RESEARCH RESULTS

AIRI ASO

Twisted Alexander polynomial is a generalization of Alexander polynomial, which is one of the classical invariants of knots, and is defined for a knot and a representation of the fundamental group of the knot complement. Twisted Alexander polynomial was introduced by Lin [1], and Wada defined it for arbitrary finitely presentable groups and its representations [2] in 1990's. Wada showed that the twisted Alexander polynomial can distinguish Kinoshita-Terasaka knot and Conway's 11 crossing knots, whose Alexander polynomials are trivial [2].

It is known that there are relations between twisted Alexander polynomials and the properties of knots, e.g. the genus and the fiberedness of knots. More precisely, for a knot K and a nonabelian $SL(2, \mathbb{F})$ -representation $\rho : \pi_1(S^3 \setminus K) \to SL(2, \mathbb{F})$ of $\pi_1(S^3 \setminus K)$, the degree of the twisted Alexander polynomial $\Delta_{K,\rho}(t)$ (i.e. the difference of the the highest degree and the lowest degree of $\Delta_{K,\rho}(t)$) is less than or equal to the number obtained from the genus of K, and if K is fibered $\Delta_{K,\rho}(t)$ is a monic polynomial.

We say that a knot is hyperbolic if the knot complement admits a complete hyperbolic metric of finite volume. For a hyperbolic knot K, there is a canonical representation of the fundamental group $\pi_1(S^3 \setminus K)$ of the knot complement, called the holonomy representation of K, and Dunfield–Friedl–Jackson [4] conjectured that the genus and fiberedness of K are determined by the twisted Alexander polynomial associated to the holonomy representation of K (in what follows, we call this conjecture "Conjecture A").

In [5], for a (-2, 3, 2n + 1)-pretzel knot K and a family of representations of $\pi_1(S^3 \setminus K)$ which contains the holonomy representation of K, we computed the twisted Alexander polynomials of K associated to each representation in the family, and we proved that the above Conjecture A is true for (-2, 3, 2n + 1)-pretzel knots. Moreover, in [6], we studied the twisted Alexander polynomials of all Montesinos knots with tunnel number one which contains (-2, 3, 2n + 1)-pretzel knots and two-bridge knots. More precisely, for a family, which contains (-2, 3, 2n + 1)-pretzel knots, and two-bridge knots, we computed the degree and the leading coefficient of their twisted Alexander polynomials associated to any $SL(2, \mathbb{C})$ -representations, and then we reduced Conjecture A to a certain condition of the holonomy representations. For other Montesinos knots with tunnel number one, in a similar way as in [5], we computed twisted Alexander polynomials associated to any $SL(2, \mathbb{C})$ -representations, and we proved that Conjecture A is true in this case.

Another application of the twisted Alexander polynomial is some relations to the hyperbolic volume. For a cusped hyperbolic 3-manifold, Menal-Ferrer–Porti showed that the hyperbolic volume appears in the asymptotic behavior of Reidemeister torsion [7], and Kitano [8] and Yamaguchi [9] showed some relations between the twisted Alexander polynomials of knots and the Reidemeister torsions. By using these results, Goda [10] proved that for a hyperbolic knot K, the hyperbolic volume $Vol(S^3 \setminus K)$ of $S^3 \setminus K$ appears in the asymptotic behavior of the twisted Alexander polynomials associated to certain $SL(n, \mathbb{C})$ -representations ρ_n , where ρ_n is induced from the holonomy representation of K. Furthermore, Park gave a generalization of the formula of the hyperbolic volume with the Reidemeister torsion, and he conjectured that the complex volume is obtained by a complexification of his results [11]. Here the complex volume cv(M) of a hyperbolic manifold M is defined to be the complex number $Vol(M) + 2\pi^2 cs(M)\sqrt{-1}$ whose real part is the hyperbolic volume Vol(M) of M and the imaginary part is a multiple of the Chern-Simons invariant cs(M) of M.

In my recent work, to obtain a complexification of Goda's formula in [10], for any hyperbolic knot K of 6 crossings or fewer, we studied the asymptotic behavior of the twisted Alexander polynomials of K associated to ρ_n , and we conjectured the equality

$$\lim_{n \to \infty} \frac{4\pi \log \Delta_{K,\rho_n}(1)}{n^2} = \operatorname{cv}(S^3 \backslash K).$$

In fact, we observed that the left hand side approaches to $\operatorname{cv}(S^3 \setminus K)$ as n gets bigger.

References

- [1] X. S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin., 17 (2001), 361–380.
- [2] M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology, 33 (1994), 241–256.
- [3] T. Kitano and T. Morifuji, Divisibility of twisted Alexander polynomials and fibered knots, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IV (2005), 179–186.
- [4] N. Dunfield, S. Friedl and N. Jackson, Twisted Alexander polynomials of hyperbolic knots, Exp. Math., 21 (2012), 329–352.
- [5] A. Aso, Twisted Alexander polynomials of (-2, 3, 2n + 1)-pretzel knots, Hiroshima Math. J., **50** (2020), 43–57.
- [6] A. Aso, Twisted Alexander polynomials of tunnel number one Montesinos knots, Kobe J. Math., 39 (2022)15–61.
- [7] P. Menal-Ferrer and J. Porti, Higher-dimensional Reidemeister torsion invariants for cusped hyperbolic 3-manifolds, J. Topol. 7 (2014), no. 1, 69–119.
- [8] T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), no. 2, 431–442.
- [9] Y. Yamaguchi, A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 337–362.
- [10] H. Goda, Twisted Alexander invariants and hyperbolic volume, Proc. Jpn. Acad. Ser. A 93 (2017), 61-66.
- [11] J. Park, Reidemeister torsion, complex volume and the Zograf infinite product for hyperbolic 3-manifolds, Geom. Topol. 23 (2019) 3687–3734.