Summary of research results so far

Kiyoiki Hoshino

28th December, 2022

In analysis for random functions I gave results as follows:
(1) Ogawa integrability ([3])
[5] shows that the Ogawa integral of the Itô process is given with the Itô integral. I and Tetsuya Kazumi showed that the Ogawa integral of the S-type Itô process, which is a noncausal extension of the Itô process, is given with the Skorokhod integral and its adjoint operator.
(2) Identification of random functions from the SFCs $([1,2,4])$

Let $X_{t}, t \in[0, L]$ be a random function $X_{t}=\int_{0}^{t} a(t) d B_{t}+\int_{0}^{t} b(t) d t$ driven by a Brownian motion B. To the question whether the coefficients $a(t)$ and $b(t)$ are determined by the stochastic Fourier coefficients (SFCs for short):

$$
\left(e_{n}, d X\right)=\int_{0}^{L} e_{n} d X
$$

with respect to a CONS $\left(e_{n}\right)_{n \in \mathbb{N}}$ of $L^{2}([0, L])$ posed in [6], we got the following affirmative answer, employing the SFCs in the case that $\int d B$ is the Skorokhod integral (SFC-Ss in abbr.) and the SFCs in the case that $\int d B$ is the Ogawa integral (SFC-Os in abbr.): here, by FVP, $\mathcal{L}^{r, 2}$ we mean the totality of random functions of bounded variation, totality of square itegrable Wiener functionals with differentiability index r, respectively.

- Derivation of random functions from SFC-Ss ([2, 4])
- Derivation in no need of B

S1. Derivation of $|a(t)|$ in the case $a(t) \in \mathcal{L}^{1,2}$ is absolutely continuous ([2])

- Derivation in need of B

S2. Derivation of $a(t) \in \mathcal{L}^{1,2}$ and $b(t) \in \mathcal{L}^{0,2}([4])$ (extension of the results in [8, 9])
S3. Derivation of $a(t)$ and $b(t)$ in the case $a(t) \in \mathcal{L}^{1,2}$ is absolutely continuous ([2])

- Derivation of random functions from SFC-Os ([1, 2, 4])
- Derivation in no need of B

O1. Derivation of $|a(t)|$ in the case $a(t) \in$ FVP ([2]) (extension of the result in [10])
O2. Derivation of $|\operatorname{Re} a|,|\operatorname{Im} a|, \operatorname{Re} a \operatorname{Im} a$ and $(\operatorname{sgn} a) a$ in the case $a(t)$ is written as $a(t)=V_{t}+M_{t}+Z_{t}+W_{t}$ with $V_{t} \in$ FVP, an Itô integral process M_{t}, a Skorokhod integral process Z_{t} and the Hilbert-Schmidt transform W_{t} of a functional in $\mathcal{L}^{1,2}$, or a more general random function ([1]) (extension of [7, Theorem 2], O1)

- Derivation in need of B

O3. Derivation of $a(t)$ and $b(t)$ in the case $a(t)$ is a Skorokhod integral process and $b(t) \in \mathcal{L}^{0,2}([4])$
O4. Derivation of $a(t)$ and $b(t)$ in the case $a(t) \in$ FVP ([2])
O5. Derivation of $a(t)$ and $b(t)$ in the case $a(t)$ is written as $a(t)=V_{t}+M_{t}+Z_{t}+W_{t}$ with $V_{t} \in \mathrm{FVP}$, an Itô integral process M_{t}, a Skorokhod integral process Z_{t} and the Hilbert-Schmidt transform W_{t} of a functional in $\mathcal{L}^{1,2}$, or a more general random function ([1]) (extension of O3, O4)

References

[1] K. Hoshino, Identification of random functions from the SFCs defined by the Ogawa integral regarding regular CONSs (Probability Symposium), RIMS Kôkyûroku. 2116, 95-104, (2019).
[2] K. Hoshino, Derivation formulas of noncausal finite variation processes from the stochastic Fourier coefficients, Japan Journal of Industrial and Applied Mathematics, vol. 37. 2, 527-564, (2020).
[3] K. Hoshino, T. Kazumi, On the Ogawa integrability of noncausal Wiener functionals, Stochastics. Vol. 91. 5, 773-796, (2019).
[4] K. Hoshino, T. Kazumi, On the Identification of Noncausal Wiener Functionals from the Stochastic Fourier Coefficients, Journal of Theoretical Probability, vol. 32. 4, 1973-1989, (2019).
[5] S. Ogawa, The stochastic integral of noncausal type as an extension of the symmetric integrals, Japan J. Appl. Math. 2, 229-240, (1985).
[6] S. Ogawa, On a stochastic Fourier transformation, Stochastics. Vol. 85. 2, 286-294, (2013).
[7] S. Ogawa, Direct inversion formulas for the natural SFT, Sankhya. The Indian Journal of Statistics, Vol. 80-A, 267-279, (2018).
[8] S. Ogawa, H. Uemura, On a stochastic Fourier coefficient: case of noncausal function, J.Theoret. Probab. 27, 370-382, (2014).
[9] S. Ogawa, H. Uemura, Identification of a noncausal Itô process from the stochastic Fourier coefficients, Bull. Sci. Math. 138, 147-163, (2014).
[10] S. Ogawa, H. Uemura, Some aspects of strong inversion formulas of an SFT, Japan Journal of Industrial and Applied Mathematics. 35-1, 373-390, (2018).

