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Last year two remarkable results appeared concerning theD-modules on the flag variety
over an algebraically closed field k of chracteristic p > 0. One was due to Kashiwara M.
and N. Lauritzen [KLa02] showing the failure of D-affinity of the flag variety in SL5, and
the other by R. Bezrukavnikov, I. Mirkovic and D. Rumynin [BMR]; they establish instead
a derived equivalence between the category of finite generated modules over the universal
enveloping algebra of the Lie algebra of the relevant simple algebraic group G having the
trivial Harish-Chandra character and the category of coherent modules over the sheaf of
rings of crystalline differential operators on the flag variety, and succeds in computing the
number of irreducibles for the Lie algebra with a fixed Frobenius central character. On
any smooth k-scheme X their crystalline differential operators are just the 0-th term of

Berthelot’s rings D(m)
X , m ∈ N, of arithmetic differential operators [B96]. Those D(m)

X ’s
form a direct system whose direct limit is the usual sheaf DiffX of differential operators.

The images D̄(m)
X of D(m)

X in DiffX form the p-filtration of DiffX studied by B. Haarstert
[H88].

In this note we will clarify a relashionship of D(m)
X and D̄(m)

X with respect to direct
image functors, and construct on the flag variety a D̄(m)-module, whose global sections
constitute a standard module for the (m+1)-st Frobenius kernel of G. That D̄(m)-module
is supported by a point, and is a unique irreducible D̄(m)-module having the same support.

An advantage of D(m) over D̄(m) is that D(m) is defined over the ring of p-adic integers
Zp. Thus a theory of D(m)-modules over Zp on the flag variety invites our exploration.

If X is a scheme, by ModX (resp. ModX , ⊗X) we will mean ModOX
(resp. ModOX

,
⊗OX

).

1◦ Crystalline differential operators

(1.1) Let G be a simply connected simple algebraic group over an algebraically closed field
k, k[G] the Hopf algebra defining G, εG : k[G]→ k the counit of k[G], mG = ker(εG), and
Dist(G) = {µ ∈ k[G]∗ | µ(mn+1

G ) = 0 ∃n ∈ N} the algebra of distributions on G. Denote
the Lie algebra (mG/m2

G)∗ ⊆ Dist(G) of G by g and by U its universal enveloping algebra.

If UZ is Kostant’s Z-form of the universal enveloping algebra over C of the simple
∗supported in part by JSPS Grant in Aid for Scientific Research
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C-Lie algebra of the same type as g, there is an isomorphism of k-algebras

Dist(G) ' UZ ⊗Z k.
A finite dimensional G-module is naturally a Dist(G)-module, and vice versa.

Let B be a Borel subgroup of G, B = G/B the flag variety of G, and Diff = DiffB/k
the sheaf of k-algebras of differential operators on B as defined in [EGAIV]. In positive
characteristic the Beilinson-Bernstein localization theorem [BB81] fails:

Theorem: Assume chk > 0.

(i) Smith [Sm86]: The k-algebra homomorphism

Dist(G)→ Γ(B,Diff)

induced by the G-equivariant structure on OB is not surjective in SL2.

(ii) Kashiwara-Lauritzen [KLa02]: In SL5 there is a quasi-coherent Diff -module
M of finite type such that

H1(B,M) 6= 0.

Throughout the rest of the manuscript we assume unless otherwise specified that k has
positive characteristic p.

(1.2) Instead of Dist(G) and Diff , Bezrukavnikov, Mirkovic and Rumynin [BMR] consider
the universal enveloping algebra U and the sheaf D = DB of k-algebras of crystalline
differential operators on B introduced by [BB93]:

D = Tk(Diff1)/

(λ− λ1OB , a⊗ δ − aδ, δ ⊗ δ′ − δ′ ⊗ δ − [δ, δ′] | λ ∈ k, a ∈ OB; δ, δ′ ∈ Diff1),

where Diff1 is the sheaf of differential operators of order ≤ 1 in Diff and Tk(Diff1) is
the tensor algebra over k of Diff1. In charactristic 0 one has D ' Diff .

To describe the work [BMR], assume for simplicity in the rest of §1 that p > 2(h− 1),
h the Coxeter number of G. Let T be a maximal torus of B and Λ = GrpSch(T, GL1).
We will write the group operation on Λ additively. Let R be the root system of G relative
to T , R+ the positive system of R such that the roots of B are −R+, and W the Weyl
group of G. We consider a W -action • on Λ centered at −ρ = −1

2

∑
α∈R+ α:

w • λ = w(λ + ρ)− ρ, λ ∈ Λ.

If ZHC = UAd(G) = {u ∈ U | Ad(g)u = u ∀g ∈ G} and h = Lie(T ), transferring the
W•-action onto h∗, the Harish-Chandra isomorphism carries over:

ZHC ' S(H)W•.

Define a k-algebra homomorphism

ZHC

©

cen0 //________

∼

k 0

S(h)W• Â Ä // S(h)

OO

h ∈ h,
_

OO
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and set U0 = U ⊗ZHC
cen0. Then the Beilinson-Bernstein localization theorem survives

in the derived category:

Theorem [BMR] : Assume p > 2(h− 1).

(i) The natural k-algebra homomorphism U→ Γ(B,D) induces an isomorphism

U0 → Γ(B,D).

(ii) There is a derived equivalence between the category U0mod of U0-modules of finite
type and the category Coh(D) of coherent D-modules

Db(U0mod)

D⊗L
U0 ?

//
Db(Coh(D))

RΓ(B, ?)
oo .

(1.3) ∀x ∈ g, the p-th power xp of x in Dist(G) lies in g, which we denote by x[p] to
distinguish from the p-th power xp in U. Then

ZFr = k[xp − x[p] | x ∈ g]

is central in U, called the Frobenius center of U. If x1, . . . , xr is a k-linear basis of g, ZFr

is the polynomial k-algebra in xp
i − x

[p]
i , and U is free over ZFr of basis xn, n ∈ [0, p[r:

U =
∐

n∈[0,p[r

ZFr xn.

Due to the large center of U, any simple U-module is of finite dimension [J98, 1.1].

By the standing hypothesis that p > 2(h−1), the killing form κ on g is nondegenerate.
If N = Ad(G)n the nilcone of g and if S(g) is the symmetric k-algebra of g, one has
k-algebra homomorphisms

ZFr S(g)(1)∼oo ∼ // k[g](1)
res // // k[N ](1)

xp − x[p] xÂoo Â // κ(x, ?), x ∈ g,

where S(g)(1) is the ring S(g) with the k-action twisted in such a way that each ζ ∈ k act

as ζ
1
p on S(g), and likewise k[g](1), k[N ](1). Let ∀χ ∈ N , mχ = ker(evχ(1)◦res) ∈ Max(ZFr),

U0
χ = U0⊗ZFr

(ZFr/mχ), and U0modχ the full subcategory of U0mod consisting of those
M such that mn

χM = 0 ∃n ∈ N, or equivalently, having support in the closed subscheme
of Spec(ZFr) defined by mχ.

Likewise if S(TB) is the symmetric algebra of the tangent sheaf TB on B,

Z(D) ' S(TB)(1) via ap(∂p − ∂[p])←p a(1)∂(1), a ∈ OB, ∂ ∈ TB ' DerB/k.

If q : V(TB) = Spec(S(TB))→ B is the cotangent bundle on B, under the morphism

(1) V(TB) G×B (g/b)∗∼oo ∼ // G×B n
p2 // N

[g, x] Â // Ad(g)x
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put Bχ = V(TB)×Nχ, called the Springer fiber of χ, Dχ = D⊗Z(D){Z(D)/p]
2(res(mχ))Z(D)},

and let Cohχ(D) be the full subcategory of Coh(D) consisting of those M
with p]

2(res(mχ))nM = 0 ∃n ∈ N, or equivalently, such that supp(q̃∗M) ⊆ (Bχ)(1), where
q̃ : (V(TB)(1),OV(TB)(1))→ (B, Z(D)) is the morphism of ringed spaces induced by q.

Theorem [BMR]: Assume p > 2(h− 1).

(i) The BMR derived equivalence resricts to a derived equivalence

Db(U0modχ) ' Db(Cohχ(D)).

(ii) There is a categorical equivalence

Coh(Dχ) ' Coh(B(1)
χ ).

(iii) If K(Bχ) is the Grothendieck group of Coh(Bχ) and if ` is a prime 6= p,

rk K(Bχ) = dimQ̄`
H•et(Bχ, Q̄`).

(1.5) Corollary [BMR]: The number of irreducibles for U0
χ is equal to

dimQ̄`
H•et(Bχ, Q̄`).

(1.6) We wish to make the BMR-theory T -equivariant to keep track of the weights.
In order for T to act on Uχ = U/(mχ) by Ad,

(mχ) = Umχ = (xp − x[p] − χ(x)p | x ∈ g) / U

must be Ad(T )-invariant, which forces χ = 0. Thus in the T -equivariant theory we are
to deal with U0 ' Dist(G1), G1 = ker(Fr : G→ G(1)) the Frobenius kernel of G, and the
BMR derived equivalence reads

Db(U0mod0)

D⊗L
U0 ?

//
Db(Coh0(D))

RΓ(B, ?)
oo .

2◦ Arithmetic differential operators

(2.1) Let X be a smooth k-variety. The sheaf DX of k-algebras of crystalline differential

operators on X coincides with the 0-th term D(0)
X of Berthelot’s sheaves D(m)

X , m ∈ N, of

k-algebras of arithmetic differential operators on X [B96]. The D(m)
X form an inductive

system such that for m′ ≥ m

D(m′)
X

©

ρm′ // DiffX

D(m)
X

ρm′,m

OO

ρm
// //ModO[m+1]

B
(OB,OB),

?Â

OO
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where O[m+1]
X = {apm+1 | a ∈ OX}; (ModO[m]

B
(OB,OB) | m ∈ N) forms the p-filtration of

DiffX studied by Haastert [H87, 88]. It will follow from the structural information (2.2)
below that

lim−→
m

D(m)
X ' DiffX ,

and we will write D(∞)
X for DiffX ; D(0)

X can be defined in characteristic 0 and is isomorphic
to DiffX there. Put Km = ker(ρm).

(2.2) Let (t1, . . . , td) be a local coordinate on an open U of X. Recall from [EGAIV] that

D(∞)
U = DiffU is free over OU of basis ∂[n], n ∈ Nd, such that

∂[n](tk) =

(
k

n

)
tk−n ∀k ∈ Nd.

Proposition [B96, 2.2.3-7]: Let m ∈ N.

(i) D(m)
U is free over OU of basis ∂<n>, n ∈ Nd, such that ∀k, n′ ∈ Nd, ∀a ∈ OU ,

ρm(∂<n>) = q!∂[n],

∂<n>(tk) : = ρm(∂<n>)(tk) = q!

(
k

n

)
tk−n,

∂<n>∂<n′> =

〈
n + n′

n

〉
∂<n+n′>,

∂<n>a =
∑

n′+n′′=n

{
n

n′

}
∂<n′>(a)∂<n′′>,

where q = (qi) ∈ Nd with ni = pmqi + ri, ri ∈ [0, pm[ ∀i ∈ [1, d],
{

n

n′

}
=

q!

q′!q′′!
with q′ and q′′ defined for n′ and n′′, resp., as q for n,

〈
n + n′

n

〉
=

(
n + n′

n

){
n + n′

n

}−1

.

Thus D(m)
U = OU [∂<pj>

i | i ∈ [1, d], j ∈ [0,m]], and hence is left and right noetherian.

(ii) The center Z(D(m)
U ) of D(m)

U is a polynomial O[m+1]
U -algebra in indeterminates

∂<pm+1>
i , i ∈ [1, d].

(iii) If m′ > m, ρm′,m(∂<n>) =
q!

q′!
∂<n> with q′ ∈ Nd defined by ni = pm′

q′i + r′i,

r′i ∈ [0, pm′
[ ∀i ∈ [1, d], and

ker(ρm′,m|U) = (∂<pm+1>
i | i ∈ [1, d]) = Km|U .

(2.3) It is now easy to generalize a result of [BMR] that D(0)
X is Azumaya:
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Theorem: Each D(m)
X , m ∈ N, is Azumaya; if AX = OX [Z(D(m)

X )], there is an isomor-
phism of sheaves of k-algebras on X

D(m)
X ⊗

Z(D(m)
X )
AX 'Mod(AX)(D(m)

X ,D(m)
X ) via δ ⊗ δ′ 7→ δ?δ′,

where the RHS is the sheaf of endomorphisms of right AX-module D(m)
X .

Proof: By [KO, III.6.6, p.104] the question being local, we may assume X is affine

with coordinate system (t1, . . . , td). Put D = Γ(X,D(m)
X ), Z = Γ(X,Z(D(m)

X )) and A =
Γ(X,AX). Then

A =
∐

k∈[0,pm+1[d

Ztk,(1)

D =
∐

k∈[0,pm+1[d

A∂<k> =
∐

k∈[0,pm+1[d

∂<k>A by (2.2.i)/[B96, 2.2.5.1](2)

=
∐

k,n∈[0,pm+1[d

Ztk∂<n>.

We have thus only to show

(3) D ⊗Z A 'ModA(D,D) via δ ⊗ δ′ 7→ δ?δ′.

For that, both sides being free over A of the same rank, it is enough by NAK [AM,
2.7+3.9] to verify the surjectivity of (3) at each maximal ideal of A: ∀m ∈ Max(A),

D ⊗Z A⊗A A(m) // // ModA(D,D)⊗A A(m)

∼
²²

D ⊗Z A(m)

∼
OO

ModA(m)(D ⊗A A(m), D ⊗A A(m)).

The surjectivity, in turn, will follow by Jacobson’s density theorem [L, p.647] from the
irreducibility of D ⊗A A(m) as left D ⊗Z A(m)-module.

Put B = k[X]. As A = B[Z] is the polynomial B-algebra in indeterminates

∂<pm+1>
1 , . . . , ∂<pm+1>

d by (2.2.ii),

Max(A) ' Ad
B ' Max(B)× Ad

k.

At (x, y) ∈ Max(B)× Ad
k,

D ⊗A A(m) =
∐

k∈[0,pm+1[d

k∂<k>, D ⊗Z A(m) =
∐

k,n∈[0,pm+1[d

ktk∂<n>.

We may assume ti(x) = 0 ∀i. By (2.2.i)/[B96, 2.2.5.1] again we have only to show

(4) (D ⊗Z A(m))δ 3 1 ∀δ ∈
∐

k∈[0,pm+1[d

k∂<k> \ 0.

Applying the adjoint operator on the 4-th formula in (2.2.i) yields

(−1)|k|b∂<k> =
∑

k′+k′′=k

{
k

k′

}
(−1)|k

′′|∂<k′′>∂<k′>(b) ∀k ∈ Nd ∀b ∈ B,
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where |k| = ∑d
i=1 ki and likewise |k′′|. Consequently, if ki ≥ 1, one has in D ⊗Z A(m)

(−1)|k|ti∂<k> =
∑

k′ 6=0

{
k

k′

}
(−1)|k−k′|∂<k−k′>∂<k′>(ti)

=

{
k

1i

}
(−1)|k−1i|∂<k−1i> with 1i ∈ Nd such that 1ij = δij ∀j ∈ [1, d]

∈ k×∂<k−1i> as qkj ≤ p− 1 ∀j ∈ [1, d],

and (4) will follow.

Remark: As in [BMR] one has AX = CD(m)
X

(OX).

(2.4) Inverse image: In order to treat D(m)
X , m ∈ N, and D(∞)

X = DiffX simultaneously,
put N̄ = N t {∞}. Let f : X → Y be a morphism of smooth k-varieties. Denote the

category of quasi-coherent left D(m)
X - (resp. D(m)

Y -) modules by qc(D(m)
X ) (resp. qc(D(m)

Y )),
m ∈ N̄.

If V ∈ qc(D(m)
Y ), f ∗(V) = OX ⊗f−1OY

f−1V comes equipped with a structure of quasi-

coherent left D(m)
X -module [B00, 2.1.1] such that, suppressing (m), locally

∂<k>
X · (1⊗ v) =

∑

|j|≤|k|
∂<k>

X ((f × f)](τ
{j}
Y )))⊗ ∂<j>

Y v

by Taylor’s expansion formula [B96, 2.3.2.2]

=
∑

j

∂<k>
X ((f × f)](τY )){j} ⊗ ∂<j>

Y v

as (f × f)] is an m-PD-morphism by [B96, 2.1.4],

where τY = τY,1 . . . τY,dY
, τY,i = 1⊗ tY,i− tY,i⊗1 in the sheaf P |k|Y/k,(m) of the principal parts

of level m and of order |k| of Y over k, if (tY,1, . . . , tY,dY
) is a local coordinate on Y , and

(f × f)](τY ){j} = (f × f)](τY )rγq((f × f)](τY )pm

)

if j = pmq + r with γ the PD-structure on P |k|Y/k,(m) [B96, 1.3.5.1]. One thus obtains a

functor ∀m ∈ N̄
f ∗ : qc(D(m)

Y )→ qc(D(m)
X ).

In particular, f ∗(D(m)
Y ) carries a structure of (D(m)

X , f−1D(m)
Y )-bimodule, denoted D(m)

f→ .
Then

f ∗ ' D(m)
f→ ⊗f−1(D(m)

Y )
f−1(?).

If m′ ∈ [m,∞], the morphism f ∗(ρm′,m) : D(m)
f→ → D(m′)

f→ is compatible with the struc-

ture of (D(m)
X , f−1D(m)

Y )-, (D(m′)
X , f−1D(m′)

Y )-bimodules:

(1) D(m)
X ×D(m)

f→ × f−1D(m)
X

©

//

ρm′,m×f∗(ρm′,m)×f−1(ρm′,m)

²²

D(m)
f→

f∗(ρm′,m)

²²

D(m′)
X ×D(m′)

f→ × f−1D(m′)
X

// D(m′)
f→ .
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If g : Y → Z is another morphism of smooth k-varieties, from [B00, 2.1.1]

(g ◦ f)∗ ' f ∗ ◦ g∗.

(2.5) Direct image: Keep the notations of (2.4). ∀m ∈ N̄, denote the category of quasi-

coherent right D(m)
X - (resp. D(m)

Y -) modules by qcrgt(D(m)
X ) (resp. qcrgt(D(m)

Y )). We define

the direct image functor f rgt
+,(m) : qcrgt(D(m)

X )→ qcrgt(D(m)
Y ) for right modules by

f rgt
+,(m) = f∗(?⊗DX

D(m)
f→ ),

using the structure of right f−1D(m)
Y -module on D(m)

f→ [B00, 2.1.3] as in [H88, 3.1]. If ωX

is the dualizing sheaf on X, ωX is equipped with a structure of right D(∞)
X -module, and

hence of right D(m)
X -module for each m via ρm, and defines an equivalence of categories

[B00, 1.2.7]

qc(D(m)
X )

ωX⊗X? //
qcrgt(D(m)

X ).
?⊗Xω−1

X

oo

Then we define the direct image functor
∫ 0

f,(m)
: qc(D(m)

X )→ qc(D(m)
Y ), as in [H88, 7.1], to

be ∫ 0

f,(m)

= (?⊗Y ω−1
Y ) ◦ f rgt

+,(m) ◦ (ωX⊗X?).

Alternatively, f ∗(DY ⊗Y ω−1
Y ) is equipped with two isomorphic natural structures of left

(f−1D(m)
Y ,D(m)

X )-modules [B00, 3.4.1], and defines a (f−1D(m)
Y ,D(m)

X )-bimodule D(m)
f← =

ωX ⊗X f ∗(D(m)
Y ⊗Y ω−1

Y ). One has as in [H88, 7.1]

∫ 0

f,(m)

' f∗(D(m)
f←⊗D(m)

X
?).

In case f is an open immersion, ∫ 0

f,(m)

' f∗.

If m′ ∈ [m,∞], the morphism ωX ⊗X f ∗(ρm′,m ⊗Y ω−1
Y ) : D(m)

f← → D(m′)
f← is compatible

with the structure of (f−1D(m)
Y ,D(m)

X )-, (f−1D(m′)
Y ,D(m′)

X )-bimodules:

(1) f−1D(m)
Y ×D(m)

f← ×D(m)
X

©

//

f−1(ρm′,m)×(ωX⊗Xf∗(ρm′,m⊗Y ω−1
Y ))×ρm′,m

²²

D(m)
f←

ωX⊗Xf∗(ρm′,m⊗Y ω−1
Y )

²²

f−1D(m′)
Y ×D(m′)

f← ×D(m′)
X

// D(m′)
f← .

If g : Y → Z is another morphism of smooth k-varieties,

∫ 0

g◦f,(m)

'
∫ 0

g,(m)

◦
∫ 0

f,(m)

.
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In the derived category we set
∫

f,(m)

= Rf∗(D(m)
f←⊗LD(m)

X

?) : Db(qc(D(m)
X ))→ Db(qc(D(m)

Y )).

(2.6) ∀m ∈ N, put D̄(m)
X = im(ρm) =ModO[m+1]

X
(OX ,OX). Haastert [H88] denoted D̄(m)

X

by DX,m+1, and defined the direct image functor with respect to D̄(m)
X and D̄(m)

Y for each
m ∈ N by

M 7→ f∗(D̄(m)
f← ⊗D̄(m)

X
M) with D̄(m)

f← = ωX ⊗X f ∗(D̄(m)
Y ⊗Y ω−1

Y ),

which we will denote by ∫̄ 0f,(m) : qc(D̄(m)
X )→ qc(D̄(m)

Y ), denoted in [H88] by

∫ 0

f,m+1

. There

is an isomorphism of (f−1D(∞)
Y ,D(∞)

X )-bimodules

D(∞)
f← ' lim−→

m

D̄(m)
f← ,

to yield ∫ 0

f,(∞)

' lim−→
m

∫̄ 0f,(m) : qc(D(∞)
X )→ qc(D(∞)

Y ).

∀m ∈ N, D̄(m)
f← is locally free as right D̄(m)

X -module [H88, 1.2], and hence D̄(∞)
f← is flat over

D̄(∞)
X . It follows that all ∫̄ 0f,(m) and

∫ 0

f,(∞)

are left exact. Put for simplicity

∫ 0

f

=

∫ 0

f,(∞)

.

To relate

∫ 0

f,(m)

to ∫̄ 0f,(m), we have

Proposition: ∀m ∈ N̄,

D̄(m)
Y ⊗D(m)

Y

∫ 0

f,(m)

' ∫̄ 0f,(m) : qc(D̄(m)
X )→ qc(D̄(m)

Y ).

In particular, lim−→
m

∫ 0

f,(m)

'
∫ 0

f,(∞)

=

∫ 0

f

on qc(D(∞)
X ).
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Proof: Consider a natural morphism
(1)

D̄(m)
Y ⊗D(m)

Y

∫ 0

f,(m)
M

©

//____________________ ∫̄0f,(m)M

D̄(m)
Y ⊗D(m)

Y

f∗(D(m)
f← ⊗D(m)

X

M) f∗(D̄(m)
f← ⊗D̄(m)

X

M)

D̄(m)
Y ⊗D(m)

Y

f∗{(ωX ⊗X f∗lft(D(m)
Y ⊗Y ω−1

Y ))⊗D(m)
X

M}
∼

f∗{(ωX ⊗X f∗lft(D̄(m)
Y ⊗Y ω−1

Y ))⊗D̄(m)
X

M}
∼

D̄(m)
Y ⊗D(m)

Y

f∗{(ωX ⊗f−1OY
f−1(D(m)

Y ⊗Y ω−1
Y ))⊗D(m)

X

M} // f∗{(ωX ⊗f−1OY
f−1(D̄(m)

Y ⊗Y ω−1
Y ))⊗D̄(m)

X

M}

δ̄1 ⊗ a⊗ δ2 ⊗ b⊗m
Â // δ̄1 · (a⊗ δ̄2 ⊗ b⊗m),

which is well-defined by (2.5.1). To see it invertible, the question being local, we may
assume Y is affine. Using an affine open cover, we may also assume X is affine. Then (1)
reads as

D̄(m)
Y ⊗D(m)

Y
f∗{(OX ⊗f−1OY

f−1(D(m)
Y ⊗Y ω−1

Y ))⊗D(m)
X
M}→

f∗{(OX ⊗f−1OY
f−1(D̄(m)

Y ⊗Y ω−1
Y ))⊗D̄(m)

X
M}

via
δ̄1 ⊗ a⊗ δ2 ⊗m 7→ δ̄1 · (a⊗ δ̄2 ⊗m) = a⊗ δ̄2(

tδ̄1)⊗m

with inverse tδ̄2 ⊗ a⊗ 1⊗m←−p a⊗ δ̄2 ⊗m.

It follows in the limit that∫

f,(∞)

' lim−→
m

∫̄ f,(m) by [H88, 7.1]

' lim−→
m

{D̄(m)
Y ⊗D(m)

Y

∫

f,(m)

}

' (lim−→
m

D̄(m)
Y )⊗

(lim−→
m

D(m)
Y )

(lim−→
m

∫

f,(m)

) by [BA, II.6.7 Prop.12]

' D(∞)
Y ⊗D(∞)

Y
(lim−→

m

∫

f,(m)

)

' lim−→
m

∫

f,(m)

.

(2.7) Kashiwara’s equivalence [Kas70]: ∀m ∈ N̄, after the functor

f̄+
rgt,(m) =Mod(f−1D̄(m)

Y )(D̄(m)
f→ , f−1 ?) : qcrgt(D̄(m)

Y )→ qcrgt(D̄(m)
X )

in [H88], define a functor

f+
rgt,(m) =Mod(f−1D(m)

Y )(D(m)
f→ , f−1 ?) : qcrgt(D(m)

Y )→ qcrgt(D(m)
X ).

As in [H88, 8.12]:

(?⊗X ω−1
X ) ◦ f̄+

rgt,(m) ◦ (ωY⊗Y ?) ' (f−1D̄(m)
Y )Mod(D̄(m)

f← , f−1 ?) : qc(D̄(m)
Y )→ qc(D̄(m)

X ),

10



which we denote by f̄+
(m), one obtains

(?⊗X ω−1
X ) ◦ f+

rgt,(m) ◦ (ωY⊗Y ?) ' (f−1D(m)
Y )Mod(D(m)

f← , f−1 ?) : qc(D(m)
Y )→ qc(D(m)

X ),

which we will denote by f+
(m).

Assume in the rest of §2 that f is a closed immersion defined by an ideal sheaf IX of

OY . ∀m ∈ N̄, let qcrgt
X (D̄(m)

Y ) be the full subcategory of qcrgt(D̄(m)
Y ) consisting of those

M with supp(M) ⊆ X. ∀m ∈ N, let I [m]
X = {apm | a ∈ IX} and let qcrgt

[X(m+1)]
(D̄(m)

Y ) be

the full subcategory of qcrgt(D̄(m)
Y ) consisting of those M annihilated by I [m+1]

X . Define

likewise qc[X(m+1)](D̄(m)
Y ) and qcX(D̄(m)

Y ) for left modules.

As f is a closed immersion, all ∫̄ 0f,(m),

∫ 0

f,(m)

, m ∈ N̄, are exact, so that we may suppress

0 from those.

Theorem [H88]: (i) ∀m ∈ N, f̄+
rgt,(m) |qcX(D̄(m)

Y )
is right adjoint to f̄ rgt

+,(m), and hence

taking direct limit, f+
rgt,(∞) |qcX(D(∞)

Y )
is right adjoint to f rgt

+,(∞).

(ii) ∀m ∈ N, f̄+
(m) |qcX(D̄(m)

Y )
is right adjoint to ∫̄ f,(m), and hence taking direct limit,

f+
(∞) |qcX(D(∞)

Y )
is right adjoint to

∫

f

=

∫

f,(∞)

.

(iii) There are categorical equivalences

qc(D̄(m)
X )

∫̄f,(m) //
qc[X(m+1)](D̄(m)

Y ) ∀m ∈ N,
f̄+
(m)

oo

and hence also

qc(D(∞)
X )

R
f //

qcX(D(∞)
Y ).

f+
(∞)

oo

(2.8) In the limit lim−→
m

∫

f,(m)

'
∫

f

Kashiwara’s equivalence holds by (2.7). At each m ∈ N,

however,

∫

f,(m)

fails to induce an equivalence: define the subcategories qcrgt
X (D(m)

Y ) of

qcrgt(D(m)
Y ), and qcX(D(m)

Y ) of qc(D(m)
Y ) just as for D̄(m)

Y .

Proposition: Let m ∈ N.

(i) Each f+
rgt,(m) |qcrgtX (D(m)

Y )
is right adjoint to f rgt

+,(m); hence also each f+
(m) |qcX(D(m)

Y )
is

right adjoint to

∫

f,(m)

.

11



(ii) ∀L ∈ qcrgt(D(m)
X ) \ 0, unless f is invertible, the adjunction

L → f+
rgt,(m) ◦ f rgt

+,(m)(L)

is not epic; hence also the adjunction

L ⊗X ω−1
X → (f+

rgt,(m) ◦ f rgt
+,(m))(L)⊗X ω−1

X

= {(?⊗X ω−1
X ) ◦ f+

rgt,(m) ◦ (ωY⊗Y ?) ◦ (?⊗Y ω−1
Y ) ◦ f rgt

+,(m) ◦ (ωX⊗X ?)}(L ⊗X ω−1
X )

= f+
(m) ◦

∫

f,(m)

(L ⊗X ω−1
X )

is not epic.

Proof: The arguments are the same as in [K?]. To illustrate, consider for example the
case Y = Spec(k[x, y]), X = Spec(k[x, y]/(y)). Put A = k[x, y], Ā = k[x] ' k[x, y]/(y),

D(m)(A) = Γ(Y,D(m)
Y ) =

∐
i,j∈NA∂<i>

x ∂<y>
y , D(m)(Ā) = Γ(X,D(m)

X ) =
∐

i∈N Ā∂<i>
x , and

D
(m)
f→ = Γ(X,D(m)

f→ ).

If L is a D(m)(Ā)-module, the adjunction reads as

`
Â // `⊗ ?

L //

%%K
K

K
K

K
K

K
K

K
K

K
K

K
K

K
K

K
K

K
K

K
K

K ModD(m)(A)(D
(m)
f→ , L⊗D(m)(Ā) D

(m)
f→ )

∼

` ­

$$JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ ModD(m)(A)(Ā⊗A D(m)(A), L⊗D(m)(Ā) D
(m)
f→ )

∼

ModA(Ā, L⊗D(m)(Ā) D
(m)
f→ )

∼
AnnL⊗k(

‘
i∈N k∂<i>

y )(y)

`⊗ 1 {v ∈ L⊗k (
∐

i∈N k∂<i>
y ) | vy = 0},

where the structure of left D(m)(Ā)-module on ModD(m)(A)(D
(m)
f→ , L ⊗D(m)(Ā) D

(m)
f→ ) is

given by
δ · (`⊗ ?) = `⊗ ((tδ)?) with tδ the adjoint of δ,

⊗D(m)(Ā) is taken with respect to the structure of right D(m)(Ā)-module on L such that

12



` · δ = (tδ)`. Now

(`⊗ ∂<i>
y )y = `⊗

∑
j≤i

{
i

j

}
∂<j>

y (y)∂<i−j>
y

= `⊗
∑
j≤i

{
i

j

}
q!

(
1

j

)
y1−j(y)∂<i−j>

y with j = pmq + r, r ∈ [0, pm[

= `⊗ (

{
i

0

}
y∂<i>

y +

{
i

1

}
∂<i−1>

y )

=

{
i

1

}
`⊗ ∂<i−1>

y as y = 0 in Ā

=

{
`⊗ ∂<i−1>

y if 1 ≤ i ≤ pm − 1

0 if, eg., i = pm+1.

Thus `⊗ ∂<pm+1>
y ∈ AnnL⊗k(

‘
i∈N k∂<i>

y )(y).

On the other hand, as D̄(m)(A) =
∐pm−1

i,j=0 A∂<i>
x ∂<j>

y , the adjunction for D̄(m)(Ā)-
module reads

L→ Ann
L⊗k(

‘pm−1
i=0 k∂<i>

y )
(y) ' L.

3◦ Verma modules

(3.1) Back to the set up of §1, let Bw = B+wB/B with B+ the Borel subgroup opposite

to B, and kw : Bw ↪→ B. We will abbreviate D(m)
B as D(m). ∀m ∈ N̄, D(m)

kw← is locally

free as right D(m)
Bw

-module. Then, as kw is affine,

∫ 0

kw,(m)

= kw∗(D(m)
kw←⊗D(m)

Bw

?) is exact on

qc(D(m)
Bw

), so that we may write

∫

kw,(m)

for

∫ 0

kw,(m)

.

If Bw is the closure of Bw in B, ∂Bw = Bw \ Bw, and if `(w) is the length of w, one has
[K98, 4.1] as in characteristic 0

(1) RΓBw/∂Bw
'

∫

kw,(m)

◦L(k∗w)[−`(w)] : Db(qc(D(∞)))→ Db(qc(D(∞)));

∀i ∈ N, ∃ isomorphism of B+-equivariant D(∞)-modules

(2) Hi
Bw/∂Bw

(OB) '




∫

kw

OBw if i = `(w)

0 otherwise;

and ∀j ∈ N, ∃ isomorphism of Dist(G)−B+-modules

(3) Hi(B,Hj

Bw/∂Bw
(OB)) '

{
H

`(w)
Bw

(B,OB) if i = 0 and j = `(w)

0 otherwise.
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∀λ ∈ Λ ' GrpSch(B, GL1), let kλ be the 1-dimensional B-module defined by λ
and put ∆∞(λ) = Dist(G) ⊗Dist(B) kλ. If M is a T -module, we will denote by ch M =∑

λ∈Λ dim(Mλ)e(λ) the formal character of M in the group ring Z[Λ] =
∐

λ∈Λ Ze(λ) of Λ.

Proposition: Let λ ∈ Λ and L(λ) the invertible OB-module induced by λ.

(i) [K90, 3.1]: There is an isomorphism of Dist(G)− T -modules

H0
B1

(B,L(λ)) ' ∆∞(−λ)?,

where the RHS is the weight-space-wise dual of ∆∞(−λ).

(ii) [K90, 3.2]: ch H
`(w)
Bw

(B,L(λ)) = ch ∆∞(−w • λ)? = e(w • λ)
∏

α∈R+

1

1− e(−α)
.

(iii) [K90, 3.2]: If s is a simple reflexion in W and if ν ∈ Λ, there is an isomorphism
of Dist(G)-modules H1

Bs
(B,L(λ)) ' H0

B1
(B,L(ν)) iff λ = s • λ = ν.

(iv) Bøgvad [Bø02]: H`(w)

Bw/∂Bw
(OB) is coherent over D(∞).

(v) Assume p > 2(h − 1). ∀m ∈ N, H`(w)

Bw/∂Bw
(OB) is not coherent over D(m) under

ρm : D(m) → D(∞). In particular,

∫

k1,(m)

OB1 ' k1∗OB1 ' H0
B/∂B1

(OB) is not coherent

over D(m).

Proof: (v) We have only to show that H`(w)

Bw/∂Bw
(OB) is not of finite type over D̄(m). For

that, as D̄(m) is a D̄(0)-module locally of finite type, it is enough to verify thatH`(w)

Bw/∂Bw
(OB)

is not coherent over D̄(0). Just suppose H`(w)

Bw/∂Bw
(OB) is coherent over D̄(0). Then by the

BMR derived equivalence

Db(U0mod0) 3 RΓ(B,H`(w)

Bw/∂Bw
(OB))

' H
`(w)
Bw

(B,OB) as H`(w)

Bw/∂Bw
(OB) is Γ(B, ?)-acyclic by (3).

It then follows from [BMR, 3.1.6] thatH
`(w)
Bw

(B,OB) ∈ U0mod0. Moreover, asH`(w)

Bw/∂Bw
(OB)

is a D̄(0)-module, H
`(w)
Bw

(B,OB) ' Γ(B,H`(w)

Bw/∂Bw
(OB)) is a U0-module: under the morphism

(1.3.1) one has

Γ(V(TB),OV(TB))

©

∼
²²

k[N ]
p]
2oo

Γ(B, S(TB))
∼

²²

k[g]

res

OO

∼
²²

S(Derk(OB)) S(g).
S(gop−action onOB)

oo

Then H
`(w)
Bw

(B,OB) would be a U0-module of finite type while H
`(w)
Bw

(B,OB) is infinite
dimensional by (ii), absurd.
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(3.2) Let m ∈ N. ∀w ∈ W , let Iw be the ideal sheaf of OBw defining w and let O(m)
FN (w) =

OBw/(I [m]
w ) be the direct image of the structure sheaf of the m-th Frobenius neighbourhood

of w in Bw. Put

Zw,(m) = D̄(m) ⊗D(m)

∫

kw,(m)

O(m+1)
FN (w),

Gm = ker(Frm : G→ G(m)) (resp. Bm = ker(Frr : B → B(r))) the m-th Frobenius kernel
of G (resp. B), wBm = wBmw−1, and

∆m(w) = Dist(Gm)⊗Dist(wBm) kw•0−(pm−1)(ρ+wρ).

Thus the formal character of ∆m(w) is

ch ∆m(w) = e(w • 0)
∏

α∈R+

1− e(−pmα)

1− e(−α)
.

Theorem: Let m ∈ N.

(i) Zw,(m) is Γ(B, ?)-acyclic.

(ii) ∃ isomorphism of Gm+1T -modules

RΓ(B,Zw,(m)) ' ∆m+1(w).

(iii) Zw,(m) is irreducible over D̄(m) with support {wB}.

(iv) Recall from (2.2.ii) that Z(D(m)) is locally a polynomial algebra over OB(m+1) in

∂<pm+1>
i , i ∈ [1, N ], N = |R+|. Accordingly, there is a natural morphism of schemes

f : Spec(Z(D(m))) → B(m+1). Let f̄ : (Spec(Z(D(m))),OSpec(Z(D(m)))) → (B(m+1), Z(D(m)))

be the induced morphism of ringed spaces. Then Zw,m is a unique simple D(m)-module
of support {wB} and supported by Spec(Z(D(m))/Km) in Spec(Z(D(m))) through f̄ , i.e.,
supp(f̄ ∗(Zw,m)) ⊆ Spec(Z(D(m))/Km).

(v) If p > 2(h−1), under the BMR derived equivalence ∃ isomorphism in Db(Coh(D(0)))

Zw,(0) ' D(0) ⊗LU0 ∆1(w).

Proof: One can show (i)-(iii) and (v) just as in [K?]: by (2.6)

D̄(m) ⊗D(m)

∫

kw

O(m+1)
FN (w) ' ∫̄ kw

O(m+1)
FN (w).

(iv) Let L be a simple D(m)-module of support {wB} such that supp(f̄ ∗(Zw,m)) ⊆
Spec(Z(D(m))/Km). Consider the adjunction L → jw∗j−1

w (L) ' jw∗(L|Ωw). On Ωw it is
invertible: L|Ωw ' {jw∗(L|Ωw)}|Ωw , while on Ωy, y ∈ W \ {w},

Γ(Ωy,L) ≤
∏
z∈Ωy

Lz = 0 as wB /∈ Ωy;
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likewise Γ(Ωy, jw∗(L|Ωw)) = Γ(Ωy∩Ωw,L) ≤∏
z∈Ωy
Lz = 0. It follows that the adjunction

is an isomorphism of D(m)-modules L ' jw∗(L|Ωw). It thus sffices to show

L|Ωw ' ∫̄ iwO(m+1)
FN (w).

By the irreducibility of L one must have L|Ωw irreducible over D(m)
Ωw

. Put for simplicity

L = Γ(Ωw,L), D = Γ(Ωw,D(m)). If A = Γ(Ωw,OB) and N = |R+|, by (2.2.ii)

Z(D) = A[m+1][∂<pm+1>
i | i ∈ [1, N ]].

Write L ' D/I for some maximal ideal I of D. As D is free over Z(D) of finite rank by
(2.3.2), L is of finite type over Z(D). Then by [BC, II.4.4 Prop.17]

suppSpec(Z(D))(L) = V(AnnZ(D)(L)).

Consequently, ∀i ∈ [1, N ], ∃ni ∈ N : (∂<pm+1>
i )niL = 0. Then, in fact, ∂<pm+1>

i L = 0

already. For put δ = ∂<pm+1>
i . It is enough to show δD ⊆ I. Otherwise by the maximality

of I
D = I + Dδ as Dδ = δD, δ being central in D.

Thus ∃δ1 ∈ D, δ2 ∈ I such that 1 = δ2 + δ1δ. Then δni−1 = δni−1δ2 + δ1δ
ni ∈ I as δni ∈ I.

It would then follow that δni−2 = δni−2δ2 + δ1δ
ni−1 ∈ I. Repeat to get 1 ∈ I, absurd. It

follows that L admits a structure of D̄-module with D̄ = Γ(Ωw, D̄(m)).

On the other hand, by Cartier-Chase-Smith [H87] D̄ is Morita equivalent to A(m+1).
Identify Ωw with AN

k with wB 7→ 0, and write A = k[t] = k[t1, . . . , tN ].

By the Nullstellensatz any irreducible k[t]-module is of the form k[t]/(t1−a1, . . . , tN −
aN), ai ∈ k, nonisomorphic to each other. The corresponding D̄-module is k[t] ⊗k[t](m+1)

(k[t]/(t− a))(m+1). But

suppAN
k
(k[t]⊗k[t](m+1) (k[t]/(t− a))(m+1)) = V(Annk[t](k[t]⊗k[t](m+1) (k[t]/(t− a))(m+1)))

by [BC, loc. cit.]

⊆ V((t− a)pm+1

) as each tp
m+1

i − apm+1

i = (ti − ai)
pm+1

annihilates

k[t]⊗k[t](m+1) (k[t]/(t− a))(m+1)

= V((t− a)) = {(t− a)}.

Consequently, we must have L ' k[t]⊗k[t](m+1) (k[t]/(t))(m+1), and hence by the unicity of
such

L|Ωw ' ∫̄ iwO(m+1)
FN (w),

as desired.
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