On Kashiwara's equivalence in positive characteristic *

KANEDA Masaharu 558-8585 Osaka, Japan Osaka City University Department of Mathematics e-mail: kaneda@sci.osaka-cu.ac.jp

November 13, 2003

After the success of Bezrukavnikov, Mirkovic and Rumynin [BMR], we would like to examine some basics of the sheaf \mathcal{D}_X of rings of crystalline differential operators on a smooth variety X over an algebraically closed field \Bbbk .

Let $\mathcal{D}iff_X = \mathcal{D}iff_{X/\Bbbk}(\mathcal{O}_X, \mathcal{O}_X)$ be the sheaf of rings of differential operators on X/\Bbbk as defined in [EGAIV]. The sheaf \mathcal{D}_X was introduced by Beilinson and Bernstein [BB], having the presentation

$$\mathcal{D}_X = \mathrm{T}_{\Bbbk}(\mathcal{D}iff_X^1) / \\ (\lambda - \lambda 1_{\mathcal{O}_X}, a \otimes \delta - a\delta, \delta \otimes \delta' - \delta' \otimes \delta - [\delta, \delta'] \mid \lambda \in \Bbbk, a \in \mathcal{O}_X; \delta, \delta' \in \mathcal{D}iff_X^1),$$

where $\mathcal{D}iff_X^1$ is the sheaf of differential operators of order ≤ 1 in $\mathcal{D}iff_X$ and $T_{\Bbbk}(\mathcal{D}iff_X^1)$ is the tensor algebra over \Bbbk of $\mathcal{D}iff_X^1$. Thus \mathcal{D}_X coincides with Berthelot's sheaf of PDdifferential operators on X/\Bbbk [B] or $\mathcal{D}_X^{(0)}$ in [B96], and is in characteristic 0 just $\mathcal{D}iff_X$.

Let $f : X \to Y$ be a morphism of smooth quasi-projective k-varieties. One can define the direct image functor $\int_f : D^b(qc(\mathcal{D}_X)) \to D^b(qc(\mathcal{D}_Y))$ of f from the bounded derived category of quasi-coherent \mathcal{D}_X -modules to that of quasi-coherent \mathcal{D}_Y -modules just as in characteristic 0. If f is a closed immersion, \int_f is exact, and in characteristic 0 induces an equivalence of category $qc(\mathcal{D}_X)$ with the full subcategory $qc_X(\mathcal{D}_Y)$ of $qc(\mathcal{D}_Y)$ consisting of those with support contained in X [K]. In positive characteristic, however, \int_f no longer induces an equivalence, as opposed to the direct image functor defined for $\mathcal{D}iff_X$ and $\mathcal{D}iff_Y$ by Haastert [H]. Nevertheless, the image of \mathcal{D}_X in $\mathcal{D}iff_X$ under the natural morphism is the first term of the p-filtration on $\mathcal{D}iff_X$ and is a central reduction, denoted $\overline{\mathcal{D}}_X$, of \mathcal{D}_X . According to [H] the direct image functor $\overline{\int}_f$ for $\overline{\mathcal{D}}_X$ and $\overline{\mathcal{D}}_Y$ gives an equivalence of category $qc(\overline{\mathcal{D}}_X)$ to the full subcategory of $qc(\overline{\mathcal{D}}_Y)$ consisting of those annihilated by the p-th power of the ideal sheaf of \mathcal{O}_Y defining X.

We will show that for Y a flag variety G/B, G a simple algebraic group over \Bbbk , B a Borel subgroup of G, and X a Chevalley-Bruhat cell in Y, the direct image \overline{f}_f of

^{*}supported in part by JSPS Grant in Aid for Scientific Research

the structure sheaf of the Frobenius neighbourhood of a point in X is a coherent $\overline{\mathcal{D}}_{G/B}$ module and corresponds under the Bezrukavnikov-Mirkovic-Rumynin derived equivalence, i.e., by taking global sections, to an infinitesimal Verma module, a standard object in the representation theory of G; the determination of the composition factor multiplicities of those infinitesimal Verma modules as G_1T -modules, G_1 the Frobenius kernel of G and T a maximal torus of B, obtains the characters of all simple G-modules for $p \geq h$ the Coxeter number of G. We find, however, that those direct image $\overline{\mathcal{D}}_{G/B}$ -modules are simple as $\overline{\mathcal{D}}_{G/B}$ -modules.

The author is grateful to Roman Bezrukavnikov and Dmitriy Rumynin for their inspiring lectures delivered at Osaka City University, especially to Dmitriy for patiently explaining the work [BMR] in much detail, and to Tanisaki Toshiyuki for some valuable suggestions.

1° Kashiwara's equivalence

Throughout the rest of the paper k will be assumed to have characteristic p > 0. By \otimes_X we will mean the tensor product over the structure sheaf \mathcal{O}_X of X. For a category \mathcal{C} and its objects C_1, C_2 we will denote the set of morphisms in \mathcal{C} from C_1 to C_2 by $\mathcal{C}(C_1, C_2)$. Let $f: X \to Y$ be a morphism of smooth quasi-projective k-varieties.

(1.1) Let us briefly recall from [B00] the construction of the direct image functor \int_f . The inverse image functor $f^* : \operatorname{qc}(\mathcal{D}_Y) \to \operatorname{qc}(\mathcal{D}_X)$ defines a $(\mathcal{D}_X, f^{-1}\mathcal{D}_Y)$ -bimodule $\mathcal{D}_{f\to} = f^*\mathcal{D}_Y = \mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_Y} f^{-1}\mathcal{D}_Y$ with the structure of right $f^{-1}\mathcal{D}_Y$ -module provided by the multiplication to the right on $f^{-1}\mathcal{D}_Y$.

If $\operatorname{qc^{rgt}}(\mathcal{D}_X)$ is the category of quasi-coherent right \mathcal{D}_X -modules, the direct image functor $f_+^{\operatorname{rgt}} : \operatorname{qc^{rgt}}(\mathcal{D}_X) \to \operatorname{qc^{rgt}}(\mathcal{D}_Y)$ for right modules is defined by $f_+^{\operatorname{rgt}} = f_*(? \otimes_{\mathcal{D}_X} \mathcal{D}_{f\to})$, using the structure of right $f^{-1}\mathcal{D}_Y$ -module on $\mathcal{D}_{f\to}$. If ω_X is the dualizing sheaf on X, ω_X is equipped with a structure of right \mathcal{D}_X -module and define an equivalence of categories $\omega_X \otimes_X ? : \operatorname{qc}(\mathcal{D}_X) \to \operatorname{qc^{rgt}}(\mathcal{D}_X)$ with quasi-inverse $? \otimes_X \omega_X^{-1}$. Then the direct image functor $\int_f^0 : \operatorname{qc}(\mathcal{D}_X) \to \operatorname{qc}(\mathcal{D}_Y)$ is defined by

$$\int_{f}^{0} = (? \otimes_{Y} \omega_{Y}^{-1}) \circ f_{+}^{\operatorname{rgt}} \circ (\omega_{X} \otimes_{X} ?).$$

Alternatively, $f^*(\mathcal{D}_Y \otimes_Y \omega_Y^{-1})$ is equipped with two isomorphic natural structures of left $(f^{-1}\mathcal{D}_Y, \mathcal{D}_X)$ -modules [B00, 3.4.1], and defines a $(f^{-1}\mathcal{D}_Y, \mathcal{D}_X)$ -bimodule $\mathcal{D}_{f\leftarrow} = \omega_X \otimes_X f^*(\mathcal{D}_Y \otimes_Y \omega_Y^{-1})$. Then

$$\int_{f}^{0} \simeq f_*(\mathcal{D}_{f\leftarrow} \otimes_{\mathcal{D}_X}?).$$

In the derived category we set $\int_f = \mathrm{R}f_*(\mathcal{D}_{f\leftarrow} \otimes^{\mathrm{L}}_{\mathcal{D}_X}?) : \mathrm{D}^b(\mathrm{qc}(\mathcal{D}_X)) \to \mathrm{D}^b(\mathrm{qc}(\mathcal{D}_Y)).$

In case f is an open immersion, $\int_f \simeq \mathbf{R} f_*$. If $g : Y \to Z$ is another morphism of smooth quasi-projective k-varieties, $\int_{g \circ f} \simeq \int_g \circ \int_f$.

(1.2) Assume from now on that f is a closed immersion. Let us describe the local structure

of $\mathcal{D}_{f\to}$ and $\mathcal{D}_{f\leftarrow}$. Let \mathfrak{Y} be an affine open of Y with coordinate $(t_1, \ldots, t_r, t_{r+1}, \ldots, t_{r+s})$ such that $f^{-1}\mathfrak{Y}$ is defined by the ideal (t_1, \ldots, t_r) and is equipped with coordinate $(\bar{t}_{r+1}, \ldots, \bar{t}_{r+s})$, where \bar{t}_i is the image of t_i in $\mathbb{k}[f^{-1}\mathfrak{Y}]$. Put $A = \mathbb{k}[\mathfrak{Y}], D(A) = \Gamma(\mathfrak{Y}, \mathcal{D}_Y),$ $\partial_j = \frac{\partial}{\partial t_j} \in D(A), j \in [1, r+s], \bar{A} = \mathbb{k}[f^{-1}\mathfrak{Y}], D(\bar{A}) = \Gamma(f^{-1}\mathfrak{Y}, \mathcal{D}_X), \bar{\partial}_i = \frac{\partial}{\partial \bar{t}_i} \in D(\bar{A}), i \in$ $[r+1, r+s], D_{f\to} = \Gamma(f^{-1}\mathfrak{Y}, \mathcal{D}_{f\to}), D_{f\leftarrow} = \Gamma(f^{-1}\mathfrak{Y}, \mathcal{D}_{f\leftarrow}).$ Then the structure of $(D(\bar{A}), D(A))$ -bimodule on $D_{f\to} \simeq \bar{A} \otimes_A D(A)$ is given by

(1)
$$(\bar{a}\bar{\partial}_i) \cdot (1\otimes\delta) \cdot \delta' = 1 \otimes a\partial_i\delta\delta' \quad \forall a \in A \,\forall \delta, \delta' \in D(A) \,\forall i \in [r+1, r+s],$$

where \bar{a} is the image of a in \bar{A} . It follows that $D_{f\rightarrow}$ is free over $D(\bar{A})$ of basis $\partial^n, n \in \mathbb{N}^r$:

(2)
$$D_{f\to} \simeq \bar{A} \otimes_A (\prod_{k \in \mathbb{N}^{r+s}} A\partial^k) \simeq (\prod_{\ell \in \mathbb{N}^s} \bar{A}\bar{\partial}^\ell) \otimes_{\Bbbk} (\prod_{n \in \mathbb{N}^r} \Bbbk \partial^n) \simeq D(\bar{A}) \otimes_{\Bbbk} (\prod_{n \in \mathbb{N}^r} \Bbbk \partial^n),$$

where $\partial^k = \partial_1^{k_1} \dots \partial_{r+s}^{k_{r+s}}$, etc., and the structure of $D(\bar{A})$ -module on the RHS is given by the multiplication to the left on $D(\bar{A})$. On the other hand, the structure of $(D(A), D(\bar{A}))$ bimodule on $D_{f_{\leftarrow}} \simeq \bar{A} \otimes_A D(A)$ is given by

(3)
$$\delta' \cdot (1 \otimes \delta) \cdot (\bar{a}\bar{\partial}_i) = 1 \otimes {}^t(a\partial_i)\delta({}^t\delta') \quad \forall a \in A \,\forall \delta, \delta' \in D(A) \,\forall i \in [r+1, r+s],$$

where ${}^{t}(a\partial_{i}) = -\partial_{i}a$ is the adjoint of $a\partial_{i}$. Thus $D_{f\leftarrow}$ is also free over $D(\bar{A})$ of basis $\partial^{n}, n \in \mathbb{N}^{r}$:

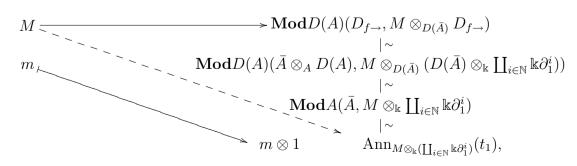
(4)
$$D_{f\leftarrow} \simeq (\prod_{n\in\mathbb{N}^r} \Bbbk \partial^n) \otimes_{\Bbbk} D(\bar{A}),$$

where the structure of $D(\bar{A})$ -module on the RHS is given by the multiplication to the right on $D(\bar{A})$. In particular, \int_{f}^{0} is exact, and hence we may abbreviate \int_{f}^{0} as \int_{f} .

Define another functor f_{rgt}^+ : $\mathrm{qc}^{\mathrm{rgt}}(\mathcal{D}_Y) \to \mathrm{qc}^{\mathrm{rgt}}(\mathcal{D}_X)$ via $\mathcal{M} \mapsto \mathcal{M}od(f^{-1}\mathcal{D}_Y)(\mathcal{D}_{f\to}, f^{-1}\mathcal{M})$ the sheaf of morphisms of right $f^{-1}\mathcal{D}_Y$ -modules from $\mathcal{D}_{f\to}$ to $f^{-1}\mathcal{M}$. If $\mathrm{qc}_X^{\mathrm{rgt}}(\mathcal{D}_Y)$ is the full subcategory of $\mathrm{qc}^{\mathrm{rgt}}(\mathcal{D}_Y)$ consisting of those with support $\subseteq X$, then as in characteristic 0 or as for the ordinary differential operators $\mathcal{D}iff$ in place of $\mathcal{D}, f_+^{\mathrm{rgt}}$ is left adjoint to $f_{\mathrm{rgt}}^+ \mid_{\mathrm{qc}_X^{\mathrm{rgt}}(\mathcal{D}_Y)}$ [H, 8.4]. Accordingly, if $f^+ = (? \otimes_X \omega_X^{-1}) \circ f_{\mathrm{rgt}}^+ \circ (\omega_Y \otimes_Y ?) \simeq$ $(f^{-1}\mathcal{D}_Y)\mathcal{M}od(\mathcal{D}_{f\leftarrow}, f^{-1}?) : \mathrm{qc}(\mathcal{D}_Y) \to \mathrm{qc}(\mathcal{D}_X)$, then \int_f is left adjoint to $f^+ \mid_{\mathrm{qc}_X(\mathcal{D}_Y)}$.

(1.3) Keep the notations of (1.2), but with r = 1 for simplicity. Let $\mathcal{M} \in \mathrm{qc}^{\mathrm{rgt}}(\mathcal{D}_X), \mathcal{L} \in \mathrm{qc}_X^{\mathrm{rgt}}(\mathcal{D}_Y)$, and put $M = \Gamma(f^{-1}\mathfrak{Y}, \mathcal{M}), L = \Gamma(\mathfrak{Y}, \mathcal{L})$. Then the adjunctions $\mathrm{id}_{\mathrm{qc}^{\mathrm{rgt}}(\mathcal{D}_X)} \to f_{\mathrm{rgt}}^+ \circ f_{\mathrm{rgt}}^+ \circ f_{\mathrm{rgt}}^+ |_{\mathrm{qc}_X^{\mathrm{rgt}}(\mathcal{D}_Y)} \to \mathrm{id}_{\mathrm{qc}_X^{\mathrm{rgt}}(\mathcal{D}_Y)}$ read for \mathcal{M} on $f^{-1}\mathfrak{Y}$ and \mathcal{L} on \mathfrak{Y} , respectively, as the following commutative diagrams

(1)
$$m \mapsto m \otimes ?$$



where $\operatorname{Ann}_{M\otimes_{\Bbbk}(\coprod_{i\in\mathbb{N}}\Bbbk\partial_1^i)}(t_1)$ is the annihilator of t_1 in $M\otimes_{\Bbbk}(\coprod_{i\in\mathbb{N}}\Bbbk\partial_1^i)$, and

(2)
$$\phi \otimes \eta \longmapsto \phi(\eta)$$

$$\mathbf{Mod}D(A)(D_{f\to},L) \otimes_{D(\bar{A})} D_{f\to} \xrightarrow{} L v \partial_1^i.$$

$$\overset{\sim}{\underset{\operatorname{Ann}_L(t_1) \otimes_{\mathbb{k}}}{\sim}} (\coprod_i \bar{\mathbb{k}} \partial_1^i) v \otimes \partial_1^i} v \otimes \partial_1^i$$

But $\forall m \in M$ one has in $M \otimes_{\Bbbk} (\coprod_i \Bbbk \partial_1^i) \simeq M \otimes_{D(\bar{A})} (\coprod_i D(\bar{A}) \partial_1^i)$

$$(m \otimes \partial_1^i) \cdot t_1 = m \otimes \partial_1^i t_1$$

= $m \otimes \sum_{j=0}^i {i \choose j} \partial_1^j (t_1) \partial_1^{i-j}$ by [B96, 2.2.4]
= $m \otimes (t_1 \partial_1^i + i \partial_1^{i-1})$
= $m \otimes i \partial_1^{i-1}$ as $t_1 = 0$ in \bar{A} ,

hence $\operatorname{Ann}_{M\otimes_{\Bbbk}(\coprod_{i} \Bbbk \partial_{1}^{i})}(t_{1}) = M \otimes_{\Bbbk}(\coprod_{i \in \mathbb{N}} \Bbbk \partial_{1}^{pi})$. It follows that $\mathcal{M} \to (f_{\operatorname{rgt}}^{+} \circ f_{+}^{\operatorname{rgt}})(\mathcal{M})$ cannot be epic unless $\mathcal{M} = 0$.

Take $\mathcal{L} = f_+^{\mathrm{rgt}}(\mathcal{M})$. Then (2) reads as

(3)
$$\operatorname{\mathbf{Mod}}_{D(A)(D_{f\to}, L) \otimes_{D(\bar{A})} D_{f\to}} \xrightarrow{} L$$

$$\sim \left| \circ \right| \sim$$

$$(M \otimes_{\Bbbk} \coprod_{i \in \mathbb{N}} \Bbbk \partial_{1}^{pi}) \otimes_{\Bbbk} (\coprod_{i \in \mathbb{N}} \Bbbk \partial_{1}^{i}) - - - - \ast M \otimes_{\Bbbk} (\coprod_{i \in \mathbb{N}} \Bbbk \partial_{1}^{i})$$

$$m \otimes \partial_{1}^{pi} \otimes \partial_{1}^{j} \longmapsto m \otimes \partial_{1}^{pi+j},$$

which fails to be monic unless M = 0. Consider also the case $A = \mathbb{k}[t]$, $\overline{A} = \mathbb{k}[t]/(t) \simeq \mathbb{k}$, and $L = \mathbb{k}[t]/(t^{2p})$. As t^{2p} is central in $D(\mathbb{k}[t])$, L admits a structure of right $D(\mathbb{k}[t])$ -module :

 $a \cdot \delta = ({}^t \delta)(a) \quad \forall a \in L, \delta \in D(A).$

Then (2) reads as

(4)
$$(t^{2p-1}L) \otimes_{\Bbbk} (\prod_{i \in \mathbb{N}} \Bbbk \partial^i) \to L \quad \text{via} \quad a \otimes \partial^j \mapsto (-1)^j \partial^j(a),$$

which fails to be surjective.

If f_+^{rgt} were to be an equivalence to a subcategory \mathcal{C} of $\text{qc}_X(\mathcal{D}_Y)$, its quasi-inverse should be its right adjoint $f_{\text{rgt}}^+|_{\mathcal{C}}$. We thus find a failure of Kashiwara's equivalence :

Proposition. $\int_f : qc(\mathcal{D}_X) \to qc(\mathcal{D}_Y)$ does not induce an equivalence of categories unless f is an isomorphism.

(1.4) Recall from Haastert [H], however, that the direct image functor from $qc(\mathcal{D}iff_X)$ to $qc(\mathcal{D}iff_Y)$ induces an equivalence and likewise for the *r*-th terms $\mathcal{M}od_{\mathcal{O}_X^{(r)}}(\mathcal{O}_X, \mathcal{O}_X)$ and $\mathcal{M}od_{\mathcal{O}_Y^{(r)}}(\mathcal{O}_Y, \mathcal{O}_Y), r \in \mathbb{N}$, of the p-filtration on $\mathcal{D}iff_X$ and on $\mathcal{D}iff_Y$, respectively, where $\mathcal{O}_X^{(r)} = \{a^{p^r} \mid a \in \mathcal{O}_X\}$ and likewise $\mathcal{O}_Y^{(r)}$. After [H] we will denote $\mathcal{M}od_{\mathcal{O}_X^{(r)}}(\mathcal{O}_X, \mathcal{O}_X)$ by $\mathcal{D}_{X,r}$. The direct image functor

$$\int_{f,r}^{0} = f_*(\mathcal{D}_{f\leftarrow,r} \otimes_{\mathcal{D}_{X,r}} ?) : \operatorname{qc}(\mathcal{D}_{X,r}) \to \operatorname{qc}(\mathcal{D}_{Y,r}) \quad \text{with} \quad \mathcal{D}_{f\leftarrow,r} = \omega_X \otimes_X f^*(\mathcal{D}_{Y,r} \otimes_Y \omega_Y^{-1})$$

is exact, and an equivalence to the full subcategory of $qc(\mathcal{D}_{Y,r})$ consisting of those annihilated by $(a^{p^r} \mid a \in \mathcal{I}_X), \mathcal{I}_X$ the ideal of \mathcal{O}_Y defining X.

Back to the general $f: X \to Y$ and $g: Y \to Z$ two morphisms of smooth quasiprojective k-varieties, recall also that

(1)
$$\int_{g \circ f, r} = \int_{g, r} \circ \int_{f, r}$$

with $\int_{f,r} = \mathrm{R}f_*(\mathcal{D}_{f\leftarrow,r}\otimes_{\mathcal{D}_{X,r}}?)$, etc.; $\mathcal{D}_{f\leftarrow,r}$ is a projective right $\mathcal{D}_{X,r}$ -module. In case f is an open immersion $\int_{f,r} \simeq \mathrm{R}f_*$ again. The image of \mathcal{D}_X in $\mathcal{D}iff_X$ under the natural morphism is $\mathcal{D}_{X,1} = \mathcal{M}od_{\mathcal{O}_X^{(1)}}(\mathcal{O}_X, \mathcal{O}_X)$, and is isomorphic to a central reduction of \mathcal{D}_X

 $\bar{\mathcal{D}}_X = \mathcal{D}_X \otimes_{\mathfrak{Z}_X} \{ \mathrm{S}_X(\mathcal{T}_X)^{(1)} / (\mathcal{T}_X^{(1)}) \},$

where \mathfrak{Z}_X is the center of \mathcal{D}_X , which is isomorphic to $S_X(\mathcal{T}_X)^{(1)}$ with \mathcal{T}_X the tangent sheaf of X [BMR, 1.3.3]:

Thus we will write \overline{f}_{f}^{0} for $\int_{f,1}^{0}$.

2° Verma modules

In this section we let $\mathcal{B} = G/B$ with G a simple algebraic group over \Bbbk and B a Borel subgroup of G, T a maximal torus of B, U^- the unipotent radical of B, R the root system of G relative to T, R^+ the positive system of R such that the roots of B are $-R^+$, $W = N_G(T)/T$ the Weyl group of G, B^+ the Borel subgroup of G opposite to B, U^+ the unipotent radical of B^+ , Λ the character group of T, G_1 (resp. B_1^+) the Frobenius kernel of G (resp. B^+), $\text{Dist}(G_1) = \Bbbk[G_1]^*$ the algebra of distributions of G_1 , etc., and \mathfrak{U} the universal enveloping algebra of the Lie algebra \mathfrak{g} of G.

For $w \in W$ let $\Omega_w = wU^+B/B$, $\mathcal{B}_w = U^+wB/B$, and let $i_w : \mathcal{B}_w \hookrightarrow \Omega_w$ (resp. $j_w : \Omega_w \hookrightarrow \mathcal{B}$) be the closed (resp. open) immersion. As j_w is affine, $\int_{j_w}^0 = (j_w)_* = \overline{f}_{j_w}^0$ is exact, so therefore are $\int_{j_w \circ i_w}^0 = \int_{j_w}^0 \circ \int_{i_w}^0$ and $\overline{f}_{j_w \circ i_w}^0$; we may thus drop superscripts 0 from those. Put $\mathcal{D} = \mathcal{D}_{\mathcal{B}}$.

(2.1) Let us begin with
$$G = SL_2$$
, B consisting of lower triangular matrices and T of diagonals. There is an isomorphism of k-varieties from \mathcal{B} to the projective 1-space \mathbb{P}^1 via $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto [b, d]$. Let $s = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and put $\Bbbk[x] = \Gamma(\Omega_1, \mathcal{O}_{\mathcal{B}})$ with $x : \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \mapsto a$, and $\Bbbk[y] = \Gamma(\Omega_s, \mathcal{O}_{\mathcal{B}})$ with $y : \begin{bmatrix} 0 & -1 \\ 1 & a \end{bmatrix} \mapsto -a$. Then $\Gamma(\mathcal{B}, \int_{j_1 \circ i_1} \mathcal{O}_{\mathcal{B}_1}) \simeq \Bbbk[x]$ while $\Gamma(\mathcal{B}, \int_{j_s \circ i_s} \mathcal{O}_{\mathcal{B}_s}) \simeq \prod_{i \in \mathbb{N}} \Bbbk \partial_y^i$.

As $\Gamma(\Omega_s, \int_{j_1 \circ i_1} \mathcal{O}_{\mathcal{B}_1}) \simeq \mathbb{k}[y, \frac{1}{y}]$ is not of finite type over $\Gamma(\Omega_s, \mathcal{D})$, unlike in characteristic 0 (1) $\int_{j_1 \circ i_1} \mathcal{O}_{\mathcal{B}_1}$ is not coherent over \mathcal{D} .

If $(e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix})$ is the standard basis of \mathfrak{g} , the structure of \mathfrak{U} -module on $\Bbbk[x]$ and on $\coprod_i \Bbbk \partial_y^i$ are given, respectively, through

 $\mathfrak{U} \to \Gamma(\Omega_1, \mathcal{D})$ such that $e \mapsto -\partial_x, h \mapsto -2x\partial_x, f \mapsto x^2\partial_x,$

and

$$\mathfrak{U} \to \Gamma(\Omega_s, \mathcal{D})$$
 such that $e \mapsto y^2 \partial_y, h \mapsto 2y \partial_y, f \mapsto -\partial_y.$

Then

(2)
$$\operatorname{soc}_{\mathfrak{U}}(\mathbb{k}[x]) = \prod_{i \in \mathbb{N}} \mathbb{k} x^{pi}$$
 with \mathfrak{U} acting trivially on each $\mathbb{k} x^{pi}$

and

(3)
$$\mathbb{k}[x]/\mathrm{soc}_{\mathfrak{U}}(\mathbb{k}[x]) \simeq \prod_{i \in \mathbb{N}} \{\mathfrak{U}x^{pi+1}/(\mathbb{k}x^{pi} \oplus \mathbb{k}x^{p(i+1)})\}$$
 with each $\mathfrak{U}x^{pi+1} = \sum_{j=0}^{p} \mathbb{k}x^{pi+j}$.

One has $\mathfrak{U}/(x^p - x^{[p]} \mid x \in \mathfrak{g}) \simeq \operatorname{Dist}(G_1)$, and there are isomorphisms of G_1T -modules

(4)
$$\mathfrak{U}x^{pi+1}/\Bbbk x^{pi} \simeq \operatorname{Dist}(G_1) \otimes_{\operatorname{Dist}(B_1^+)} (-2pi-2),$$
$$\mathfrak{U}x^{pi+1}/\Bbbk x^{p(i+1)} \simeq \operatorname{Dist}(G_1) \otimes_{\operatorname{Dist}(B_1)} (-2p(i+1)+2).$$

where we identify Λ with \mathbb{Z} and each $k \in \mathbb{Z}$ denotes the corresponding 1-dimensional $B_1^{\pm}T$ -module.

On the other hand, if $\mathfrak{U}(\mathfrak{b}^+)$ is the universal enveloping algebra of the Lie algebra \mathfrak{b}^+ of B^+ ,

(5)
$$\prod_{i\in\mathbb{N}} \mathbb{k}\partial_y^i \simeq \mathfrak{U} \otimes_{\mathfrak{U}(\mathfrak{b}^+)} (-2),$$

which admits a filtration of $\mathfrak{U}\text{-modules}$

$$\coprod_{i\in\mathbb{N}} \mathbb{k}\partial_y^i > \coprod_{i\geq p-1} \mathbb{k}\partial_y^i > \coprod_{i\geq p} \mathbb{k}\partial_y^i > \coprod_{i\geq 2p-1} \mathbb{k}\partial_y^i \ \dots$$

such that $\forall n \in \mathbb{N}$,

(6)
$$\begin{split} \prod_{i\geq np} \mathbb{k}\partial_y^i &\simeq \mathfrak{U} \otimes_{\mathfrak{U}(\mathfrak{b}^+)} (-2pn-2), \\ \prod_{i\geq (n+1)p-1} \mathbb{k}\partial_y^i &\simeq \mathfrak{U} \otimes_{\mathfrak{U}(\mathfrak{b}^+)} (-2p(n+1)), \\ (\prod_{i\geq np} \mathbb{k}\partial_y^i) / (\prod_{i\geq (n+1)p} \mathbb{k}\partial_y^i) &\simeq \operatorname{Dist}(G_1) \otimes_{\operatorname{Dist}(B_1^+)} (-2pn-2), \\ (\prod_{i\geq (n+1)p-1} \mathbb{k}\partial_y^i) / (\prod_{i\geq (n+2)p-1} \mathbb{k}\partial_y^i) &\simeq \operatorname{Dist}(G_1) \otimes_{\operatorname{Dist}(B_1^+)} (-2p(n+1)). \end{split}$$

(2.2) Back to the general setup, if U_{α} is the root subgroup of G corresponding to $\alpha \in R$, the group multiplication induces isomorphisms of k-varieties

(1)
$$U^+ \simeq \prod_{\alpha \in R^+} U_{\alpha}$$

Put $\Bbbk[U_{\alpha}] = \Bbbk[x_{\alpha}], \ \partial_{\alpha} = \frac{\partial}{\partial x_{\alpha}}, \ \partial_{\alpha}^{(n)} = \frac{\partial_{\alpha}^{n}}{n!}, \ n \in [0, p[, \text{ and } \bar{\mathcal{D}}(\Omega_{1}) = \Gamma(\Omega_{1}, \bar{\mathcal{D}}).$ Under the identification (1) we may write

$$\bar{\mathcal{D}}(\Omega_1) = \prod_{n \in [0,p]^{R^+}} \Bbbk[x_\alpha \mid \alpha \in R^+] \partial^n \quad \text{with} \quad \partial^n = \prod_{\alpha \in w(R^+)} \partial^{n_\alpha}_\alpha.$$

Let $\mu_{\alpha}^{(i)} \in \text{Dist}(U_{\alpha}), i \in \mathbb{N}$, such that $\mu_{\alpha}^{(i)}(x_{\alpha}^{j}) = \delta_{ij}$ for each $j \in \mathbb{N}$.

Lemma. Under the k-algebra homomorphism $\text{Dist}(U_1^+) \to \overline{\mathcal{D}}(\Omega_1)$ induced by the Gaction on \mathcal{B} from the left

$$\prod_{\alpha \in R^+} \mu_{\alpha}^{(p-1)} \mapsto \prod_{\alpha \in R^+} \partial_{\alpha}^{(p-1)}$$

Proof: Let π_1, \ldots, π_ℓ be the simple roots of R^+ and define the height of each $\alpha \in R^+$ to be $\operatorname{ht}(\alpha) = \sum_{i=1}^{\ell} n_i$ if $\alpha = \sum_{i=1}^{\ell} n_i \pi_i$. Enumerate R^+ such that $\operatorname{ht}(\alpha_i) \not\geq \operatorname{ht}(\alpha_j)$ if i < j. Accordingly, write x_i (resp. $\partial_i, \mu_i^{(j)}$) for x_{α_i} (resp. $\partial_{\alpha_i} \mu_{\alpha}^{(j)}$). By Chevalley's commutator formulae the comorphism $\Bbbk[x_j \mid j \in [1, N]] \to \Bbbk[x_i] \otimes_{\Bbbk} \Bbbk[x_j \mid j \in [1, N]]$ of the U_{α_i} -action on $\prod_{j=1}^{N} U_{\alpha_j}$ reads

$$x_j \mapsto \begin{cases} 1 \otimes x_j & \text{if } j < i \\ x_i \otimes 1 + 1 \otimes x_i & \text{if } j = i. \end{cases}$$

Thus the homomorphism $\text{Dist}(U_1^+) \to \bar{\mathcal{D}}(\Omega_1)$ sends $\mu_i^{(1)}$ to $-\partial_i + \sum_{j>i} a_{ij}\partial_j$ for some $a_{ij} \in \mathbb{k}[x_k \mid k \in [1, N]]$. As $\partial_j^p = 0$ for any j in $\bar{\mathcal{D}}(\Omega_1)$ and as $\mu_N^{(p-1)} \mapsto \partial_N^{(p-1)}$,

$$\prod_{i=1}^{N} \mu_{i}^{(p-1)} \mapsto \prod_{i=1}^{N} \frac{(-\partial_{i} + \sum_{j>i} a_{ij}\partial_{j})^{p-1}}{(p-1)!} = \prod_{i=1}^{N} \partial_{i}^{(p-1)}.$$

The same argument yields $\prod_{i=1}^{N} \mu_i^{(p-1)}$ is independent of the order as $\mu_j^{(1)} \mu_j^{(p-1)} = 0 \ \forall j$ in $\text{Dist}(U_1^+)$.

(2.3) For each $w \in W$ let \mathcal{I}_w be the ideal sheaf of $\mathcal{O}_{\mathcal{B}_w}$ defining wB in \mathcal{B}_w and let $FN(w) = FN_{\mathcal{B}_w}(wB)$ be the infinitesimal Frobenius neighbourhood of wB in \mathcal{B}_w defined by $(a^p \mid a \in \mathcal{I}_w)$. If $k_w : FN(w) \hookrightarrow \mathcal{B}_w$, $k_{w*}\mathcal{O}_{FN(w)}$ is equipped with a structure of T-equivariant coherent $\overline{\mathcal{D}}_{\mathcal{B}_w}$ -module.

Proposition. Let $\Delta_w = \mathrm{R}\Gamma(\mathcal{B}, \overline{f}_{j_w \circ i_w} k_{w*}\mathcal{O}_{\mathrm{FN}(w)}) \simeq \Gamma(\mathcal{B}, \overline{f}_{j_w \circ i_w} k_{w*}\mathcal{O}_{\mathrm{FN}(w)}).$

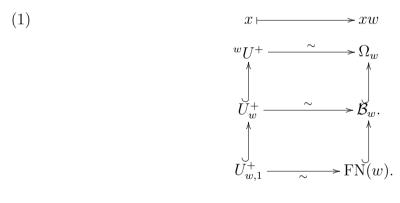
(i) There is an isomorphism of G_1T -modules

 $\Delta_w \simeq \operatorname{Dist}(G_1) \otimes_{\operatorname{Dist}({}^w B_1)} (w \cdot 0 - (p-1)(\rho + w\rho)),$

where ${}^{w}B_{1}$ is the Frobenius kernel of ${}^{w}B = wBw^{-1}$ and $w \cdot 0 = w\rho - \rho$ with $\rho = \frac{1}{2}\sum_{\alpha \in \mathbb{R}^{+}} \alpha$.

- (ii) If $\overline{\mathcal{D}}(\Omega_w) = \Gamma(\Omega_w, \overline{\mathcal{D}}), \Delta_w$ is simple as $\overline{\mathcal{D}}(\Omega_w)$ -module.
- (iii) $\overline{\int}_{j_w \circ i_w} k_{w*} \mathcal{O}_{\mathrm{FN}(w)}$ is coherent over $\overline{\mathcal{D}}$ with $\mathrm{supp}(\overline{\int}_{j_w \circ i_w} k_{w*} \mathcal{O}_{\mathrm{FN}(w)}) = \{wB\}.$

Proof: Let $U_w^{\pm} = (^wU^+) \cap U^{\pm}$ with $^wU^+ = wU^+w^{-1}$, and $U_{w,1}^+$ the Frobenius kernel of U_w^+ . One has a commutative diagram of k-varieties



Let $R_w^{\pm} = \{w\alpha \ge 0 \mid \alpha \in R^+\}$. If U_{α} is the root subgroup of G corresponding to $\alpha \in R$, the group multiplication induces isomorphisms of k-varieties

(2)
$${}^{w}U^{+} \simeq \prod_{\alpha \in w(R^{+})} U_{\alpha}, \quad U_{w}^{\pm} \simeq \prod_{\alpha \in R_{w}^{\pm}} U_{\alpha}.$$

Put $\Bbbk[U_{\alpha}] = \Bbbk[x_{\alpha}], \ \partial_{\alpha} = \frac{\partial}{\partial x_{\alpha}}, \ \text{and} \ \bar{\mathcal{D}}(\Omega_w) = \Gamma(\Omega_w, \bar{\mathcal{D}}).$ Under the identification (2)

$$\bar{\mathcal{D}}(\Omega_w) = \prod_{n \in [0,p[^{w(R^+)}]} \mathbb{k}[^w U^+] \partial^n = \prod_{j \in [0,p[^{R^-_w},k \in [0,p[^{R^+_w}]} \mathbb{k}[^w U^+] \partial^j \partial^k$$

with $\partial^n = \prod_{\alpha \in w(R^+)} \partial^{n_\alpha}_{\alpha}$, etc. By (1.2.3) there is an isomorphism of $\overline{\mathcal{D}}(\Omega_w)$ -modules

(3)
$$\Delta_w \simeq (\prod_{n \in [0,p[R_w^-]} \Bbbk \partial^n) \otimes_{\Bbbk} (\Bbbk[x_\alpha \mid \alpha \in R_w^+]/(x_\alpha^p \mid \alpha \in R_w^+))$$

with the structure of $\overline{\mathcal{D}}(\Omega_w)$ -module on the RHS given by

(4)
$$(b\partial^{j}\partial^{k}) \cdot (\partial^{n} \otimes a) = (-1)^{|j|} \sum_{i \le j+n} {j+n \choose i} \partial^{j+n-i} \otimes \overline{\partial^{i}(b)} \overline{\partial}^{k}(a)$$

 $\forall a \in \mathbb{k}[U_{w,1}^+] \; \forall b \in \mathbb{k}[^wU^+] \; \forall k \in [0, p[^{R_w^+}, \forall j, n \in [0, p[^{R_w^-}, \text{ where } |j| = \sum_{\alpha \in R_w^-} j_\alpha.$

Let us now consider the *T*-module structure on Δ_w . If $\omega_{U_w^+}$ (resp. $\omega_{\mathcal{B}}$) is the dualizing sheaf on U_w^+ (resp. \mathcal{B}) and if $\omega(U_w^+)$ (resp. $\omega(\Omega_w)$) is a $\Bbbk[U_w^+]$ (resp. $\Bbbk[\Omega_w]$)-basis of $\Gamma(U_w^+, \omega_{U_w^+})$ (resp. $\Gamma(\Omega_w, \omega_{\mathcal{B}})$), then the *T*-weights of $\omega(U_w^+)$ and $\omega(\Omega_w)$ relevant to Δ_w are

(5)
$$\operatorname{wt}(\omega(U_w^+)) = -\sum_{\alpha \in R_w^+} \alpha, \quad \operatorname{wt}(\omega(\Omega_w)) = -\sum_{\alpha \in R^+} w\alpha.$$

It follows that in Δ_w

(6)
$$\operatorname{wt}(\partial^n \otimes x^m) = \left(\sum_{\alpha \in R_w^-} n_\alpha \alpha\right) - \left(\sum_{\beta \in R_w^+} m_\beta \beta\right) + w \cdot 0 \quad \forall n \in [0, p[^{R_w^-} \; \forall m \in [0, p[^{R_w^+}])]$$

Therefore the formal character of Δ_w is

$$\mathrm{ch}\Delta_w = e(w \cdot 0)\mathrm{ch}\mathrm{Dist}(U_1^-) = e(w \cdot 0 - (p-1)(\rho + w\rho))\mathrm{ch}\mathrm{Dist}(^w U_1^+).$$

As wt $(1 \otimes \prod_{\alpha \in R_w^+} x_{\alpha}^{p-1}) = w \cdot 0 - (p-1)(\rho + w\rho)$, $1 \otimes \prod_{\alpha \in R_w^+} x_{\alpha}^{p-1}$ is stabilized by Dist $(^wB_1)$, and hence there is a homomorphism of G_1T -modules

$$\psi$$
: Dist $(G_1) \otimes_{\text{Dist}(^w B_1)} (w \cdot 0 - (p-1)(\rho + w\rho)) \to \Delta_u$

such that $1 \otimes 1 \mapsto 1 \otimes \prod_{\alpha \in R_w^+} x_{\alpha}^{p-1}$. In turn, ψ induces a homomorphism of ${}^wU_1^+$ -modules

$$\operatorname{Dist}({}^{w}U_{1}^{+}) \to \Delta_{w} \quad \text{such that} \quad \mu \mapsto \mu \cdot (1 \otimes \prod_{\alpha \in R_{w}^{+}} x_{\alpha}^{p-1})$$

Writing $\operatorname{Dist}({}^{w}U_{1}^{+}) \simeq \otimes_{\beta \in w(R^{+})} \operatorname{Dist}(U_{\beta,1}) = \otimes_{\beta \in w(R^{+})} (\prod_{i=0}^{p-1} \Bbbk \mu_{\beta}^{(i)})$, the ${}^{w}U_{1}^{+}$ -socle of $\operatorname{Dist}({}^{w}U_{1}^{+})$ is $\Bbbk(\otimes_{\beta \in w(R^{+})} \mu_{\beta}^{(p-1)})$. As

$$(\otimes_{\beta \in w(R^+)} \mu_{\beta}^{(p-1)}) \cdot (1 \otimes \prod_{\alpha \in R_w^+} x_{\alpha}^{p-1}) = (\prod_{\alpha \in R_w^-} \partial_{\alpha}^{(p-1)}) \otimes 1 \neq 0$$

by (2.2) and (4), it follows that ψ is injective, and hence bijective by dimension.

(ii) By (4) one also has a surjective homomorphism of $\overline{\mathcal{D}}(\Omega_w)$ -modules

$$\bar{\mathcal{D}}(\Omega_w) / \sum_{\beta \in w(R^+)} \bar{\mathcal{D}}(\Omega_w) x_\beta \to \Delta_w \quad \text{via} \quad \delta \mapsto \delta \cdot (1 \otimes \prod_{\alpha \in R^+_w} x^{p-1}_\alpha),$$

which is bijective by dimension. On the other hand, the simplicity of $\overline{\mathcal{D}}(\Omega_w) / \sum_{\beta \in w(R^+)} \overline{\mathcal{D}}(\Omega_w) x_\beta$ follows from the equality

$$(\prod_{\beta \in w(R^+)} x_{\beta}^{p-1})(\prod_{\beta \in w(R^+)} \partial_{\beta}^{p-1}) = 1 \mod \sum_{\beta \in w(R^+)} \bar{\mathcal{D}}(\Omega_w) x_{\beta}.$$

(iii) If $y \in W \setminus \{w\}$,

$$\Gamma(\Omega_{y}, \overline{f}_{j_{w} \circ i_{w}} k_{w*} \mathcal{O}_{\mathrm{FN}(w)}) = \Gamma(\Omega_{y} \cap \Omega_{w}, \overline{f}_{i_{w}} k_{w*} \mathcal{O}_{\mathrm{FN}(w)})$$
$$= \Gamma(\Omega_{y} \cap \Omega_{w}, \overline{f}_{i_{w}|_{\Omega_{y} \cap \mathcal{B}_{w}}}(k_{w*} \mathcal{O}_{\mathrm{FN}(w)}) \mid_{\Omega_{y} \cap \mathcal{B}_{w}})$$
$$= 0 \quad \text{as } wB \notin \Omega_{y}.$$

It now follows that $\overline{f}_{j_w \circ i_w} k_{w*} \mathcal{O}_{FN(w)}$ is coherent over $\overline{\mathcal{D}}$. Finally, the annihilator in $\Bbbk[\Omega_w] \simeq \&[^w U^+]$ of Δ_w contains all $x^p_{\beta}, \beta \in w(R^+)$, by (4). It follows that the support of Δ_w on $^w U^+$ consists just of the identity element, hence $\operatorname{supp}(\overline{f}_{j_w \circ i_w} k_{w*} \mathcal{O}_{FN(w)}) = \{wB\}.$

(2.4) Using the Bezrukavnikov-Mirkovic-Rumynin derived equivalence [BMR, 3.2], we obtain

Corollary. Let $w \in W$.

- (i) $\overline{\int}_{j_w \circ i_w} k_{w*} \mathcal{O}_{FN(w)}$ is simple as $\overline{\mathcal{D}}$ -module.
- (ii) If p > 2(h-1), h the Coxeter number of G, and if $D = \Gamma(\mathcal{B}, \mathcal{D})$, there is an isomorphism in the bounded derived category of coherent \mathcal{D} -modules

$$\mathcal{D} \otimes_D^L \Delta_w \simeq \int_{j_w \circ i_w} k_{w*} \mathcal{O}_{\mathrm{FN}(w)}.$$

(2.5) **Remark.** For $r \ge 2$ let $\operatorname{FN}^r(w)$ be the *r*-th Frobenius neighbourhood of wB in \mathcal{B}_w defined by $(a^{p^r} \mid a \in \mathcal{I}_w), \Delta_{w,r} = \Gamma(\mathcal{B}, \int_{j_w \circ i_{w,r}} k_{w*}\mathcal{O}_{\operatorname{FN}^r(w)})$, and G_r (resp. wB_r) the *r*-th Frobenius kernel of G (resp. ${}^wB = wBw^{-1}$). The same arguments as in (2.3) yield

(i) There is an isomorphism of G_rT -modules

$$\Delta_{w,r} \simeq \text{Dist}(G_r) \otimes_{\text{Dist}(^w B_r)} (w \cdot 0 - (p^r - 1)(\rho + w\rho)).$$

- (ii) If $D_r(\Omega_w) = \Gamma(\Omega_w, \mathcal{D}_{\mathcal{B},r}), \Delta_{w,r}$ is simple as $D_r(\Omega_w)$ -module.
- (iii) $\int_{j_w \circ i_w, r} k_{w*} \mathcal{O}_{\mathrm{FN}^r(w)}$ is simple over $\mathcal{D}_{\mathcal{B}, r}$ with $\mathrm{supp}(\int_{j_w \circ i_w, r} k_{w*} \mathcal{O}_{\mathrm{FN}^r(w)}) = \{wB\}.$

References

[BB] Beilinson, A. and Bernstein, J., A proof of Jantzen conjecture, Advances in Soviet Math. 16 (part 1)(1993), 1-49.
[B] Berthelot, P., Cohomologie Cristalline des Schémas de Caracteristique p > 0, Lecture Notes in Math. 407, Berline/Heidelberg 1974 (Springer)
[B96] Berthelot, P., D-modules arithmétiques I. Opérateurs différentiels de niveau fini, Ann. scient. Éc. Norm. Sup. 29 (1996), 185-272.
[B00] Berthelot, P., D-modules arithmétiques II. Descente par Frobenius, Mém. de la Soc. Math. France 81 2000.

- [BMR] Bezrukavnikov, R., Mirkovic, I. and Rumynin, D., *Localization of modules for a semisimple Lie algebra in prime characteristic*, to appear.
- [EGAIV] Grothendieck, A. and Dieudonné, J., "Éléments de Géométrie Algébrique IV", Pub. Math. no. 32, IHES 1967.
- [H] Haastert, B., On direct and inverse images of *D*-modules in prime characteristic, Manusc. Math. **62** (1988), 341–354.
- [K] Kashiwara M., Algebraic study of systems of partial differential equations, Master's Thesis, Tokyo Univ., 1970