Research Plan

Relation of Pisot finiteness properties

Let $\beta>1$. Frougny and Solomyak introduced the following conditions:
$\left(F_{1}\right) \mathbb{Z} \subset \operatorname{Fin}(\beta)$
(PF) $\mathbb{Z}_{\geq 0}\left[\beta^{-1}\right] \subset \operatorname{Fin}(\beta)$
(F) $\mathbb{Z}\left[\beta^{-1}\right] \subset \operatorname{Fim}(\beta)$
where $\operatorname{Fin}(\beta)$ is the set of real number x such that $|x|$ has finite β-expansion. We know some interesting results on these finiteness properties. The following table shows previous research results:

	Class	Algebraic structure of Fin (β)	Sufficiency for (F)	Sufficiency for (PF)
$\left(\mathrm{F}_{1}\right)$	Pisot	$?$	$?$	$?$
(PF)	Pisot	Closed under addition \& multiple	$d_{\beta}(1)$ is finite	-
(F)	Pisot	Ring	-	-

The property (F_{1}) is not well-known. However, I recently found a Pisot number β which has property $\left(\mathrm{F}_{1}\right)$ without (PF). So I will work on the following projects.

Necessity and Sufficient condition for property ($\mathbf{F}_{\mathbf{1}}$)

Let $\beta>1$ be an algebraic integer with minimal polynomial $x^{d}-a_{d-1} x^{d-1}-\cdots-a_{1} x-a_{0}$ and define τ_{β}, which is a transformation on \mathbb{Z}^{d-1}, by

$$
\tau_{\beta}\left(l_{1}, l_{2}, \cdots, l_{d-1}\right):=\left(l_{2}, \cdots, l_{d-1},-\left\lfloor l_{1} a_{0} \beta^{-1}+l_{2}\left(a_{1} \beta^{-1}+a_{0} \beta^{-2}\right)+\cdots+l_{d-1}\left(a_{d-2} \beta^{-1}+\cdots+a_{0} \beta^{-d+1}\right)\right]\right) .
$$

τ_{β} is a kind of generalization of β-transformation T when β is an algebraic integer with degree d. Now define $\tau_{\beta}^{*}(\boldsymbol{l})=-\tau_{\beta}(-\boldsymbol{l})$ and

$$
Q_{\beta}=\left\{\boldsymbol{l}=\left(l_{1}, l_{2}, \cdots, l_{d-1}\right) \in \mathbb{Z}^{d-1} \mid \exists\left\{\boldsymbol{l}_{n}\right\}_{n=1}^{N} \text { s.t. } \boldsymbol{l}_{N}=\boldsymbol{l}, \boldsymbol{l}_{n+1} \in\left\{\tau_{\beta}\left(\boldsymbol{l}_{n}\right), \tau_{\beta}^{*}\left(\boldsymbol{l}_{n}\right)\right\} \text { and } \boldsymbol{l}_{1}=(0, \cdots, 0,1)\right\} \text {. }
$$

When β is a Pisot number, Q_{β} is a finite set and so

$$
P_{\beta}:=\left\{\boldsymbol{l} \in Q_{\beta} \mid \exists k \in \mathbb{N} ; \tau_{\beta}^{k}(\boldsymbol{l})=\boldsymbol{l}\right\}
$$

is also finite set. The condition $\tau_{\beta}^{-1}\left(P_{\beta}\right) \subset P_{\beta}$ plays an important role in the proof of a new sufficient condition for property (F_{1}) that I found. So I expect that $\tau_{\beta}^{-1}\left(P_{\beta}\right) \subset P_{\beta}$ if and only if β has property (F_{1}) without (PF). Hence I aim to solve this problem for a future work.

An algebraic structure of $\operatorname{Fin}(\boldsymbol{\beta})$ under property ($\mathbf{F}_{\mathbf{1}}$)

In the condition (PF), the opposite inclusion is obviously true. Similarly, (F) is also so on. Thus an algebraic structure of $\operatorname{Fin}(\beta)$ is already known when β has property (PF) or (F). On the other hand, when β has property (F_{1}), an algebraic structure of $\mathrm{Fin}(\beta)$ still remains as an unsolved problem. So I try to study an algebraic structure of $\operatorname{Fin}(\beta)$ when β has property $\left(\mathrm{F}_{1}\right)$.

