Research Plan

Relation of Pisot finiteness properties

Let $\beta > 1$. Froughy and Solomyak introduced the following conditions:

$$(F_1) \ \mathbb{Z} \subset \operatorname{Fin}(\beta) \qquad (PF) \ \mathbb{Z}_{\geq 0}[\beta^{-1}] \subset \operatorname{Fin}(\beta) \qquad (F) \ \mathbb{Z}[\beta^{-1}] \subset \operatorname{Fim}(\beta)$$

where Fin(β) is the set of real number x such that |x| has finite β -expansion. We know some interesting results on these finiteness properties. The following table shows previous research results:

	Class	Algebraic structure of $Fin(\beta)$	Sufficiency for (F)	Sufficiency for (PF)
(F ₁)	Pisot	?	?	?
(PF)	Pisot	Closed under addition & multiple	$d_{\beta}(1)$ is finite	_
(F)	Pisot	Ring		_

The property (F_1) is not well-known. However, I recently found a Pisot number β which has property (F_1) without (PF). So I will work on the following projects.

Necessity and Sufficient condition for property (F_1)

Let $\beta > 1$ be an algebraic integer with minimal polynomial $x^d - a_{d-1}x^{d-1} - \cdots - a_1x - a_0$ and define τ_{β} , which is a transformation on \mathbb{Z}^{d-1} , by

 $\tau_{\beta}(l_1, l_2, \cdots, l_{d-1}) \coloneqq (l_2, \cdots, l_{d-1}, -[l_1 a_0 \beta^{-1} + l_2 (a_1 \beta^{-1} + a_0 \beta^{-2}) + \cdots + l_{d-1} (a_{d-2} \beta^{-1} + \cdots + a_0 \beta^{-d+1})]).$ $\tau_{\beta} \text{ is a kind of generalization of } \beta \text{-transformation } T \text{ when } \beta \text{ is an algebraic integer with degree } d. \text{ Now define } \tau_{\beta}^*(l) = -\tau_{\beta}(-l) \text{ and }$

 $Q_{\beta} = \left\{ \boldsymbol{l} = (l_1, l_2, \cdots, l_{d-1}) \in \mathbb{Z}^{d-1} \middle| \exists \{\boldsymbol{l}_n\}_{n=1}^N \ s.t. \ \boldsymbol{l}_N = \boldsymbol{l}, \ \boldsymbol{l}_{n+1} \in \left\{ \tau_{\beta}(\boldsymbol{l}_n), \tau_{\beta}^*(\boldsymbol{l}_n) \right\} and \ \boldsymbol{l}_1 = (0, \cdots, 0, 1) \right\}.$ When β is a Pisot number, Q_{β} is a finite set and so

$$P_{\beta} \coloneqq \{ \boldsymbol{l} \in Q_{\beta} \mid \exists k \in \mathbb{N}; \tau_{\beta}^{k}(\boldsymbol{l}) = \boldsymbol{l} \}$$

is also finite set. The condition $\tau_{\beta}^{-1}(P_{\beta}) \subset P_{\beta}$ plays an important role in the proof of a new sufficient condition for property (F₁) that I found. So I expect that $\tau_{\beta}^{-1}(P_{\beta}) \subset P_{\beta}$ if and only if β has property (F₁) without (PF). Hence I aim to solve this problem for a future work.

An algebraic structure of $Fin(\beta)$ under property (F_1)

In the condition (PF), the opposite inclusion is obviously true. Similarly, (F) is also so on. Thus an algebraic structure of Fin(β) is already known when β has property (PF) or (F). On the other hand, when β has property (F₁), an algebraic structure of Fin(β) still remains as an unsolved problem. So I try to study an algebraic structure of Fin(β) when β has property (F₁).