Abstract of present research

Our study is polynomial approximation theory as an application of potential theory. On \mathbb{R} , every polynomial P(t) blows up as $|t| \to \infty$, we must multiply a weight function w(t). Then, for $1 \le p \le \infty$ and $fw \in L^p(\mathbb{R})$, is there exist a sequence of polynomials $\{P_n\}$ such that

$$\lim_{n \to \infty} \|(f - P_n)w\|_{L^p(\mathbb{R})} = 0 \tag{A}$$

holds? We assume that an exponential weight w belongs to relevant class $\mathcal{F}(C^2+)$. Let w be $w(t) = \exp(-Q(t))$. We consider a function T(t) := tQ'(t)/Q(t), $(t \neq 0)$. If T is bounded, then w is called a Freud-type weight, and otherwise, w is called an Erdős-type weight. In this study, we consider Erdős-type weights. Our present results are following:

1. Convergence of the de la Vallée Poussin mean: The de la Vallée Poussin mean $v_n(f)$ of f is defined by $v_n(f)(t) := \frac{1}{n} \sum_{j=n+1}^{2n} s_j(f)(t)$, where $s_m(f)(x)$ is the partial sum of Fourier series of f for orthogonal polynomials with respect to w. The degree of approximation for f defined by $E_{p,n}(w; f) := \inf_{P \in \mathcal{P}_n} ||(f - P)w||_{L^p(\mathbb{R})}$. Here, \mathcal{P}_n is the set of all polynomials of degree at most n. We assume that $w \in \mathcal{F}(C^2+)$ and suppose that $T(a_n) \leq c (n/a_n)^{2/3}$ for some c > 0. Here, the notation a_n is called MRS number. Then there exists a constant $C \geq 1$ such that for every $n \in \mathbb{N}$ and when $fw \in L^p(\mathbb{R})$,

$$\|(f - v_n(f))w\|_{L^p(\mathbb{R})} \le CT^{1/4}(a_n)E_{p,n}(w;f).$$
(B)

We show the conditions such that the right side of (B) converge to 0 as $n \to \infty$. Moreover, if f is more smoother function, $v_n(f)$ is not only a good approximation polynomial for f, but also its derivatives give an approximation for f'.

2. Uniform convergence of the Fourier partial sum: By the way, we show the condition uniformly convergence of $s_n(f)$ for a weight in a more smooth subclass $\mathcal{F}_{\lambda}(C^3+)$: Let $w \in \mathcal{F}_{\lambda}(C^3+)$ with $0 < \lambda < 3/2$. Suppose that f is continuous and has a bounded variation on any compact interval of \mathbb{R} . If f satisfies $\int_{\mathbb{R}} w(x) |df(x)| < \infty$, then

$$\lim_{n \to \infty} \left\| (f - s_n(f)) \frac{w}{T^{1/4}} \right\|_{L^{\infty}(\mathbb{R})} = 0.$$

3. Lagrange interpolation polynomials for Laguerre-type weights: We assume that an exponential weight $w(x) = \exp(-R(x))$ on $\mathbb{R}^+ := [0, \infty)$ belongs to relevant class $\mathcal{L}_{\lambda}(C^3+)$ with $0 < \lambda < 3/2$. Let w_{ρ} be $w_{\rho}(x) := x^{\rho}w(x)$ for $\rho > 0$. For $f \in C(\mathbb{R}^+)$, we write the Lagrange interpolation polynomial $L^*_{n,\rho}(f)(x)$ with nodes $\{x_{j,n,\rho}\}_{j=1}^n$, where $\{x_{j,n,\rho}\}_{j=1}^n$ are the zeros of *n*-th orthogonal polynomial with respect to w_{ρ} . We show the condition such that Lagrange interpolation polynomial converges to f with w_{ρ} in L^p -norm for 1 : For <math>p = 2, let $\beta > 1/2$. If $(1+x)^{\beta/2+1/4}w_{\rho}(x)f(x) \to 0$ as $x \to \infty$, then we have

$$\lim_{n \to \infty} \| (L_{n,\rho^*}^*(f) - f) w_\rho \|_{L^2(\mathbb{R}^+)} = 0.$$
 (C)

And for $1 , let <math>\beta > 1/p$ and $(1+x)^{\beta/2+1/4}T^{*1/2}(x)\Phi^{*-1/4}(x)w_{\rho^*}(x)f(x) \rightarrow 0(x \rightarrow \infty)$ (where, $\Phi^*(x) := (T^*(x)(1+R(x))^{2/3})^{-1}$). Then we have (C) in the case of $1 . Here, <math>L^*_{n,\rho^*}(f)$ is the Lagrange interpolation polynomial with respect to the weight $w_{\rho^*} := w_{\rho+1/2p-1/4}$. Additionally, for 2 < p, we showed the result (C) corresponds to a weight $\Phi^{*(1/2-1/p)^+}(x)w_{\rho}(x)$.

(Kentaro Itoh)