Plan of the study (Yosuke Saito)
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By setting Dm:xa— (Euler derivative), we define Ej(z;q):=—D,"logf,(x) (k€Zso). For com-
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Let N be a positive integer, 8 be a complex number, and p be a complex number
satisfying |p|<1. The Hamiltonian of the elliptic Calogero-Moser system HJ(\J,M(&p) is
defined by
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Then the following fact is known: W ( H O, (xi/2)" /2 satisfies
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where C'y (5, p) is a complex number. It is remarkable that the derivative Dp:pa— is
in the right hand side of (x). This means that the elliptic Calogero-Moser system has a
solution which involves the infinitesimal deformation of the elliptic modulus p.

Let N be a positive integer, ¢, p be complex numbers satisfying |¢|<1, |p|<1, and t
be a complex number satisfying t€C\{0}. The Hamiltonian of the elliptic Ruijsenaars
system HX(q,t,p) is defined by
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where Tj, ;. is the g-shift operator which is defined by T} , f(z)=f(¢x). Then the function
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It is known that by setting t=¢® and by taking the limit ¢ — 1 appropriately, the equa-
tion (xx) degenerates to the equation (). Thus it is probable that the equation (k)
contains a certain difference deformation of the elliptic modulus p. By standing the

point of view, the author will study the elliptic Ruijsenaars system.



