

We refer to the presentation from Lemma 4.4 as the chain decomposition of
an element a ∈ k[Q]

For any vertex (0-face) p ∈ Q we define the restriction map sp by

sp : k[Q]→ k[Q]/(v
F

: F �� p).
The next observation is straightforward.

Proposition 4.5. The image sp(k[Q]) of the restriction map can be identi-
fied with the polynomial ring k[vQi1

, . . . , vQin
] of n degree-two generators, where

Qi1 , . . . , Qin are the n different facets containing p.

Lemma 4.6. The sum s = ⊕psp of restriction maps over all vertices p ∈ Q is
a monomorphism from k[Q] to the sum of polynomial rings.

Proof. Take a non-zero a ∈ k[Q] and write it as in Lemma 4.4. Fix a monomial
Avα1

G1
· · · vαn

Gn
with non-zero coefficient A and consider the restriction sp to the

vertex p = Gn. We claim that sp(a) �= 0. Identify sp(k[Q]) with the polynomial
ring k[t1, . . . , tn] (so that tj := v

Qij
in the notation of Proposition 4.5). Then

sp(vGn
) = t1 · · · tn and we may also assume that sp(vGj

) = t1 · · · tj , j = 1, . . . , n.
Hence,

sp
(
vα1
G1
· · · vαn

Gn

)
= tα1

1 (t1t2)α2 · · · (t1 · · · tn)αn .
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It follows that sp(a) �= 0 unless some other monomial vβ1
H1
· · · vβn

Hn
hits the same

monomial in k[t1, . . . , tn]. Note that

sp(vβ1
H1
· · · vβn

Hn
) = 0 unless Hk ⊃ Gn for βk �= 0.

Suppose

sp
(
vα1
G1
· · · vαn

Gn

)
= sp(vβ1

H1
· · · vβn

Hn
).(4.7)

We want to prove that vα1
G1
· · · vαn

Gn
= vβ1

H1
· · · vβn

Hn
, that is, αi = βi and Gi = Hi if

αi �= 0, i = 1, . . . , n. By induction, we may prove this for i = j assuming that
it is true for i > j. Then (4.7) turns to the identity

sp
(
vα1
G1
· · · vαj

Gj

)
(t1 . . . tj+1)αj+1 · · · (t1 · · · tn)αn

= sp
(
vβ1
H1
· · · vβj

Hj

)
(t1 . . . tj+1)αj+1 · · · (t1 · · · tn)αn ,

whence sp(vα1
G1
· · · vαj

Gj
) = sp(vβ1

H1
· · · vβj

Hj
). Suppose that βl is the last non-zero

exponent (so that βl+1 = · · · = βj = 0). Then we also have αl+1 = · · · =
αj = 0, since otherwise sp(vα1

G1
· · · vαj

Gj
) would be divisible by t1 . . . tl+1, while

sp(vβ1
H1
· · · vβj

Hj
) is not. We also have αl = βl and Gl = Hl since αl is the maximal

power of t1 . . . tl that divides sp(vα1
G1
· · · vαj

Gj
). By induction, we conclude that

vα1
G1
· · · vαn

Gn
= vβ1

H1
· · · vβn

Hn
, whence sp(a) �= 0.

Corollary 4.8. The chain decomposition of an element a ∈ k[Q] is unique, so
the monomials vα1

G1
· · · vαn

Gn
corresponding to all chains G1 ⊃ · · · ⊃ Gn and all

exponents αi form an additive basis of k[Q].

The f -vector of Q is defined as f (Q) = (f0, . . . , fn−1) where fi is the num-
ber of faces of codimension i + 1 (so that f0 = m is the number of facets).
The equivalent information is contained in the h-vector h(Q) = (h0, . . . , hn)
determined from the equation

h0t
n + . . .+ hn−1t+ hn = (t− 1)n + f0(t− 1)n−1 + . . .+ fn−1.(4.9)

In particular, h0 = 1 and hn = (−1)n + (−1)n−1f0 + · · ·+ fn−1, which is equal
to 1 when Q is face-acyclic.

Example 4.10. Let us consider the case n = 2 described in Examples 2.4
and 3.2, so Q is a 2-ball with two 0-faces (say, p and q) and two 1-faces (say, G
and H). Then f (Q) = (2, 2), h(Q) = (1, 0, 1) and the face ring of Q is

k[Q] = k[v
G
, v

H
, vp, vq]/(vGvH = vp + vq, vpvq = 0),

where deg v
G

= deg v
H

= 2, deg vp = deg vq = 4.

The Poincaré series of the face ring looks exactly as in the classical case.

Theorem 4.11. We have

F
(
k[Q]; t

)
=

n∑
k=0

fk−1t
2k

(1− t2)k =
h0 + h1t

2 + · · ·+ hnt
2n

(1− t2)n .
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Proof. By Corollary 4.8, in order to calculate the Poincaré series of k[Q] we
need to calculate the number of monomials vα1

G1
· · · vαk

Gk
with αk �= 0 and G1 ⊃

· · · ⊃ Gk. First we note that the whole set S of such monomial splits into
disjoint union of subsets consisting of monomials with the same last face in the
chain. Let us restrict to one such subset, that is, fix a face Gk and consider only
monomials whose last factor is vαk

Gk
with αk �= 0. Denote this subset by SGk

.
Choose some vertex p ⊂ Gk (it is unique if k = n but otherwise we have a choice)
and consider the restriction map sp to the polynomial ring k[t1, . . . , tn]. We may
assume that sp(vGk

) = t1 · · · tk, so that sp(SGk
) actually lies in k[t1, . . . , tk]. It

is easy to see that sp(SGk
) coincides with the set of monomials in k[t1, . . . , tk]

divisible by t1 · · · tk. Hence, the generating power series for monomials in SGk

is t2k

(1−t2)k . Since codimGk = k, the generating power series for the whole set S
is exactly that given by the first identity in the theorem. The second identity
is an obvious corollary of (4.9).

4.2. Simplicial posets. The set of faces of a simplicial complex with empty
set added is a poset (partially ordered set) with the empty set as the smallest
element, and it is called the face poset of the simplicial complex. A poset P
is called simplicial if it has a smallest element 0̂ and for each x ∈ P the lower
segment [0̂, x] is a boolean algebra (the face poset of a simplex). The face poset
of a simplicial complex is a simplicial poset, but there are simplicial posets
that cannot be obtained in this way. Moreover, two simplicial complexes are
isomorphic if and only if their face posets are isomorphic. Therefore, a simplicial
poset is a more general notion than a simplicial complex and we will identify a
simplicial complex with its face poset.

To each x ∈ P := P − {0̂} we assign a geometrical simplex whose face poset
is [0̂, x], and glue those geometrical simplices according to the order relation in
P. Then we get a cell complex such that the closure of each cell can be iden-
tified with a simplex preserving the face structure and all the attaching maps
are inclusions. We call it a simplicial cell complex and denote its underlying
space by |P|. When P is (the face poset of) a simplicial complex K, then |P|
agrees with the geometric realisation |K| of K. The barycentric subdivision
of a simplicial cell complex is obviously defined, and is again a simplicial cell
complex.

Proposition 4.12. The barycentric subdivision of a simplicial cell complex is
a (geometric realisation of) simplicial complex.

Proof. Indeed, we may identify the barycentric subdivision under question with
the geometric realisation of the order complex ∆(P) of the poset P .

In the sequel we will not distinguish between simplicial posets and simpli-
cial cell complexes, and call (the face poset of) the order complex ∆(P ) the
barycentric subdivision of P. The set of faces of a nice manifold with corners
Q forms a simplicial poset with respect to reversed inclusion (so Q itself is the
smallest element). We call it the face poset of Q. It is a face poset of a simplicial
complex if and only if all non-empty multiple intersections of facets of Q are
connected.
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Example 4.13. Take Q to be the orbit space S2n/T of the torus manifold S2n

with the T -action in Example 2.4. There are n facets in Q and the intersection
of any k facets is connected when k � n − 1, but the intersection of n facets
consists of two points. Therefore, the simplicial cell complex of the face poset
of Q is obtained by gluing two (n− 1)-simplices along their boundaries by the
identity map. It is not a simplicial complex but (the geometric realisation of)
it is homeomorphic to an (n− 1)-sphere.

Let P be a simplicial poset. For each x ∈ P set rkx = k if [0̂, x] is the face
poset of a (k − 1)-simplex. Introduce the polynomial ring k[vx : x ∈ P ] and
make it graded by setting deg vx = 2 rkx. We also write formally v0̂ = 1. For
every two elements x, y ∈ P denote by x∨y the set of their least common upper
bounds, and by x ∧ y the set of their greatest common lower bounds. Since P
is simplicial, x∧y consists of a single element provided that x∨y is non-empty.
The following is an obvious dualisation of Definition 4.3.

Definition 4.14. The face ring of a simplicial poset P is the quotient

k[P] := k[vx : x ∈ P]/IP ,

where IP is the ideal generated by all

vxvy − vx∧y ·
∑
z∈x∨y

vz.

The notions of f -vector and h-vector can be defined for simplicial posets P
([15], [16]). In fact, when P is the face poset of a nice manifold with corners Q,
we have hi(P) = hi(Q). There are also obvious analogues of Corollary 4.8 and
Theorem 4.11.

The classical Stanley–Reisner face ring k[K] of a simplicial complexK is real-
ized as the equivariant cohomology ring of a T -space by Davis and Januszkiewicz
in [6], and it is not difficult to see that their argument works for a simplicial
poset P as well. The order complex ∆(P) is a simplicial complex. Let P be
the cone of the geometric realisation |∆(P)| of ∆(P). Since |∆(P)| = |P|,
the “boundary” of P is |P|. For each simplex σ ∈ ∆(P), let Fσ ⊂ P denote
the geometric realisation of the poset {τ ∈ ∆(P) : σ ⊂ τ}. If σ is a (k − 1)-
simplex, then we declare Fσ to be a face of codimension k. Thus, each facet
(codimension-one face) can be identified with the star of some vertex in ∆(P).
Each codimension-k face is a connected component of an intersection of k facets
and acyclic since it is a cone. The space P with face decomposition was called
in [6, p. 428] a simple polyhedral complex when P is a simplicial complex.

Suppose that the number of facets of P ism and that we have a map Λ in (3.4)
satisfying the non-singular condition mentioned there. Then, the same con-
struction as MQ(Λ) in (3.5) with Q replaced by P produces a T -space MP (Λ).
This space may fail to be a manifold because P may not be a manifold, but the
same argument as [6, Theorem 4.8] shows that MP (Λ) has the following nice
property.

Proposition 4.15. H∗
T (MP (Λ);k) is isomorphic to k[P] as a ring.
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For a nice manifold with corners Q we take P to be the space associated with
the face poset P of Q. Then there is a canonical equivariant map

Φ: MQ(Λ)→MP (Λ)(4.16)

preserving the face structure. This is done inductively, starting from an identi-
fication of vertices and extending the map on each higher-dimensional face by a
degree-one map. Every face of P is a cone, so there are no obstructions to such
extensions. Since the map between orbit spaces preserves the face structure, it
is covered by an equivariant map

MQ(Λ) = T ×Q/∼ → T × P/∼= MP (Λ)

by the definition of identification spaces, see (3.5).

5. Axial functions and Thom classes

We investigate relationships between the equivariant cohomology of torus
manifolds M and the face rings of their orbit spaces Q defined in the previous
section. In fact, we show here that there is a natural ring homomorphism from
Z[Q] to H∗

T (M) modulo H∗(BT )-torsions and (in the next section) that it is
an isomorphism when Hodd(M) = 0.

5.1. Axial functions. Like in the algebraic situation of the previous section,
we have the restriction map to a sum of polynomial rings:

r =
⊕
p∈MT

rp : H∗
T (M)→ H∗

T (MT ) =
⊕
p∈MT

H∗(BT ).(5.1)

The kernel of the map r is the H∗(BT )-torsion group, so it is injective when
Hodd(M) = 0 by Lemma 2.1, but not surjective.

We identify MT with the vertices of Q. The 1-skeleton of Q consisting of
vertices (0-faces) and edges (1-faces) in Q forms an n-valent graph. Denote by
E(Q) the set of oriented edges in the 1-skeleton of Q. Let e be an element
of E(Q). The initial point and terminal point of e are denoted by i(e) and
t(e) respectively. Then Me := π−1(e) is a 2-sphere fixed by a codimension-
one subtorus in T (here π : M → Q is the quotient map). It contains two
T -fixed points i(e) and t(e). The 2-dimensional subspace Ti(e)Me ⊂ Ti(e)M
is an irreducible component of the tangential T -representation Ti(e)M . The
same is true for the other T -fixed point t(e) and the T -representations Ti(e)M
and Tt(e)M are isomorphic. We want to view these representations as complex
1-dimensional representations and for that we need to assign orientations to
them. We note that there is a unique characteristic submanifold, say Mi, such
that it intersects Me at i(e) transversally. Since M and Mi are oriented by
the definition of torus manifolds and they are even dimensional, a compatible
orientation on the normal bundle of Mi, in particular, an orientation on Ti(e)Me,
will be uniquely determined. The orientation on Ti(e)Me determines a complex
structure on it so that Ti(e)Me can be viewed as a complex 1-dimensional T -
representation. This defines an element of Hom(T, S1) = H2(BT ), which we
denote by α(e).
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The normal bundle νi of Mi is an oriented T -vector bundle. Since the equi-
variant Euler class eT (νi) lies in H2

T (Mi), its restriction to p ∈ MT
i , denoted

eT (νi)|p, lies in H2
T (p) = H2(BT ). As is well known and easily checked, we

have

eT (νi)|p = α(e),(5.2)

where e is an oriented edge uniquely determined by these two conditions: i(e) =
p and e /∈ Qi = π(Mi).

The function

α : E(Q)→ H2(BT ).

(called an axial function in [10]) satisfies three properties:
1. α(−e) = ±α(e) for any e ∈ E(Q), where −e denotes e with opposite

orientation.
2. At each vertex (or a T -fixed point) p, the set αp := {α(e): i(e) = p} is a

basis of H2(BT ) over Z.
3. For e ∈ E(Q), we have αi(e) ≡ αt(e) mod α(e).

The property 1 follows from the fact that Ti(e)Me and Tt(e)Me are isomorphic
as real T -representations. In [10], the property α(−e) = −α(e) is required
in the definition of axial function but we allow α(−e) = α(e). (Check that
α(−e) = α(e) for the standard T 2-action on S4 in Example 2.4.) The prop-
erty 2 follows from the fact that the T -representation Ti(e)M is faithful (and
of complex dimension n). Property 3 follows from the fact that if Te is the
codimension one subtorus fixing Me, then the T -representations Ti(e)M and
Tt(e)M are isomorphic as Te-representations because the points i(e) and t(e)
are contained in Me which is connected and fixed by Te.

Lemma 5.3. Let η be an element of H∗
T (M). Then ri(e)(η)−rt(e)(η) is divisible

by α(e) for any e ∈ E(Q).

Proof. Consider a commutative diagram
H∗
T (M) −−−→ H∗

T (i(e))⊕H∗
T (t(e)) = H∗(BT )⊕H∗(BT )� �

H∗
Te

(Me) −−−→ H∗
Te

(i(e))⊕H∗
Te

(t(e)) = H∗(BTe)⊕H∗(BTe)

where all the maps are restrictions. Since H∗
Te

(Me) = H∗(BTe)⊗H∗(Me), the
two components of the image of η in H∗(BTe) ⊕ H∗(BTe) by the above map
coincide. Therefore it follows from the commutativity of the above diagram that
the restrictions of ri(e)(η) and rt(e)(η) to H∗(BTe) coincide. Since the kernel
of the restriction map H∗(BT )→ H∗(BTe) is the ideal generated by α(e), the
lemma follows.

5.2. Thom classes. The preimage MF := π−1(F ) of a codimension-k face
F ⊂ Q is a closed T -submanifold of M . It is a connected component of an in-
tersection of k characteristic submanifolds. As remarked before, the prescribed
orientations on M and characteristic submanifolds Mi determine compatible
orientations on the normal bundles νi of Mi. These orientations determine
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an orientation on the normal bundle ν
F

of MF , hence on MF because M is
oriented. With this convention on orientations, we consider the Gysin homo-
morphism H0

T (MF ) → H2k
T (M) in the equivariant cohomology and denote the

image of the identity element by τF . The element τF may be thought of as the
Poincaré dual of MF in the equivariant cohomology and called the Thom class
of MF . As is well known, the restriction image of τ

F
∈ H2k

T (M) to H2k
T (MF )

agrees with the equivariant Euler class of ν
F

and rp(τF ) = 0 unless p ∈ (MF )T .
It follows from (5.2) that

rp(τF ) =




∏
i(e)=p, e�F

α(e), if p ∈ (MF )T ;

0, otherwise.
(5.4)

We set

Ĥ∗
T (M) := H∗

T (M)/H∗(BT )-torsions.

The restriction map r in (5.1) induces a monomorphism Ĥ∗
T (M) → H∗

T (MT ),
which we also denote by r. The following lemma shows that the relations from
Definition 4.3 hold in Ĥ∗

T (M) with vF replaced by τ
F
.

Lemma 5.5. For faces G and H of Q, the relations

τ
G
τ
H

= τ
G∨H
·

∑
E∈G∩H

τ
E
,

hold in Ĥ∗
T (M), where τ� is understood to be 0.

Proof. Since the restriction map r : Ĥ∗
T (M) → H∗

T (MT ) is injective, it suffices
to show that rp maps both sides of the identity to the same element for every
p ∈MT .

Let p ∈MT . For a face F , we set

Np(F ) := {e ∈ E(Q) : i(e) = p, e /∈ F},

which may be thought of as the set of directions normal to F at p. Then the
identity (5.4) can be written as

rp(τF ) =
∏

e∈Np(F )

α(e)(5.6)

where the right hand side is understood to be zero if Np(F ) = ∅. If p /∈ G∩H,
thenNp(E) = ∅ for any connected component E ofG∩H and eitherNp(G) = ∅

or Np(H) = ∅. Therefore, both sides in the lemma map to zero by rp. If
p ∈ G ∩H, then

Np(G) ∪Np(H) = Np(G ∨H) ∪Np(E)

where E is the connected component of G ∩H containing p, and Np(E′) = ∅

for any other connected component of G ∩H. This together with (5.6) shows
that both sides in the lemma map to a same element by rp.
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By virtue of the above lemma, the map Z[v
F

: F a face] → H∗
T (M) sending

vF to τF induces a homomorphism

ϕ : Z[Q]→ Ĥ∗
T (M).(5.7)

Lemma 5.8. The homomorphism ϕ is injective.

Proof. We have s = r ◦ ϕ, where s is the map from Lemma 4.6. Since s is
injective, so is ϕ.

6. Equivariant cohomology ring of torus manifolds with

vanishing odd-degree cohomology

In this section we give a sufficient condition for the monomorphism ϕ in (5.7)
to be an isomorphism (Theorem 6.5). In particular, it turns out that ϕ is an
isomorphism when Hodd(M) = 0 (Corollary 6.6). Using this results, we give a
description of the ring structure of H∗(M) when Hodd(M) = 0 (Corollary 6.8).

6.1. Ring structure of equivariant cohomology. The following theorem
shows that the converse of Lemma 5.3 holds for torus manifolds with vanishing
odd degree cohomology.

Theorem 6.1 ([8], see also Chapter 11 in [9]). Suppose Hodd(M) = 0. For
each p ∈ MT , let ηp be an element of H∗(BT ). Then an element (ηp) ∈⊕

p∈MT H∗(BT ) is in the image of the restriction map r in (5.1) if and only if
ηi(e) − ηt(e) is divisible by α(e) for any e ∈ E(Q).

Looking at the degree 0 cohomology, one sees from the theorem above that
the 1-skeleton of Q is connected if Hodd(M) = 0. This holds for any face F of
Q because MF = π−1(F ) is also a torus manifold with vanishing odd degree
cohomology by Lemma 2.6. What we will use in the following argument is
Lemma 5.3 and the connectedness of 1-skeletons of all faces of Q. (Actually,
one can prove the connectedness of 1-skeletons without referring to the above
theorem, see remark after Theorem 8.3.)

For a face F of Q, we denote by I(F ) the ideal in H∗(BT ) generated by all
elements α(e) with e ∈ F .

Lemma 6.2. Suppose that the 1-skeleton of a face F is connected and let η
be an element of H∗

T (M). Then, if rp(η) /∈ I(F ) for some vertex p ∈ F , then
rq(η) /∈ I(F ) for any vertex q ∈ F .

Proof. Suppose rq(η) ∈ I(F ) for some vertex q ∈ F . Then rs(η) ∈ I(F ) for any
vertex s ∈ F joined to q by an edge of F , say f , because rq(η)−rs(η) is divisible
by α(f) by Lemma 5.3. Since the 1-skeleton of F is connected, η(q) ∈ I(F ) for
any vertex q ∈ F , which contradicts the assumption.

Proposition 6.3. Let M be a torus manifold with orbit space Q. If the 1-
skeleton of every face of Q is connected, then Ĥ∗

T (M) is generated by the ele-
ments τ

F
as an H∗(BT )-module.

Proof. Let η ∈ H>0
T (M) be a nonzero element. Set

Z(η) := {p ∈MT : rp(η) = 0}.
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Take p ∈MT such that p /∈ Z(η). Then rp(η) ∈ H∗(BT ) is non-zero and since
the set {α(e): i(e) = p} is a basis of H2(BT ), rp(η) can be expressed as a
polynomial in α(e)’s with i(e) = p. Let

A
∏
i(e)=p

α(e)ne(6.4)

be a monomial appearing in rp(η), where A is a non-zero integer and ne � 0.
Let F be the face spanned by the edges e with ne = 0. Then rp(η) /∈ I(F )
since rp(η) contains the monomial (6.4). Hence, rq(η) /∈ I(F ), in particular
rq(η) �= 0, for every vertex q ∈ F by Lemma 6.2.

On the other hand, it follows from (5.4) that the monomial (6.4) can be
written as rp(uF τF ) with some uF ∈ H∗(BT ). We consider an element η′ :=
η − uF τF ∈ H∗

T (M). Since rq(τF ) = 0 for every vertex q /∈ F , we have rq(η′) =
rq(η) for such q. At the same time, rq(η) �= 0 for every vertex q ∈ F (see
above). It follows that Z(η′) ⊃ Z(η). However, the number of monomials in
rp(η′) is strictly smaller than that in rp(η). Therefore, subtracting a linear
combination of τ

F
’s over H∗(BT ) from η we obtain an element λ such that

Z(λ) contains Z(η) as a proper subset. Repeating this procedure, we end up at
an element whose restriction to every vertex is zero. Since the restriction map
r : Ĥ∗

T (M)→ H∗
T (MT ) is injective, this finishes the proof.

Theorem 6.5. Let the situation be as in Proposition 6.3. Then the monomor-
phism ϕ : Z[Q]→ Ĥ∗

T (M) in (5.7) is an isomorphism.

Proof. To prove that ϕ is surjective it suffices to show that Ĥ∗
T (M) is generated

by the elements τF as a ring. By Proposition 2.5, Ĥ2
T (M) is generated over Z by

the elements τ
Qi

corresponding to the facets Qi. (Note: the notation τi is used
for τ

Qi
in Proposition 2.5.) In particular, any element in H2(BT ) ⊂ Ĥ∗

T (M)
can be written as a linear combination of τ

Qi
’s over Z. Hence, any element in

H∗(BT ) is a polynomial in τ
Qi

’s. The rest follows from Proposition 6.3.

When Hodd(M) = 0, H∗
T (M) is a free H∗(BT )-module by Lemma 2.1; so

Ĥ∗
T (M) = H∗

T (M).

Corollary 6.6. For a torus manifold M with vanishing odd degree cohomology,
the map ϕ : Z[Q]→ H∗

T (M) in (5.7) is an isomorphism.

Proof. If Hodd(M) = 0, then the 1-skeleton of every face of Q is connected as
remarked before. Therefore the corollary follows from Theorem 6.5.

Remark. When H∗(M) is generated in degree two, all non-empty multiple in-
tersections of facets are connected by Lemma 2.8; so the face poset of Q is the
face poset of the nerve of the covering of ∂Q, and since the nerve is a simplicial
complex, Z[Q] reduces to the classical Stanley–Reisner face ring of the simpli-
cial complex. Therefore, Corollary 6.6 is a generalisation of Proposition 3.4 in
[13].

If P is the face poset of Q, then Z[P] = Z[Q] from the definition. The
following is a characterisation of torus manifolds M with vanishing odd degree
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cohomology (or with cohomology generated in degree two) in terms of the face
poset P associated with M .

Theorem 6.7. Let M be a torus manifold with orbit space Q and let P be the
face poset of Q. Then Hodd(M) = 0 if and only if the following two conditions
are satisfied:

1. H∗
T (M) is isomorphic to Z[P](= Z[Q]) as a ring, and

2. Z[P] is Cohen-Macaulay.
Moreover, H∗(M) is generated by its degree-two part if and only if P is (the
face poset of) a simplicial complex in addition to the above two conditions.

Proof. If Hodd(M) = 0, then H∗
T (M) ∼= Z[Q] = Z[P] by Corollary 6.6, and Z[P]

is Cohen-Macaulay because H∗
T (M) is a free H∗(BT )-module by Lemma 2.1.

This proves the “only if” part in the former statement in the lemma.
We shall prove the “if” part. The composition of the homomorphisms

H∗(BT )
ρ∗−→ H∗

T (M) r−→
⊕
p∈MT

H∗(BT ),

where ρ : ET ×T M → BT is the projection, is the identity when restricted
to each factor in the target, in other words, r ◦ ρ∗ is a diagonal map. This
implies that ρ∗(t1), . . . , ρ∗(tn) is a linear system of parameters (an l.s.o.p.), see
[2, Theorem 5.1.16]. By assumption H∗

T (M) is isomorphic to Z[P] and Z[P] is
Cohen-Macaulay, so every l.s.o.p. is a regular sequence (see [16, Theorem I.5.9]).
It follows that H∗

T (M) is a free H∗(BT )-module and hence Hodd(M) = 0 by
Lemma 2.1, proving the “if” part in the former statement in the theorem.

We shall prove the latter statement in the theorem. The “only if” part
follows from Lemma 2.8 as remarked before. Suppose that P is the face poset
of a simplicial complex. Then the face ring Z[P] is generated by its degree-two
part. Since H∗

T (M) ∼= Z[P] is a free H∗(BT )-module as proved above, H∗(M)
is a quotient ring of H∗

T (M). It follows that H∗(M) is also generated by its
degree-two part.

The following description of cohomology ring of a torus manifold with van-
ishing odd degree cohomology generalizes that of a complete non-singular toric
variety, see [7, Proposition in p.106].

Corollary 6.8. For a torus manifold M with vanishing odd degree cohomology,

H∗(M) ∼= Z[v
F

: F a face of Q]/I as a ring,

where I is the ideal generated by all

1. v
G
v
H
− v

G∨H

∑
E∈G∩H

v
E
;

2.
m∑
i=1

〈t, ai〉vQi
for t ∈ H2(BT ),

where Qi are facets of Q and ai are elements of H2(BT ) in Proposition 2.5.

Proof. Since the Serre spectral sequence of the fibration ρ : ET ×T M → BT
collapses, the restriction map H∗

T (M) → H∗(M) is surjective and its kernel is
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the ideal generated by all ρ(t) with t ∈ H>0(BT ). However, since H∗(BT ) is a
polynomial ring in degree two elements, it suffices to take degree two elements as
t. Therefore, the corollary follows from Proposition 2.5 and Corollary 6.6.

6.2. Dehn-Sommerville equations. Suppose that Hodd(M) = 0. Then,
since H∗

T (M) = H∗(BT ) ⊗ H∗(M) by Lemma 2.1 and H∗(BT ) is a polyno-
mial ring in n variables of degree two, the Poincaré series of H∗

T (M) is given
by

F (H∗
T (M); t) =

∑n
i=0 rank�H2i(M)t2i

(1− t2)n .

On the other hand, the Poincaré series of the face ring Z[Q] is given in Theo-
rem 4.11 and these two series must coincide by Corollary 6.6. It follows that

rank�H2i(M) = hi.(6.9)

Since M is a manifold, the Poincaré duality implies that

hi = hn−i, i = 0, . . . , n.(6.10)

When every non-empty multiple intersection of facets in Q is connected, Z[Q]
reduces to the classical Stanley–Reisner ring of the nerve of the covering of ∂Q
and the equations (6.10) are the famous Dehn–Sommerville equations for the
numbers of faces of the nerve simplicial complex.

7. Orbit spaces of torus manifolds with cohomology generated in

degree two

From now on we discuss relations between the cohomology of a torus manifold
M and the cohomology of its orbit space Q. The main result of this section
is Theorem 7.3 which gives a cohomological characterisation of torus manifolds
with orbit space a homology polytope. Using this result, we finally prove in the
next section that Q is face-acyclic if Hodd(M) = 0. The following is a first step.

Lemma 7.1. If Hodd(M) = 0, then H1(Q;k) = 0 for any coefficient k, in
particular, Q is orientable.

Proof. We use the Leray spectral sequence (with k coefficient) of the projection
map ET ×T M → M/T = Q on the second factor. Its E2 term is given by
Ep,q2 = Hp(X/T ;Hq) where Hq is a sheaf with stalk Hq(BTx;k) over a point
x ∈ X/T , and the spectral sequence converges to H∗

T (X;k). Since the T -action
on M is locally standard by Theorem 3.3, the isotropy group Tx at x ∈ M is
a subtorus; so Hodd(BTx;k) = 0. Therefore we have Hodd = 0, in particular,
H1 = 0. Moreover, H0 = k (a constant sheaf). Therefore we have E0,1

2 =
0 and E1,0

2 = H1(X/T ;k), whence H1(X/T ;k) ∼= H1
T (M ;k). On the other

hand, since Hodd(M) = 0 by assumption, H∗
T (M) is a free H∗(BT )-module

(isomorphic to H∗(BT )⊗H∗(M) by Lemma 2.1). Therefore, Hodd
T (M ;k) = 0

by the universal coefficient theorem. In particular, H1
T (M ;k) = 0, thus proving

the lemma.

Lemma 7.2. If either
1. Q is a homology polytope, or
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2. H∗(M) is generated by its degree-two part,

then the face poset P of Q is (the face poset of) a simplicial Gorenstein* com-
plex, in particular, Z[P] is Cohen-Macaulay and the geometric realisation |P|
of P has the homology of an (n− 1)-sphere.

Proof. In both cases in the lemma, all non-empty multiple intersections of facets
ofQ are connected, so P agrees with the face poset of the nerveK of the covering
of ∂Q where K is a simplicial complex. In the following we identify P with K.

First we prove that P is Gorenstein* in Case 1. According to Theorem II.5.1
of [16] it is enough to show that the link of a simplex σ of P, denoted by link σ,
has the homology of a sphere of dim linkσ(= n−2−dimσ). If σ = ∅ then linkσ
is P itself and its homology is isomorphic to the homology of the boundary ∂Q
of Q because P is the nerve of Q, all faces of Q are acyclic and all non-empty
multiple intersections of facets in Q are connected. If σ �= ∅ then linkσ agrees
with the nerve of a face of Q. Since any face of Q is again a homology polytope,
linkσ has the homology of a sphere of dim linkσ by the same reasoning as the
case σ = ∅.

Next we prove that P is Gorenstein* in Case 2. According to Theorem II.5.1
of [16] again, it is enough to show that (a) P is Cohen–Macaulay; (b) every
(n − 2)-dimensional simplex is contained in exactly two (n − 1)-dimensional
simplices; (c) χ(P) = χ(Sn−1). The condition (a) follows from Lemma 2.1 and
Corollary 6.6. Let us prove (b). By definition, every k-dimensional simplex
of P corresponds to a set of k + 1 characteristic submanifolds having non-
empty intersection. By Lemma 2.8, the intersection of any n characteristic
submanifolds is either empty or consists of a single T -fixed point. This means
that the (n − 1)-simplices of P are in one-to-one correspondence with the T -
fixed points of M . Now, each (n − 2)-simplex of P corresponds to a non-
empty intersection of n − 1 characteristic submanifolds of M . The latter is
connected again by Lemma 2.8 and has a non-trivial T -action, so it is a 2-
sphere. Every 2-sphere contains exactly two T -fixed points, and this implies (b).
Finally, (c) is just the Dehn–Sommerville equation h0 = hn, see the sentence
following (4.9).

Theorem 7.3. The cohomology of a torus manifold M is generated by its
degree-two part if and only if M is locally standard and the orbit space Q is
a homology polytope.

Proof. Let P be the face poset of Q and P be the space with face structure
associated with P, see Subsection 4.2. As a space, P is the cone of |P|.

We first prove the “if” part. Suppose Q is a homology polytope. Since
H2(Q) = 0, M is equivariantly homeomorphic to MQ(Λ) by Lemma 3.6; so
we may regard the map Φ in (4.16) as a map from M to MP . Let MP,i be
characteristic subcomplexes of MP = MP (Λ) defined similarly to characteristic
submanifolds Mi of M . Since the T -actions on MP \ ∪iMP,i and M\ ∪iMi are
free, we have

H∗
T (MP ,∪iMP,i) ∼= H∗(P, |P|), H∗

T (M,∪iMi) ∼= H∗(Q,∂Q).
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Therefore, the map Φ induces a map between exact sequences

−→ H∗(P, |P|) −−−→ H∗
T (MP ) −−−→ H∗

T (∪iMP,i) −→� �Φ∗
�

−→ H∗(Q,∂Q) −−−→ H∗
T (M) −−−→ H∗

T (∪iMi) −→

(7.4)

Each Mi itself is a torus manifold over a homology polytopeQi. Using induction
and a Mayer–Vietoris argument, we may assume that the map H∗

T (∪iMP,i)→
H∗
T (∪iMi) above is an isomorphism. By Lemma 7.2 |P| has the homology

of an (n − 1)-sphere and since P is the cone of |P |, we have H∗(P, |P|) ∼=
H∗(Dn, Sn−1). We also have H∗(Q,∂Q) ∼= H∗(Dn, Sn−1) because Q is a ho-
mology polytope. Through these isomorphisms, we see from the construction
of the map Φ that the induced map H∗(P, |P|) → H∗(Q,∂Q) is the identity
map on H∗(Dn, Sn−1). Therefore, the 5-lemma applied to (7.4) shows that
Φ∗ : H∗

T (MP )→ H∗
T (M) is an isomorphism; whence H∗

T (M) ∼= Z[P] by Propo-
sition 4.15. We also know that Z[P] is Cohen-Macaulay by Lemma 7.2. There-
fore, the two conditions in Theorem 6.7 are satisfied. Moreover, since Q is a
homology polytope, P agrees with the face poset of the nerve simplicial complex
of the covering of ∂Q. It follows that H∗(M) is generated by its degree-two
part by Theorem 6.7, which finishes the proof of the “if” part.

Now we prove the “only if” part. Suppose that H∗(M) is generated by the
degree-two elements. Then M is locally standard by Theorem 3.3. Since all
non-empty multiple intersections of characteristic submanifolds are connected
and their cohomology rings are generated in degree two by Lemma 2.8, we may
assume by induction that all the proper faces of Q are homology polytopes,
in particular they are acyclic, whence H∗(∂Q) ∼= H∗(|P|). This together with
Lemma 7.2 shows that

H∗(∂Q) ∼= H∗(Sn−1).(7.5)

Claim. H2(Q) = 0.

The claim is trivial for n = 1. If n = 2 then Q is a surface with boundary,
hence, H2(Q) = 0 in this case too. Now assume n � 3. Let us consider the
exact equivariant cohomology sequence of pair (M,∪iMi), see (7.4). All the
maps in the exact sequence are H∗(BT )-module maps. By Lemma 2.1, H∗

T (M)
is a free H∗(BT )-module. On the other hand, H∗(Q,∂Q) is finitely generated
over Z, so it is a torsion H∗(BT )-module. It follows that the whole sequence
splits in short exact sequences:

0→ Hk
T (M)→ Hk

T (∪iMi)→ Hk+1(Q,∂Q)→ 0(7.6)

Taking k = 1 above, we get

H1
T (∪iMi) ∼= H2(Q,∂Q).

Here the same argument as in Lemma 7.1 shows that the former is isomorphic
to H1((∪iMi)/T ) = H1(∂Q), and the above isomorphism implies (through the
projection (ET ×M)/T → M/T = Q) that the coboundary map H1(∂Q) →
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H2(Q,∂Q) in the exact sequence of the pair (Q,∂Q) is an isomorphism. There-
fore, we get the following exact sequence fragment:

0→ H2(Q)→ H2(∂Q)→ H3(Q,∂Q).

Since H2(∂Q) ∼= H2(Sn−1) by (7.5), we have H2(Q) = 0 if n � 4. When
n = 3, the coboundary map above is an isomorphism because Q is orientable
by Lemma 7.1, whence H2(Q) = 0 again. This completes the proof of the claim.

Since H2(Q) = 0, we have a map Φ: M → MP (Λ) similarly to the “if”
part proof above. Let us consider the diagram (7.4) with k coefficient where
k = Q or Z/p with prime p. Using induction and a Mayer–Vietoris argument,
we deduce that H∗

T (∪iMP,i;k) → H∗
T (∪iMi;k) is an isomorphism. We know

that H∗(P, |P|;k) ∼= H∗(Dn, Sn−1;k) by Lemma 7.2, and it follows from the
construction of Φ that the homomorphism

H∗(Dn, Sn−1;k) ∼= H∗(P, |P|;k) → H∗(Q,∂Q;k)(7.7)

induced from Φ is an isomorphism on degree n, thus injective on all degrees.
Therefore (an extended version of) the 5-lemma (see [14, p.185]) applied to (7.4)
with k coefficient shows that Φ∗ : H∗

T (MP ;k) → H∗
T (M ;k) is injective. Here,

H∗
T (M) ∼= Z[Q] ∼= H∗

T (MP ) by Corollary 6.6 (or Proposition 3.4 in [13]) and
Proposition 4.15 (or Theorem 4.8 of [6]), so H∗

T (MP ;k) and H∗
T (M ;k) have

the same dimension over k on each degree. Therefore, the monomorphism
Φ∗ : H∗

T (MP ;k) → H∗
T (M ;k) is actually an isomorphism. Again, the 5-lemma

applied to (7.4) with k coefficient implies that the map (7.7) is an isomor-
phism, so H∗(Q,∂Q;k) ∼= H∗(Dn, Sn−1;k) for any k and hence H∗(Q,∂Q) ∼=
H∗(Dn, Sn−1). This together with (7.5) (or the Poincaré-Lefschetz duality)
gives the acyclicity of Q, thus finishing the proof of the theorem.

The following characterises simplicial complexes associated with torus man-
ifolds with cohomology generated in degree two.

Theorem 7.8. A simplicial complex P is associated with a torus manifold M
whose cohomology is generated by its degree-two part if and only if P is Goren-
stein* and Z[P] admits an l.s.o.p.

Proof. If H∗(M) is generated by its degree-two part, then P is Gorenstein*, in
particular Z[P] is Cohen-Macaulay Lemma 7.2. Moreover H∗

T (M) ∼= Z[P] by
Corollary 6.6 (or Proposition 3.4 in [13]) and since H∗

T (M) ∼= H∗(BT )⊗H∗(M)
as an H∗(BT )-module by Lemma 2.1, Z[P] admits an l.s.o.p.

Now we prove the “if” part. According to Theorem 12.2 of [5], there exists
a homology polytope Q whose nerve is P. As usual, let Z[P] be the quotient
of the polynomial ring Z[v1, . . . , vm] by the Stanley-Reisner ideal IP . Since
Z[P] admits an l.s.o.p., it is a free module over a polynomial ring Z[t1, . . . , tn]
in n variables. Since there is no degree two element in the ideal IP , a linear
combination t of t1, . . . , tn over Z, which is an element of Z[P], can be uniquely
expressed as

t =
m∑
i=1

ai(t)vi
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with integers ai(t) depending on t. Clearly, ai(t) is linear on t, so ai can be
viewed as an element of the dual space of the span of t1, . . . , tn over Z (cf.
Proposition 2.5). The dual space is isomorphic to Zn ∼= H2(BT ) and we define
Λ to be a map sending i to ai. Then M := MQ(Λ) is a torus manifold with
cohomology generated by its degree-two elements by Theorem 7.3, thus the
required torus manifold.

8. Orbit spaces of torus manifolds with vanishing odd degree

cohomology

Let F be a face of Q. The facial submanifold MF = π−1(F ) is a connected
component of an intersection of finitely many characteristic submanifolds. The
Whitney sum of normal bundles to these characteristic submanifolds restricted
to MF gives the normal bundle ν

F
of MF . As remarked before, the prescribed

orientations on M and its characteristic submanifolds determine a T -invariant
complex structure on the normal bundles of characteristic submanifolds. These
determine a T -invariant complex structure on ν

F
so that the complex projec-

tive bundle P (ν
F
) of ν

F
can be considered. Replacing MF in M by P (ν

F
),

one obtains a new torus manifold M̃ . The passage from M to M̃ is called
the blowing-up of M at MF . (Remark: The normal bundle ν

F
admits many

invariant complex structures and the following argument works once we choose
one.) The orbit space Q̃ of M̃ is then the result of “cutting” Q along the face
F , and the simplicial cell complex dual to Q̃ is obtained from that dual to Q
by applying a stellar subdivision of the face dual to F .

Lemma 8.1. The orbit space Q̃ is face-acyclic if and only if so is Q.

Proof. By cutting Q along the face F one produces a new facet F̃ ⊂ Q̃ that
contains all other new proper faces of Q̃. The projection map Q̃→ Q collapses
F̃ back to F . The face F is a deformation retract of F̃ . Hence, F is acyclic if
and only if F̃ is acyclic. Same is true for any other new face of Q̃. It is also
clear from the construction that Q is a deformation retract of Q̃. Therefore, Q̃
is acyclic if and only if so is Q.

Lemma 8.2. Hodd(M̃) = 0 if Hodd(M) = 0.

Proof. The facial submanifold MF ⊂M is blown up to a codimension-two facial
submanifold M̃

�F
⊂ M̃ , in fact, M̃

�F
= P (ν

F
). Since M̃

�F
is the total space of

a bundle with base MF and fibre a complex projective space, its cohomology
is a free H∗(MF )-module on even-dimensional generators by Dold’s theorem
(see, e.g., [17, Ch. V]). If Hodd(M) = 0, then Hodd(MF ) = 0 by Lemma 2.6
and hence Hodd(M̃

�F
) = 0. Let M̃ → M be the collapse map and consider the

diagram

Hk−1(MF ) −−−→ Hk(M,MF ) −−−→ Hk(M) −−−→ Hk(MF )� �∼=
� �

Hk−1(M̃
�F
) −−−→ Hk(M̃, M̃

�F
) −−−→ Hk(M̃ ) −−−→ Hk(M̃

�F
)
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where the second vertical arrow is an isomorphism by excision. Assume that k
is odd. If Hodd(M) = 0 then Hk−1(MF ) → Hk(M,MF ) is onto. Therefore, it
follows from the above commutative diagram that Hk−1(M̃

�F ) → Hk(M̃, M̃
�F )

is also onto. Since Hk(M̃
�F ) = 0, this implies Hk(M̃) = 0.

The following main result of this section is an analogue of Theorem 7.3.

Theorem 8.3. The odd-degree cohomology of M vanishes if and only if M is
locally standard and the orbit space Q is face-acyclic.

Proof. The idea is to reduce to Theorem 7.3 by blowing up sufficiently many
facial submanifolds MF = π−1(F ). Since the barycentric subdivision is a se-
quence of stellar subdivisions, by applying sufficiently many blow-ups one gets
a torus manifold M̂ with orbit space Q̂ such that the face poset of Q̂ is the
barycentric subdivision of the face poset of Q. The collapse map M̂ → M is
decomposed into a sequence of collapse maps for single blow-ups:

M = M0 ←−−− M1 ←−−− . . . ←−−− Mk = M̂.(8.4)

We first prove the “only if” part. Assume that Hodd(M) = 0. Then M
is locally standard by Theorem 3.3. By applying Lemma 8.2 several times
we get Hodd(M̂) = 0. By construction, all the intersections of faces of Q̂ are
connected, so H∗(M̂) is generated by its degree-two part by Theorem 6.7 and
Q̂ is a homology polytope by Theorem 7.3, in particular, face-acyclic. Finally,
by applying Lemma 8.1 inductively we conclude that Q is also face-acyclic.

The scheme of the proof of the “if” part is same as that of Theorem 7.3. But
there are two things to be checked. Those are

1. |P| has the homology of an (n− 1)-sphere,
2. Z[P] is Cohen-Macaulay.

Let P̂ be the face poset of Q̂. Since Q is face-acyclic, Q̂ is a homology polytope.
Therefore, |P̂| has the homology of an (n− 1)-sphere by Lemma 7.2. However,
|P̂| = |P|, so the first statement above follows. Since Q̂ is a homology polytope,
Z[P̂ ] is Cohen-Macaulay by Lemma 7.2. This implies that Z[P] itself is Cohen-
Macaulay by Corollary 3.7 of [15], proving the second statement above.

Remark. As one can easily observe, the argument in the “only if” part of the
above theorem is independent of Theorem 6.1 and Corollary 6.6. Now, given
that Q is face-acyclic, one readily deduces that the 1-skeleton of Q is connected.
Indeed, otherwise the smallest face containing vertices from two different con-
nected components of the 1-skeleton would be a manifold with at least two
boundary components and thereby non-acyclic. Thus, our reference to Theo-
rem 6.1 above was actually irrelevant, although it makes the arguments more
straightforward.

9. Betti numbers of torus manifolds with vanishing odd degree

cohomology

The barycentric subdivision P̂ of a simplicial poset P is (the face poset of)
a simplicial complex and P is said to be Gorenstein* if P̂ is Gorenstein* ([15],
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[16]). If P is the simplicial poset associated with a torus manifold M with
vanishing odd degree cohomology, then the torus manifold M̂ corresponding to
P̂ has cohomology generated by its degree-two part as remarked in the proof
of Theorem 8.3. Hence, P̂ is Gorenstein* by Lemma 7.2 and P is Gorenstein*
by definition. In [15] Stanley proved that any vector satisfying the conditions
in Theorem 9.2 below is an h-vector of a Gorenstein* simplicial poset. He also
conjectured that those conditions are necessary. In this section we prove his
conjecture for Gorenstein* simplicial posets P associated with torus manifolds
M with vanishing odd degree cohomology, and characterize h-vectors of those
Gorenstein* simplicial posets. Since

hi(P) = rank�H2i(M),(9.1)

by (6.9), our problem is equivalent to characterizing Betti numbers of torus
manifolds with vanishing odd degree cohomology. We note that

hi(P) � 0, hi(P) = hn−i(P) for any i, and h0(P) = 1.

Theorem 9.2. Let (h0, h1, . . . , hn) be a vector of non-negative integers with
hi = hn−i for any i and h0 = 1. Any of the following (mutually exclusive) con-
ditions are necessary and sufficient for the existence of a Gorenstein* simplicial
poset P of rank n such that P is associated with a torus manifold of dimension
2n with vanishing odd degree cohomology and hi(P) = hi for any i:

1. n is odd,
2. n is even and hn/2 is even,
3. n is even, hn/2 is odd, and hi > 0 for any i.

Proof. For a torus manifoldM , we set hi(M) = rank�H2i(M). Thanks to (9.1),
we may use hi(M) instead of hi(P) to prove the theorem.

We shall prove the sufficiency first. Examples 2.3 and 2.4 produce torus
manifolds CP n and S2n−2k × S2k for 0 � k � n. In both cases the odd-degree
cohomology is zero. If M1 and M2 are torus manifolds (of same dimension)
with vanishing odd degree cohomology, then their equivariant connected sum
M1#M2 at fixed points (having isomorphic tangential representations) produces
a torus manifold with vanishing odd degree cohomology and

hi(M1 #M2) = hi(M1) + hi(M2) for 1 � i � n− 1.

Therefore, taking equivariant connected sum of CP n, S2n and S2n−2k × S2k

for 1 � k � n − 1 one easily gets any vector satisfying the conditions in the
theorem.

Now we prove the necessity. Let M be a torus manifold of dimension 2n.
It suffices to prove that hn/2(M) is even if n is even and hi(M) = 0 for some
i > 0.

Let G be the 2-torus subgroup of T of rank n. Then the equivariant to-
tal Stiefel–Whitney class of M with the restricted G-action is defined to be
the ordinary total Stiefel–Whitney class of the vector bundle EG ×G TM →
EG×GM , and is denoted by wG(M). By definition, wG(M) lies inH∗

G(M ; Z/2).
We denote by τi the image of the identity by the equivariant Gysin map
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H0
T (Mi; Z/2) → H2

T (M ; Z/2), where Mi (i = 1, . . . ,m) are characteristic sub-
manifolds of M as before.

Claim. wG(M) =
∏m
i=1(1 + τi).

The proof of the claim is essentially same as that of Theorem 3.1 in [13], where
the same formula was proved for total equivariant Chern class, but for the
reader’s convenience we shall give a proof. Since Hodd(M ; Z/2) = 0 and MG =
MT is isolated, we have

dimH∗(M ; Z/2) = χ(M) = χ(MT ) = χ(MG) = dimH∗(MG; Z/2).

Therefore, H∗
G(M ; Z/2) is a free H∗(BG;Z/2)-module (see [1, Theorem 1.6 in

p.374]). It follows from the localization theorem that the restriction map

H∗
G(M ; Z/2)→ H∗

G(MG; Z/2)(9.3)

is injective. For p ∈ MG = MT , set I(p) := {i : p ∈ Mi}. The cardinality of
I(p) is n and the tangential G-representation TpM decomposes as

TpM =
⊕
i∈I(p)

νi|p

where νi is the normal bundle of Mi to M and νi|p is its restriction to p. It
follows that

wG(M)|p =
∏
i∈I(p)

wG(νi|p).(9.4)

Here, since νi is orientable and of real dimension two, wG1 (νi) = 0 and wG2 (νi)
is the mod 2 reduction of the equivariant Euler class of νi. Therefore, we have
wG2 (νi|p) = τi|p for i ∈ I(p). Moreover, τi|p = 0 for i /∈ I(p) by a property of
equivariant Gysin homomorphism. Thus the identity (9.4) turns into

wG(M)|p =
∏
i∈I(p)

(1 + τi)|p =
m∏
i=1

(1 + τi)|p.

This together with the injectivity of the restriction map in (9.3) proves the
claim.

Through the map H∗
G(M ; Z/2) → H∗(M ; Z/2) obtained by forgetting the

G-action, the equivariant Stiefel–Whitney class wG(M) reduces to the (ordi-
nary) Stiefel–Whitney class w(M) of M . Since τi is of degree two, the claim
above shows that w2n(M) is a polynomial in degree two elements. Assume
hi(M) = 0 for some i > 0. Then w2n(M) = 0. The mod 2 reduction of the
Euler characteristic χ(M) of M agrees with w2n(M) evaluated on the mod 2
fundamental class of M , so the vanishing of w2n(M) means that χ(M) is even.
Here χ(M) =

∑n
i=0 hi(M) and hi(M) = hn−i(M) by Poincaré duality, thus

hn/2(M) must be even for even n.
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