Results of my research

Shin'ya Okazaki

A 2-component handlebody-link is 2 handlebodies embedded in the 3sphere, denoted by H. Two 2 -component handlebody-links are equivalent if one can be transformed into the other by an isotopy of S^{3}.

The linking number is a classical and fundamental invariant of a 2 component link in knot theory. A. Mizusawa introduced the linking numbers as an invariant of a (not necessarily 2 -component) handlebody-link. The linking numbers is a generalization of the linking number to a handlebodylink. However, the linking numbers do not inherit even the property of the linking number.

Let $\Delta_{L}\left(t_{1}, t_{2}\right)$ be the Alexander polynomial of a 2-component link L. G. Torres showed that $\Delta_{L}(1,1)$ is the linking number of L. We introduced the linking number of a pair of handlebody-link H and generators of the first homology group of H from the viewpoint that this property is the essential property to be satisfied by the linking number.

For a 2-component handlebody-link $H=h_{1} \cup h_{2}$, let g_{1} be the genus of h_{1} and g_{2} the genus of h_{2}. Let $c_{11}, c_{12}, \ldots, c_{1 g_{1}}$ and $c_{21}, c_{22}, \ldots, c_{2 g_{2}}$ be bases of the first homology groups $H_{1}\left(h_{1}\right)$ and $H_{1}\left(h_{2}\right)$ of h_{1} and h_{2}, respectively. We regard $c_{11}, c_{12}, \ldots, c_{1 g_{1}}$ and $c_{21}, c_{22}, \ldots, c_{2 g_{2}}$ as embedded closed oriented circles in the 3 -sphere. Let $L_{i}=\sum_{j=1}^{g_{2}} l k\left(c_{1 i}, c_{2 j}\right)\left(i=1,2, \ldots, g_{1}\right)$. We define the linking number $l k\left(h_{1}, h_{2}\right)$ of H as $l k\left(h_{1}, h_{2}\right)=\operatorname{gcd}\left\{L_{i} \mid i=1,2, \ldots, g_{1}\right\}$.

For a 2-component handlebody-link $H=h_{1} \cup h_{2}$, let $m_{11}, m_{12}, \ldots, m_{1 g_{1}}$ be a meridian system of h_{1} and $m_{21}, m_{22}, \ldots, m_{2 g_{2}}$ a meridian system of h_{2}. Let E be the exterior of H and $\alpha: \pi_{1}(E) \rightarrow \mathbb{Z}=\langle t \mid\rangle$ an onto homomorphism such that $\alpha\left(m_{1 i}\right)=1, \alpha\left(m_{2 j}\right)=t\left(i=1,2, \ldots, g_{1}, j=1,2, \ldots, g_{2}\right)$. Let $\Delta_{(H, \alpha)}(t)$ be the Alexander polynomial of a pair (H, α). Then the following theorem holds.

Theorem 1 [O.]
$\Delta_{(H, \alpha)}(1)=l k\left(H_{1}, H_{2}\right)$.
Let $\nabla_{L}(z)$ be the Conway polynomial of a 2 -component link L. J. Hoste showed that the first coefficient of $\nabla_{L}(z)$ is the linking number of L. the linking number $l k\left(H_{1}, H_{2}\right)$ has this property.

Theorem 2 [O.]
The first coefficient of $\nabla_{(H, \alpha)}(z)$ is $l k\left(H_{1}, H_{2}\right)$.

