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After the success of Bezrukavnikov, Mirkovic and Rumynin [BMR], we would like to
examine some basics of the sheaf Dy of rings of crystalline differential operators on a
smooth variety X over an algebraically closed field k.

Let Diffx = Diffxu(Ox,Ox) be the sheaf of rings of differential operators on X/k
as defined in [EGAIV]. The sheaf Dx was introduced by Beilinson and Bernstein [BB],
having the presentation

Dx = T(Diffx)/
A= AMow,a®6—as,5®8 —5 @6—[5,0] | A€k ac Ox:6,8 € Diffl),

where Diffk is the sheaf of differential operators of order < 1 in Diffx and Ty (DiffL)
is the tensor algebra over k of Diffyx. Thus Dx coincides with Berthelot’s sheaf of PD-

differential operators on X/k [B] or Dg?) in [B96], and is in characteristic 0 just Diffx.

Let f : X — Y be a morphism of smooth quasi-projective k-varieties. Omne can
define the direct image functor [ P D(qc(Dx)) — Db(qe(Dy)) of f from the bounded
derived category of quasi-coherent Dx-modules to that of quasi-coherent Dy-modules
just as in characteristic 0. If f is a closed immersion, [ f is exact, and in characteristic 0
induces an equivalence of category qc(Dx) with the full subcategory qcy (Dy) of qc(Dy)
consisting of those with support contained in X [K]. In positive characteristic, however,
| 1o longer induces an equivalence, as opposed to the direct image functor defined for
Diffx and Diffy by Haastert [H]. Nevertheless, the image of Dy in Diffx under the
natural morphism is the first term of the p-filtration on Diffx and is a central reduction,
denoted Dy, of Dx. According to [H] the direct image functor / P for Dx and Dy gives
an equivalence of category qc(Dx) to the full subcategory of qc(Dy) consisting of those
annihilated by the p-th power of the ideal sheaf of Oy defining X.

We will show that for Y a flag variety G/B, G a simple algebraic group over k, B
a Borel subgroup of G, and X a Chevalley-Bruhat cell in Y, the direct image [ ; of
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the structure sheaf of the Frobenius neighbourhood of a point in X is a coherent @G/ B-
module and corresponds under the Bezrukavnikov-Mirkovic-Rumynin derived equivalence,
i.e., by taking global sections, to an infinitesimal Verma module, a standard object in the
representation theory of (G; the determination of the composition factor multiplicities of
those infinitesimal Verma modules as GG T-modules, G; the Frobenius kernel of G and T a
maximal torus of B, obtains the characters of all simple G-modules for p > h the Coxeter
number of G. We find, however, that those direct image @G/B—modules are simple as
D¢ /p-modules.

The author is grateful to Roman Bezrukavnikov and Dmitriy Rumynin for their in-
spiring lectures delivered at Osaka City University, especially to Dmitriy for patiently
explaining the work [BMR] in much detail, and to Tanisaki Toshiyuki for some valuable
suggestions.

1° Kashiwara’s equivalence

Throughout the rest of the paper k will be assumed to have characteristic p > 0. By
®x we will mean the tensor product over the structure sheaf Ox of X. For a category C
and its objects C7, Cy we will denote the set of morphisms in C from C to Cy by C(Cy, Cy).
Let f: X — Y be a morphism of smooth quasi-projective k-varieties.

(1.1) Let us briefly recall from [B00] the construction of the direct image functor [ o T he
inverse image functor f* : q¢(Dy) — qc(Dx) defines a (Dx, f~'Dy)-bimodule Dy, =
[*Dy = Ox ®-10, f~'Dy with the structure of right f~'Dy-module provided by the
multiplication to the right on f~'Dy.

If qc'8"(Dy) is the category of quasi-coherent right Dx-modules, the direct image func-
tor fi¥' 1 qc®(Dx) — qc™®(Dy) for right modules is defined by fi#' = f.(? ®p, D;_.),
using the structure of right f~'Dy-module on D;_.. If wy is the dualizing sheaf on X, wx
is equipped with a structure of right Dx-module and define an equivalence of categories
wx®x?:qe(Dx) — qc8(Dy) with quasi-inverse ?®x w;(l. Then the direct image functor
fj? : q¢(Dx) — qc(Dy) is defined by

0
/ = (?®y wy') o fi¥ o (wx®x7?).
!

Alternatively, f*(Dy ®y wy') is equipped with two isomorphic natural structures of left
(f'Dy, Dx)-modules [B00, 3.4.1], and defines a (f~'Dy, Dx)-bimodule D = wy Qx
f*(Dy Ry w{;l). Then
0
/ >~ f*(Dfe®DX?)-
f

In the derived category we set [, = Rf.(D;—®p.7) : D’(qe(Dx)) — D*(qc(Dy)).

In case f is an open immersion, [ ;o Rf.. If g : Y — Z is another morphism of
smooth quasi-projective k-varieties, [  , =~ fg of 4

(1.2) Assume from now on that f is a closed immersion. Let us describe the local structure
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of Dy_, and Dy._. Let P be an affine open of Y with coordinate (t1,...,¢, 41, ..., trys)
such that f~1'9 is defined by the ideal (¢i,...,t,) and is equipped with coordinate
(tri1,---,tres), where ¢; is the image of t; in k[f'Y]. Put A =k[], D( ) (9, Dy)

0= 5 € D(A),j € [Lr+s], A=Kk[f'Y], D(A) =T(f 'Y, Dx), 0 = 57 € D(A),
r+ 1,7 +s], Dy, = I'(f 1&D,Df_>), Dy = T(f7'9,D;). Then the structure of
(A), D(A))-bimodule on Ds_. ~ A ®4 D(A) is given by

(D
(1) (@d) - (1®08) -8 =1®ad;dd Va€ AVS,§ € D(A)Vi € [r+1,r + 3],
where @ is the image of a in A. It follows that D;_. is free over D(A) of basis 9",n € N" :

2) Dy~ Awa( J[ 40" ~ (] 40" @x (]] k0") =~ D(A) @ (]] k™),

keNr+s £ENS neNr neN”

where OF = 9" .. 8,";25, etc., and the structure of D(A)-module on the RHS is given by
the multlphcatlon to the left on D(A). On the other hand, the structure of (D(A), D(A))-
bimodule on Dy ~ A®4 D(A) is given by

3) & -(1®6)-(ad) = 1® (ad)5('8) Vae AVS,8 € D(AVie [r+1,r+s),

where {(ad;) = —0;a is the adjoint of ad;. Thus Dy is also free over D(A) of basis
o",neN":
(4) Dy = (]] ko") @« D(A),

neN”

where the structure of D(A)-module on the RHS is given by the multiplication to the
right on D(A). In particular, f]? is exact, and hence we may abbreviate f)? as [ 2

Define another functor f; : q¢"8(Dy) — qc'8'(Dx) via M +— Mod(f ' Dy )(Ds—, ' M)
the sheaf of morphisms of right f~'Dy-modules from D;_, to f~*M. If qc'¥'(Dy) is the
full subcategory of qc™'(Dy) consisting of those with support C X, then as in char-
acteristic 0 or as for the ordinary differential operators Diff in place of D, figt is left
adjoint to fif ' (py) [H, 8.4]. Accordingly, if [T =0 ®xwy')o fi o (wy®y?) =~
(f'Dy)Mod(Dy—, f~'7) : q¢(Dy) — qe(Dx), then ff is left adjoint to f* |4e, (py)-

(1.3) Keep the notations of (1.2), but with r = 1 for simplicity. Let M € qc®"(Dy), L €
qc¥ (Dy), and put M =T(f'YP,M), L =T(D,L). Then the adjunctions idqee(py) —

i Of " and fi*'o o8 (Dy) > 1dges py ) read for Mon f 19 and £ on 9), respectively,
as the following commutative diagrams

rgt

(1) mi me?
M\ - MOdD(A)(Df_),M ®D(A) Df_,)
~ o . ‘N
m TS ModD(A)(A®4 D(A), M @pz) (D(A) @[] k%)

“ - - _ModA(A, M @ ][, k%)

-
- ‘ ~

EN

me1 AnnM®k(Hi€N ko1 (1),



where Annye, 1, koi)(t1) is the annihilator of ¢, in M @y ([];cnk0}), and
(2) p RN o(n)

~

—
—
—
—
—
—
—
—
—
—

Anny(t1) ®x ([, k1) v® 0o
But Vm € M one has in M ® (][, k0}) ~ M @pay (L1, D(A)d})

_m®2(> (t1)077 by [B96, 2.2.4]

=meQ (tlf)i +Za{ 1)
=m®id! ast; =0in A,

hence Annyg, g1 ko) (1) = M @i ([ ey koy"). It follows that M — (fif, 0 f12")(M) cannot
be epic unless M =0.

Take £ = f¥'(M). Then (2) reads as

(3) ModD(A)(Dy—, L) @pay Dy— L
~ O ~
(M Rk HieN kafi) Rk (HieN k@i) 7777 =M Ok (HiEN k@i)
me oo m®6‘fi+j,

which fails to be monic unless M = 0. Consider also the case A =k[t], A =k[t]/(t) ~k,
and L = Kk[t]/(t?"). As t* is central in D(k[t]), L admits a structure of rlght D(k[t))-
module :

a-6=(")(a) VaeL,6€ D(A).
Then (2) reads as
(4) (" 'L) @ (J[k0) = L via a®d — (~1)%(a),
ieN
which fails to be surjective.

It figt were to be an equivalence to a subcategory C of qcy (Dy), its quasi-inverse should
be its right adjoint f;f; |c. We thus find a failure of Kashiwara’s equivalence :

Proposition. ff :qc(Dx) — qe(Dy) does not induce an equivalence of categories unless
f s an isomorphism.



(1.4) Recall from Haastert [H], however, that the direct image functor from qc(Diffx) to
qc(Diffy) induces an equivalence and likewise for the r-th terms Mod O(T)((’)X, Ox) and
X

Mod ) (Oy, Oy ), 1 € N, of the p-iltration on Diffy and on Diffy, respectively, where
Y

Og) = {a”" | a € Ox} and likewise Og). After [H] we will denote Mod ) (Ox, Ox) by
X
Dx,. The direct image functor
0
/ - f*(Df<—77‘®'DX,r ?) : qC(DX,'I‘) - qC<DY,r> with Df«—,'r =wx ®x f*(DY,T Ry w;1>
fr
is exact, and an equivalence to the full subcategory of qc(Dy,,.) consisting of those anni-

hilated by (a?" | a € Zx), Zx the ideal of Oy defining X.

Back to the general f : X — Y and ¢ : Y — Z two morphisms of smooth quasi-
projective k-varieties, recall also that

(1) /f - / ° / ,

with ffr = Rfi(Dj—®py, ?), etc.; Dy, is a projective right Dy ,-module. In case f
is an open immersion [ o Rf. again. The image of Dy in Diffx under the natural
morphism is Dx 1 = Mod ) (Ox,Ox), and is isomorphic to a central reduction of Dx

X

Dx = Dx @3, {Sx(Tx)V/ (T},

where 3 x is the center of Dy, which is isomorphic to Sx (75 X)(l) with 7x the tangent sheaf
of X [BMR, 1.3.3]:

(2) Dx Diffx
@)
2_)X— - >M0d

o (Ox; Ox).

Thus we will write ]3 for fj?l.

2° Verma modules

In this section we let B = /B with G a simple algebraic group over k and B a Borel
subgroup of GG, T" a maximal torus of B, U~ the unipotent radical of B, R the root
system of G relative to T', RT the positive system of R such that the roots of B are —R™,
W = Ng(T)/T the Weyl group of G, B the Borel subgroup of G opposite to B, U™ the
unipotent radical of BY, A the charactrer group of T, Gy (resp. Bj") the Frobenius kernel
of G (resp. B™), Dist(G1) = k[G1]* the algebra of distributions of G, etc., and 4 the
universal enveloping algebra of the Lie algebra g of G.

For w € W let Q, = wU"B/B, B, = UtwB/B, and let i, : B, — €, (resp.
Jw : S — B) be the closed (resp. open) immersion. As j, is affine, fj(; = (Ju)s = ];)w

is exact, so therefore are f] 0 = fjo o fio and ]?woiw; we may thus drop superscripts 0
from those. Put D = Dg.



(2.1) Let us begin with G = SLy, B consisting of lower triangular matrices and T of
diagonals. There is an isomorphism of k-varieties from B to the projective 1-space P! via

b 0 1 : 1
{CCL d} — [b,d]. Let s = <_1 0) and put klz] = I'(Q, Op) with = : [O Cll] — a, and

Kl = 0(0,0g) with y: [ 1] = —a. Then

I'(B, Op,) ~k[z] while T'(B, Og,) ~ [ [ &0},

Jioiy JsOts ieN
As T'(Qs, fjlm Og,) ~ K[y, ] is not of finite type over I'(€2s, D), unlike in characteristic 0
(1) / Op, is not coherent over D.
Ji1oig

If (e = <8 (1]) Jh = ((1) _01) = ((1) 8)) is the standard basis of g, the structure

of -module on k[z] and on ][, kd; are given, respectively, through
U —T(Q,D) suchthat ers —0,,h+ —220,, f — 2°0,,

and

U —T(Qs,D) such that e 4?0y, h— 2yd,, f — —0,.
Then
(2) socy (k] H ka?"  with 4 acting trivially on each ka'",

€N
and
p . .
(3)  klz]/socy(k[z]) ~ [ [{tla? ™/ (ka?" ® ka?™)}  with each UaP ! = " ka?'t
1€EN .

One has U4/ (27 — 2! | x € g) ~ Dist(G}), and there are isomorphisms of G;T-modules
(4) UzP T [ka?' ~ Dist(Gy) Spist(B7) (—2pi — 2),

Yo kaP D ~ Dist(G) @pise(zy) (—2p(0 + 1) +2),
where we identify A with Z and each k € Z denotes the corresponding 1-dimensional

Bif T-module.

On the other hand, if $4(b™) is the universal enveloping algebra of the Lie algebra b™
of BT,

(5) H k&; ~ § Qs((p+) (—2),
iEN
which admits a filtration of Y-modules

[Txo, > ] ko, > [[xo; > [] ko, ...

ieN i>p—1 i>p i>2p—1
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such that Vn € N,

(6) H ko, ~ U Qypry (—2pn — 2),
i>np
H ]ka; ~ U Dgp+) (—2p(n+1)),
i>(n+1)p—1
(T 00/ TT 0) = Dist(Gr) @pprs, (~2m — 2),
i>np i>(n+1)p
( H ka,)/( H kd,) ~ Dist(G1) pis(r) (—2p(n +1)).
i>(n+1)p—1 i>(n+2)p—-1

(2.2) Back to the general setup, if U, is the root subgroup of G corresponding to a € R,
the group multiplication induces isomorphisms of k-varieties

(1) Ut~ [] V..
a€ERt
0 g _ % > >
Put k[U,] = k([za], 0a = S 0y = e [0,p[, and D(Qy) = I'(£21, D). Under the

identification (1) we may write

D)= ][] klza|acRTo" with o"= [[ o5

nel0,p[RT acw(RY)

Let pu&) € Dist(U,), ¢ € N, such that ug)(asfx) = 0;; for each j € N.

Lemma. Under the k-algebra homomorphism Dist(U;") — D() induced by the G-

action on B from the left
H /“L((xp_l) . H 8&”_1).

a€Rt a€Rt

Proof: Let 7, ..., 7 be the simple roots of R* and define the height of each o € R™ to
be ht(a) = Y2r_, n; if a = 32t_, mym;. Enumerate R such that ht(a;) # ht(ay) if 7 < j.
Accordingly, write z; (resp. 0, ugj )) for z,, (resp. O, ug)). By Chevalley’s commutator
formulae the comorphism k[z; | j € [1, N]] — k[z;] @k k[z; | j € [1, N]] of the U,,-action

N
on [[;_, U, reads

l’j'—> e . .
1+ 1®ax; if j =1

Thus the homomorphism Dist(U;") — D(£2;) sends uz(»l) to —0; + ;. ai;0; for some
a; € K[z | k€ [L,N]]. As & =0 for any j in D(€) and as ,ugf;_l) — 8](\1;_1),

N N —1 N

(p—1) ( v j>i Y] (p—1)
[Iw =11 o
=1 =1

P (p—1)!



The same argument yields vazl u?’ s independent of the order as ,ug.l) ,u§p ) Vi

in Dist(U;").

(2.3) For each w € W let Z,, be the ideal sheaf of Op, defining wB in B, and let
FN(w) = FNg, (wB) be the infinitesimal Frobenius neighbourhood of wB in B,, defined
by (a? | a € I,). If ky : FN(w) — By, ku:Orx(w) is equipped with a structure of
T-equivariant coherent Dp, -module.

PI‘OpOSitiOIl. Let Aw = RF(B fj ozwkw*OFN ) F(B fjwolw kw*OFN )

(i) There is an isomorphism of G1T-modules
A, =~ Dist(Gh) ®pistwn,) (w -0 — (p—1)(p+ wp)),

where Y By is the Frobenius kernel of “B = wBw™! and w -0 = wp — p with p =
%ZQER+ .

(ii) If D(Q) = T(Q, D), A,, is simple as D(2,)-module.
(iii) [}, 0, KuwsOrN(w) is coherent over D with supp([;, i, kuOrn(w)) = {wB}.

Proof: Let Uy = (“U") NU* with “U* = wU w™", and U, the Frobenius kernel of
U One has a commutative diagram of k-varieties

(1) T TW
vyt Qy
U ~ B,.
U, FN(w).

Let RE = {wa = 0| a € RT}. If U, is the root subgroup of G corresponding to a € R,
the group multiplication induces isomorphisms of k-varieties

(2) ~ ] V.. Uf=~ ][ Ve

acw(RT) aeRiE
Put k[U,] = k[z,], On = 6% and D(£2,) = I'(Qy, D). Under the identification (2)
D)= [ KUM= 1T k["U]o7 0
n€l0,p[¢ () JE(0pl T ke(0,p[

with 0" = [[,c,(r+) 0o, etc. By (1.2.3) there is an isomorphism of D(Q,,)-modules

(3) Ay ( [T k0" @ (Kfra | @ € RE]/(ah | o € RY))

ne(0,p[ftw



with the structure of D(£,,)-module on the RHS given by
(4) (b00") - (0" @ a) = (1) 3 (" : ”) 7t @ 0 (5)0"(a)
S \
Va € k[Uzj,l] Vb e k[wUﬂ VEk € [07p[R1J;7 vj?” € [Oap[R;7 where |.]| = ZaERJ ja-
Let us now consider the T-module structure on A,,. If wy+ (resp. wg) is the dualizing
sheaf on U} (resp. B) and if w(U}) (resp. w()) is a K[UJ] (resp. Kk[Q])-basis of

DUy, wyt) (vesp. T'(y,wp)), then the T-weights of w(U;) and w(§2,,) relevant to A,
are

(5) wtw(U,) == > a, wtw())=- > wa.

a€RY a€Rt

It follows that in A,,

(6)  wt(@"®@a™) = (> naa) = (Y mgB) +w-0 Vn e 0,p[* Vm € [0, p[*
a€Ry BeRY

Therefore the formal character of A, is
chA,, = e(w - 0)chDist(U; ) = e(w -0 — (p — 1)(p + wp))chDist (“U;").

As wt(1®] [ peps 207 1) = w-0—(p—1)(p+wp), 1@ [ et 24" is stabilized by Dist(* By),
and hence there is a homomorphism of G;T-modules

2 Dist(G1) ®pist(wy) (w -0 = (p = 1)(p+wp)) — Ay

such that 1®1+— 1®]] . R zP~1. In turn, ¢ induces a homomorphism of “U; -modules

Dist(*U;") — A, such that p— p-(1® H P h).

a€RY

p—1
s e (WTTHY ~ : _ (%) wrT+_ ot (WITF
Writing Dist("U;) ~ @gew(r+)Dist(Us1) = @pew(r)(] [ ki), the “Uy-socle of Dist(*U;")

=0

18 k(®5€w(R+)N(ﬁp_1))‘ As
(®ﬂew(R+)N@ 1® H b 1 H ap 1) ®1#0
aER+ aER,,

by (2.2) and (4), it follows that v is injective, and hence bijective by dimension.

(ii) By (4) one also has a surjective homomorphism of D(2,,)-modules
D)/ > DQ)us— A, via §—6-(1a [] 227,
Bew(R+) aER]

which is bijective by dimension. On the other hand, the simplicity of D(Qy,)/ > Bew(R+) D(Qy) 15
follows from the equality

H:L‘B Hapl—lmodz

Bew(Rt) Bew(RT) Bew(RT)



(iii) If y € W\ {w),

F<Qy7]jwoiw kw*OFN(w)> = F(Qy N Qun ]iw kw*OFN(w))
= I'(Qy N Qy, iuloy o (kwsOrNnw)) |2,nB.)
=0 aswB¢Q,.

It now follows that [ jwoin KuxOrN(w) 18 coherent over D. Finally, the annihilator in k[(,] ~
k["U™] of A, contains all 25, 3 € w(R™), by (4). It follows that the support of A, on

“U™ consists just of the identity element, hence supp(/;, oi, FuwsOrNnw)) = {wB}.

(2.4) Using the Bezrukavnikov-Mirkovic-Rumynin derived equivalence [BMR, 3.2], we
obtain

Corollary. Letw € W.

(i) ]jwoiwkw*OFN(w) is simple as D-module.

(i) If p > 2(h — 1), h the Coxeter number of G, and if D = I'(B,D), there is an

1somorphism in the bounded derived category of coherent D-modules
D ®é Aw =~ Tijiw kw*OFN(w)-
(2.5) Remark. For r > 2 let FN"(w) be the r-th Frobenius neighbourhood of wB in B,

defined by (a?" | a € Z,,), Ay, = (B, fjwoiw  kuwOrnr(wy), and G, (resp. “B,) the r-th
Frobenius kernel of G (resp. “B = wBw™'). The same arguments as in (2.3) yield

(i) There is an isomorphism of G, T-modules
Ay =~ Dist(G,) ®pisgwn,) (w-0— (p" —1)(p + wp)).
(ii) If D, () = T'(Qw, Di,r), Ay, is simple as D,.(€,)-module.

(iii) fj“m.w . kuwOpnr () is simple over D, with supp(fjwoiw ki Opnr(w)) = {wB}.
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