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In analysis for random functions I gave results as follows:

(1) Ogawa integrability ([3])

[5] shows that the Ogawa integral of the Itô process is given with the Itô integral. I and Tetsuya Kazumi showed
that the Ogawa integral of the S-type Itô process, which is a noncausal extension of the Itô process, is given with the
Skorokhod integral and its adjoint operator.

(2) Identification of random functions from the SFCs ([1, 2, 4])

Let Xt, t ∈ [0, L] be a random function Xt =
∫ t

0
a(t) dBt+

∫ t

0
b(t) dt driven by a Brownian motion B. To the question

whether the coefficients a(t) and b(t) are determined by the stochastic Fourier coefficients (SFCs for short):

(en, dX) =

∫ L

0

en dX

with respect to a CONS (en)n∈N of L2([0, L]) posed in [6], we got the following affirmative answer, employing the SFCs
in the case that

∫
dB is the Skorokhod integral (SFC-Ss in abbr.) and the SFCs in the case that

∫
dB is the Ogawa

integral (SFC-Os in abbr.): here, by FVP, Lr,2 we mean the totality of random functions of bounded variation, totality
of square itegrable Wiener functionals with differentiability index r, respectively.

• Derivation of random functions from SFC-Ss ([2, 4])

· Derivation in no need of B

S1. Derivation of |a(t)| in the case a(t) ∈ L1,2 is absolutely continuous ([2])

· Derivation in need of B

S2. Derivation of a(t) ∈ L1,2 and b(t) ∈ L0,2 ([4]) (extension of the results in [8, 9])

S3. Derivation of a(t) and b(t) in the case a(t) ∈ L1,2 is absolutely continuous ([2])

• Derivation of random functions from SFC-Os ([1, 2, 4])

· Derivation in no need of B

O1. Derivation of |a(t)| in the case a(t) ∈ FVP ([2]) (extension of the result in [10])

O2. Derivation of |Re a|, |Im a|, Re a Im a and (sgn a)a in the case a(t) is written as a(t) = Vt+Mt+Zt+Wt with
Vt ∈ FVP, an Itô integral process Mt, a Skorokhod integral process Zt and the Hilbert-Schmidt transform
Wt of a functional in L1,2, or a more general random function ([1]) (extension of [7, Theorem 2], O1)

· Derivation in need of B

O3. Derivation of a(t) and b(t) in the case a(t) is a Skorokhod integral process and b(t) ∈ L0,2 ([4])

O4. Derivation of a(t) and b(t) in the case a(t) ∈ FVP ([2])

O5. Derivation of a(t) and b(t) in the case a(t) is written as a(t) = Vt + Mt + Zt + Wt with Vt ∈ FVP, an Itô
integral process Mt, a Skorokhod integral process Zt and the Hilbert-Schmidt transform Wt of a functional
in L1,2, or a more general random function ([1]) (extension of O3, O4)
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