## Research Results: Yasuyoshi Yonezawa

M. Khovanov constructed a homological link invariant which is a refinement of the Jones polynomial. As well-known, the Jones polynomial is a quantum link invariant defined using a quantum group  $U_q(\mathfrak{sl}_2)$  and its vector representation. This fact led me to ask the following questions:

Can we construct homological link invariants which refine other quantum link invariants?



(1) Summary of the thesis "Quantum  $(\mathfrak{sl}_n, \wedge V_n)$  link invariant and matrix factorizations": Khovanov and Rozansky introduced matrix factorizations defining a homological link invariant which refines the quantum link invariant associated with  $U_q(\mathfrak{sl}_n)$ and its vector representation. In this paper, we generalize Khovanov–Rozansky's matrix factorizations and define a new link invariant CKh(q, t, s) which refines the quantum link invariant CJ(q) associated with  $U_q(\mathfrak{sl}_n)$  and its fundamental representations (Research in blue on the above figure). The link invariant CJ(q) is recovered as CKh(q, -1, 1).

(2) Summary of the paper " $\mathfrak{sl}_N$ -Web categories and categorified skew Howe duality": On the antisymmetric tensor product  $\wedge^k(\mathbb{C}^n \otimes \mathbb{C}^m)$ , we have a left  $U_q(\mathfrak{sl}_n)$  action and a right  $U_q(\mathfrak{gl}_m)$  action such that these two actions commute. Hence, we have a  $U_q(\mathfrak{gl}_m)$  representation (top-left morphism  $\gamma_m^n$  on the above figure).

$$\gamma_m^n: U_q(\mathfrak{gl}_m) \to \bigoplus_{\substack{\sum_{\alpha=1}^m i_\alpha = k, \sum_{\alpha=1}^m j_\alpha = k}} \operatorname{Hom}_{U_q(\mathfrak{sl}_n)}(\wedge^{i_1} \otimes \cdots \otimes \wedge^{i_m}, \wedge^{j_1} \otimes \cdots \otimes \wedge^{j_m}),$$

where  $\wedge^i$  is the *i*-th fundamental representation of  $U_q(\mathfrak{sl}_n)$  (i = 1, ..., n-1) and the trivial representation (i = 0, n). The following two privious research facts are known: (A) The quantum group  $U_q(\mathfrak{gl}_m)$  is categorified by the category  $\mathcal{U}(\mathfrak{gl}_m)$  introduced by Khovanov– Lauda and Rouquier and (B)  $\bigoplus \operatorname{Hom}_{U_q(\mathfrak{sl}_n)}(\wedge^{\underline{i}}, \wedge^{\underline{j}})$  is categorified by the category of matrix factorizations  $\operatorname{HMF}_n^m$  in my thesis (left wavy arrow in blue on the above figure). From these facts, we expected that we have a functor  $\Gamma_m^n : \mathcal{U}(\mathfrak{gl}_m) \to \operatorname{HMF}_m^n$  (bottom-left functor  $\Gamma_m^n$  in green on the above figure) and we constructed a functor in this paper.

(3) Summary of the paper "Braid group actions from categorical symmetric Howe duality on deformed Webster algebras": On the symmetric product  $S^k(\mathbb{C}^2 \otimes \mathbb{C}^m)$ , we have a  $U_q(\mathfrak{gl}_m)$  representation (top-right morphism  $\gamma_m$  on the above figure). From the fact that the tensor representation  $S^{\underline{i}} = V_{i_1 \varpi} \otimes \cdots \otimes V_{i_m \varpi}$  is categorified by the projective module category of the Webster algebra, we expected that we have a functor from the category  $\mathcal{U}(\mathfrak{gl}_m)$  to the bimodule category of the Webster algebra. However, there are obstacles when we use the original Webster algebra. In this paper, we defined a deformed Webster algebra  $W(\mathbf{s}, k)$  and constructed a functor  $\Gamma_m$  from  $\mathcal{U}(\mathfrak{gl}_m)$ to the bimodule category  $\operatorname{Bim}(m, k)$  of  $W(\mathbf{s}, k)$  (bottom-right functor  $\Gamma_m$  in orange). Subsequently, we defined a braid group action on the homotopy category  $K^b(\operatorname{Bim}(m, k))$ using the functor.