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Abstract

The goal of this paper is to obtain atomic and wavelet characteriza-
tions of Musielak—Orlicz Hardy spaces. Recently, in 2018, Fu and Yang ob-
tained wavelet characterizations of Musielak—Orlicz Hardy spaces for growth
functions of uniformly upper type p_ and of uniformly lower type p; with
0 < p_ < py < 1. What is different from the existing works is that we merely
assume 0 < p_ < p; < 0o. One of the important tools that make it possible
is to refine the convexity of Orlicz functions by obtaining canonical equiva-
lent functions. As applications of the atomic characterization, we investigate
the boundedness property of singular integral operators. Especially, we ob-
tain the boundedness property of Marcinkiewicz integral operators acting on
some Musielak—Orlicz Hardy spaces which are quasi-Banach spaces.
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1 Introduction

The goal of this paper is to obtain atomic and wavelet characterizations of Musielak—
Orlicz Hardy spaces generated by a generalized Musielak—Orlicz function of uni-
formly lower type and uniformly upper type. What is new in this paper is that
we can deal with generalized Musielak—Orlicz functions of uniformly lower type p_
and uniformly upper type p, for any 0 < p_ < p, < oo, while many earlier works
considered the case where 0 < p_ <p, < 1.

Hardy spaces associated with Musielak—Orlicz spaces seems to go back to [17].
Ky [17] introduced the Musielak—Orlicz Hardy space H¥(R™), which extends Orlicz
Hardy spaces and weighted Hardy spaces. Here by a weight we mean a non-negative
measurable function, although we will postulate more conditions on weights later.
Among other function spaces, Musielak—Orlicz Hardy space has attracted much
attention. For example, the Musielak-Orlicz Hardy space H?(R") generated by



the function .

ble.t) = log(e + |z|) + log(e + 1) (1) € R") (1.1)
turned out to be important in connection with pointwise multipliers on BMO(R")
and H'(R™). This remarkable property of 6 is pointed out by Ky [17], who is
motivated by the result of the pointwise multiplier obtained by the second author
and Yabuta [24].

One of the convenient ways to develop the theory of Hardy spaces associated
with Banach lattices is to consider the duality. As in [25], the duality of a Banach
lattice together with the boundedness property of the Hardy-Littlewood maximal
operator allows us to investigate the Hardy space associated to this lattice with
ease. The technique in [25], whose ingredient is the duality, can be applied to
many settings such as Morrey spaces [14], local Morrey spaces [3], Morrey spaces
with variable exponent [10], weak Lebesgue spaces [30], generalized Morrey spaces
[1], local Morrey type spaces [8] and mixed Lebesgue spaces [11]. However, this
does not apply to Musielak—Orlicz spaces because we can not handle the Fenchel-
Legendre transform of the (Musielak—)Orlicz functions, namely, we can not employ
the technique in [25]. To overcome this problem, we will go through a similar
argument to [23]. To this end, we will prove an estimate based on the notions
of strictly uniformly lower type and strictly uniformly upper type. Unfortunately,
as in [31, Remark 1.7(iv)] that the Musielak—Orlicz Hardy space and the variable
exponent Hardy space cannot cover each other. Thus, we need to establish the
theory of Musielak—Orlicz Hardy spaces from scratch.

Here we survey the history of the wavelet characterization of Hardy spaces in-
cluding related characterizations. Meyer [20] established several equivalent wavelet
characterizations of H'(R"). Liu [19] established some equivalent wavelet charac-
terizations of the weak Hardy space H'*°(R"). Wu [33] obtained further a wavelet
area integral characterization of the weighted Hardy space H?(R™) for any p € (0, 1]
and later, Garcia-Cuerva and Martell [6] established a characterization of HP(R™)
for any p € (0,1] in terms of wavelets without compact supports using the vector-
valued Calder6n—Zygmund theory. Kopaliani [16] and Izuki [12] independently
introduced the wavelet inequalities of Lebesgue spaces with variable exponents.
The present authors [13] further obtained the wavelet characterization for weighted
Lebesgue spaces with variable exponents. Fu and Yang obtained the wavelet char-
acterization for Musielak—Orlicz Hardy spaces in [5]. Maeda and Shimomura [21]
investigated Hardy spaces associated with Musielak-Orlicz spaces together with
the third author. See [29] for more.

Here we explain the notation which we employ in this paper.

e Let Ng={0,1,...}.
e We write R = R" x (0, 00).

e A set S is said to be a dyadic cube if

n

S=Qix =[] [27km 27 (ki + 1)] (1.2)

m=1



for some j € Z and k = (k1, ks, ..., k,) € Z". A dyadic cube S” with respect
to a cube S of the form S = aQo+b, (b,a) € RTH, is a subset S" = aQ; 1 +b
for some j € Ny and k € {0,1,...,29 — 1}

e Let A/B > 0. Then A < B and B 2 A mean that there exists a constant
C > 0 such that A < CB, where C' depends only on the parameters of
importance. The symbol A ~ B means that A < B and B < A happen at

the same time, while A ~ B means that there exists a constant C' > 0 such
that A = CB.

e The symbols F and F~! stand for the Fourier transform and its inverse,
respectively. More precisely, for f € L'(R"), define the Fourier transform
and the nverse Fourier transform by

FRO=@nE | fletde, Flf)=@m7F | f(eds

The remaining part of this paper is organized as follows: Section 2 recalls
some elementary facts on generalized Musielak—Orlicz functions. In addition to
the notion of uniformly lower type and uniformly upper type, we define the ones
of strictly uniformly lower type and strictly uniformly upper type and then give
a lemma on this notion; see Lemma 2.8 to follow. We imitate the idea of [17]
to consider the convex inequality in Lemma 2.7. We use Lemmas 2.7 and 2.8 to
investigate the relation between the atomic decomposion considered in [17] and the
one in this paper; see the latter half of Section 3. Using Lemma 2.7, we obtain
an important estimate which parallels the one in [23]; see Lemma 2.16. We define
Musielak—Orlicz Hardy spaces and give the atomic characterization using Lemma
2.16 in Section 3. We show the boundedness properties of (generalized) singular
integral operators in Section 4 together with the Littlewood—Paley characteriza-
tion. As a further application of the boundedness results in Section 4, we obtain
the wavelet characterization in Section 5. Among others, we justify the coupling
(f,¢') for the wavelet ! € C**}(R") and f € H?(R") C S'(R") in Lemma 5.4.
Section 6 is oriented to the application of the atomic characterization to generalized
Marcinkiewicz integral operators. Usually, when we investigate the boundedness
property of generalized Marcinkiewicz integral operators, we use the complex in-
terpolation, which usually forces us to work in Banach spaces. In this paper, by
the use of Lemma 2.16 and the idea of Asami [2], we provide a proof which does
not use the complex interpolation. Our result will cover spaces H?(R") and LP(R™)

with 2211 <p< L

2 Preliminaries

Here we collect preliminary facts. First we give basic properties on generalized
Musielak-Orlicz functions in Subsection 2.1. Next, we consider the boundedness
property of the Hardy—Littlewood maximal operator M in Subsection 2.2, where
we recall the modular inequality. In Subsection 2.3 we recall the properties of the
grand maximal operator including integral estimates based on the books [7, 26].
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2.1 Orlicz functions

An Orlicz function is a convex homeomorphism on [0, 00). We recall the definition
of generalized Musielak—Orlicz functions with two variables x and ¢ following [17,
29].

Definition 2.1 (Generalized Musielak-Orlicz function).

1. A Musielak-Orlicz function is a function ¢ : R" x [0,00) — [0,00) such
that ¢(z,-) is an Orlicz function for each z € R™ and ¢(+,¢) is a measurable
function for each t > 0. A generalized Musielak—Orlicz function is a function
¢ : R" x [0,00) — [0,00) such that ¢(-,-1/P) : R® x [0,00) — [0,00) is a
Musielak—Orlicz function for some 0 < p < oco.

2. Let 0 < p < co. A generalized Musielak—Orlicz function ¢ is said to be of
uniformly lower- (resp., upper-) type p if for any z € R" ¢ € [0,00) and
s € (0,1) (resp., s € [1,00)), ¢(x,st) S sPe(x,t) with the implicit constant
independent of s,t and .

3. If < can replaced by < in the above, then ¢ is said to be strictly of uniformly
lower- (resp., upper-) type p.

4. For a generalized Musielak—Orlicz function ¢ of uniformly lower type p_ and
of uniformly upper type py with 0 < p_ < p, < o0, let

i(p) = sup{p € (0,00) : ¢ is of uniformly lower type p} (2.1)

and
I(p) = inf{p € (0,00) : ¢ is of uniformly upper type p}. (2.2)

Example 2.2.

1. As a prototype case, we consider p(z,t) = t* for (z,t) € Rt Here 0 < p <
oo. In this case, I(¢) =i(p) =p

2. The function 6, given by (1.1) and considered by Ky, satisfies

It is easy to check that I(f) = 1. To verify that i(6) = 1, we will use
log(e +t) > log(e + st) > log(e +t'™*) ~ log(e + t)
for any a > 1, s € [0,1] and ¢ € [1,00) with st* > 1.

It turns out important that we introduce the notion of strictly of uniformly
upper/lower type; see Proposition 2.15.

To define Musielak-Orlicz spaces, we define the class A, (R™) following the work
by Ky [17].

Definition 2.3.



1. [7, 26] A locally integrable weight w is said to be an A;-weight, if 0 < w <
oo almost everywhere, and [w]a, = sup mg(w)||w ||~ < oo, where Q
QeQ

denotes the set of all cubes in R™.

2. [7, 26] Let 1 < g < oo. A locally integrable weight w is said to be an
Ag-weight, if 0 < w < oo almost everywhere, and

[w] 4, = sup mQ(w)mQ(w_q%l)q*1 < 0.
QeQ

3. The class Ay is defined by Ao = | A,

1<g<0

4. [17] Let 1 < ¢ < oo. A function ¢ : R" x [0, 00) — [0, 00) is said to belong to
Ay(R™) if [p]a, = suple(-,t)]a, < oo. A function ¢ : R™ x [0,00) — [0, 00) is
>0

said to satisfy the uniformly Muckenhoupt condition if ¢ € A,(R") for some
g €[l,00). Write A, (R") = J A, R").

q€(1,00)
Example 2.4.

1. Let o € Rand 1 < p < oco. It is well known that |- |* € A, if and only if
—n < a<n(p—1)and that |- |* € A; if and only if —n < a <0.

2. By a change of variables and the above facts, we can check that min(1, |-|™") ¢
Ao

3. Let w e A, with 1 < g < oo. If we set p(z,t) = tlw(x), then p € A, (R"™).
More generally, if w € A, and ® is an Orlicz function, then ¢, given by
o(z,t) = ¢(Hw(x), (z,t) € R™ x (0,00), belongs to A (R").

We define Musielak—Orlicz Hardy spaces vie Musielak—-Orlicz spaces. We give
the standard definition of Musielak—Orlicz spaces.

Definition 2.5. Let ¢ € A (R"). Then the Musielak—-Orlicz space L¥(R") is the

set of all measurable functions f : R" — C for which

| eleli@hax <o

for some £ > 0. For f € L¥(R"), the quasi-norm || f||z+ is given by

!|f|!mzinf{A>o : /ngo(x,&;)l)dxg}.

Here is our standing assumption. We suppose that a generalized Musielak—
Orlicz function ¢ : R™ x [0, 00) — [0, 00) satisfies the following conditions:

1. ¢ € A (R"), so that ¢(p) =inf{g > 1 : ¢ € A,(R")} < 0.

2.  is of uniformly lower type p_ and of uniformly upper type p, for some
0<p_ <p: <o0.



Recall that a growth function is a generalized Musielak—Orlicz function ¢ € A (R™)
of uniformly lower type p_ and of uniformly upper type p, = 1, so we tolerate the
case where p, > 1 in this paper.

In the prototype case of ¢(x,t) = t, we have q(p) = 1, i(p) = I(¢) = p for
any 0 < p < o0.

It is convenient to note a scaling law:

Lemma 2.6. Let p € Ao (R") and a > 0. Then

q(p(, (1)) = ale), i(p(, (1)) =ai(p), I(e(-(-)") = al(p).

Proof. We calculate

[o(, ())]a, = suple(-, t)]a, = suplp(:,t)]a, = [¢]a,-
>0 >0
If p < i(p), then ¢ is of uniformly lower type p, so that p(z, st) < sPp(z,t) for all
0 <s<1landt>0. Thus, p(x,st") S (s*)P¢(x,t*) for all 0 < s <1 and ¢t > 0,
implying that ¢(-, (-)*) is of uniformly lower type ap. Thus, ai(y) < i(o(-, (-)%)).
If we swap the role of ¢ and ¢(-, (-)*), then we obtain ai(yp) > i(p(-, (-)*)). Thus,
ai(p) = i(p(-, (+)). If we replace “0 < s < 1”7 by “s > 17, then we see al(p) =

I{e(, (4))- O

What differs crucially from the existing works [5, 17] is that we assume only
0<p_<p, <oxoinstead of 0 <p_ <p, =1.
We will prove an estimate related to the convexity motivated by the paper [17].

Lemma 2.7. Suppose that ¢ : R" x [0,00) — [0,00) is a function of uniformly
lower type p. Then

o] ) o)

1

; x,<ztj) =S et
j=1 j=1

for all non-negative £*-sequences {tj};?‘;l. In particular, if p > 1, then

@ (56’72%') 2> platy).
j=1 j=1

for all non-negative (*-sequences {t;}3>,. If p : R x [0, 00) — [0, 00) is a function
strictly of uniformly lower type p, then 2 can be replaced by >.

Proof. Write T'= ) t;. Since the mapping (z,t) — ¢(z, t%) is of uniformly lower

j=1
type 1,

t

Zo(0.77) 2 ela )
for all £k € N. It remains to add this estimate over k. O]

The following observation is crucial for later considerations:



Lemma 2.8. Let 0 < p_ <py <o0. Let p : R" x [0,00) — [0,00) be a generalized
Musielak—Orlicz function of uniformly lower type p_ and of uniformly upper type
py. Then there exists a generalized Musielak—Orlicz function ¢ : R™ x [0,00) —
[0,00) strictly of uniformly lower type p_ and strictly of uniformly upper type py
such that p(z,t) ~ ¢(x,t) for all x,t.

Proof. First of all, we set ¥(z,t) = sup s P-¢(x,st) for (z,t) € R™ x [0, 00).
s€(0,1]

Then since ¢ is of uniformly lower type p_, ¢(x,t) ~ ¥(z,t) for all x,t, so that

¥ is of uniformly upper type py. Furthermore, for 0 < v <1, x € R” and ¢t > 0,

arithmetic shows
Y(z,vt) = sup s P-p(x, svt)
s€(0,1]

= oP~ sup (sv) P p(z, svt)
s€(0,1]

=P~ sup s P p(x, st).
s€(0,v]

By enlarging the range of v, we obtain

Y(x,vt) <P~ sup s P p(x, st) = vPmY(a,t).
s€(0,1]

Thus, 1 is strictly of uniformly lower type p_.

Next, we define ¢(z,t) = sup s P+ (x, st) for (z,t) € R Then since 1 is
s>1

of uniformly upper type py, @(z,t) ~ @(z,t) ~ (z,t) for all (z,t) € R, For
v € (0,1], we estimate

Pz, vt) = sup s Pp(z, vst) < P~ sup s Pr(x, st) < oP-@(x,t)
s>1 s>1

since v is strictly of uniformly lower type p_. Thus, ¢ is strictly of uniformly lower
type p_ again. Meanwhile, for v > 1, arithmetic shows that

oz, vt) = sup s P+ (x, sut) = P+ sup s~ P+ (x, st)
s>1 s>v

and hence

oz, vt) < P+ sup s PY(x, st) = VP @(x,v).
s>1

Consequently, we obtain the desired function .
]

There are several works dealing with Musielak—Orlicz spaces under various set-
tings. Here we compare ones in this paper and ones in other papers.

Remark 2.9.



1. As in [15], the class @ of generalized Young functions is the set of all mea-
surable functions ® : [0,00] — [0, 0] such that ®(0) = liH(l) ®(xz) = 0 and
z—
lim ®(x) = co.
T—r00
2. Let ® € @ and ¢ € (0,00). One says that ® is (-convex/concave if ®((-)*/*)
is convex/concave.

3. The class @, stands for the set of all ® € @ which is equivalent to an /_-convex
generalized Young function ®_ and to an ¢, -concave generalized Young func-
tion @ for some 0 < /_ </, < o0.

4. Let 0 < ¢_ < /¢, < co. Then the function ¢ : R" x [0,00) — [0, 00), given by
p(z,t) = 0(t) (z,t € R" x[0,00)),

belongs to A;(R™) for any ® € @ which is equivalent to an ¢_-convex gener-
alized Young function ®_ and to an ¢, -concave generalized Young function
D, .

5. In [22], the second and the third authors investigated Orlicz-Hardy spaces. In
view of the above observation, it follows that Musielak—Orlicz Hardy spaces
considered in this paper will cover Orlicz-Hardy spaces in [22]. In [22, Section
8], the weighted setting is considered. If ¢ is given by p(z,t) = ®(t)w(x) for
some ® € ¢ and w € A, then p € A (R") and H?(R"), whose definition
is given in Subsection 3.1, coincides with the weighted Orlicz—Hardy space
H®(w) considered in [22, Section §].

Remark 2.10.
1. In [21, Example 2.2], Maeda, the third author and Shimomura considered a
function
o(x,t) =to(x,t) : R" x [0,00) — [0, 00). (2.3)
Consider (1) — (¢3) below, which correspond to (®1) — (®3) in [21], respec-
tively.

(pl) @(-,t) is measurable on R™ for each ¢ > 0 and ¢(z, -) is continuous on
[0,00) for each x € R™;

(p2) there exists a constant A; > 1 such that A7 < ¢(z,1) < A; for all
r € R", so that log ¢(-,1) € L>®(R");

(p3) ¢(x,-) is uniformly almost increasing on (0, 00), namely there exists a
constant Ay > 1 such that ¢(z,t) < Ayd(z, at) for all zx € R, ¢ > 0 and
a> 1.

Condition (¢3) implies that ¢ is of lower type 1.
2. Let ¢(x,t) = sup ¢(x,s) and

@(a;,t):/o S r)dr ((2,1) € R™ x [0,00))
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for # € R" and ¢t > 0. Then ¢(z,-) is continuous nondecreasing, p(x, ) is
convex and

for all z € R™ and ¢ > 0.

3. We will also consider the following conditions on ¢ and ¢ satisfying (2.3):
Let e >0, v >0 and w > 0.

(p3;e) t— t<¢(x,t) is uniformly almost increasing on (0,00), namely there
exists a constant A, . > 1 such that

d(x,t) < Ag.a” ¢(x,at) for all x € R™ whenever ¢t > 0 and a > 1;

(pd)  &(x,-) satisfies the uniform doubling condition, namely there exists a
constant As > 1 such that

o(x,2t) < Asp(x,t) for all z € R" and ¢t > 0;
(p5;v) For every v > 0, there exists a constant B, , > 1 such that

90($7t) S B%V(,D(y,t>
whenever |z —y| <t and t > 1;

(p6;w) there exist a function g on R™ and a constant B,, > 1 such that
0<g(r) <1forall zeR" g€ L'(R") and

Blp(x,t) < p(a',t) < Butp(z, 1)
whenever |2'| > |z| and g(z) <t < 1.
Under condition (¢4), ¢ is of upper type p, for some py € [1,00).

4. Remark that there exists a function ¢ € A, (R") such that condition (¢2)
fails.

5. Forp>1,¢>0andr >0, set
t? max (1, tmin(1, |z)) ift >1,
plx,t) =
t? max (¢, min(1/2, [z|7V/")) if t < 1.

We collect some known facts from [21]. First, p(x,t) satisfies (pj), j =
1,2,3,4; it satisfies (p3;p — 1).

(a) @(x,t) satisfies (¢5;v) if and only if v > ¢;
(b) ¢(z,t) satisfies (p6;w) if w > r but does not satisfy (¢6;w) if w < r.

Let 7 = 1 here and below. Then since min(1,] - |™) ¢ A, (R") according to
Example 2.4, it follows that ¢ ¢ A (R").

It is noteworthy that Musielak—Orlicz spaces considered in [21] are designed to
extend Lebesgue spaces with variable exponents.
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2.2 Boundedness of the Hardy—Littlewood maximal oper-
ator
The goal of Subsection 2.2 is to investigate the boundedness property of the Hardy—

Littlewood maximal operator, whose definition we recall now. We write Q(z,r)
for a cube which has center x and radius r, that is,

Q(xar)E{y:(ylay27"'7yn)€R :1§j§n

max |z; — y;| < 7‘}

when z = (21, x9,...,2,) € R" and r > 0. Let 0 < 1 < co. We define the powered
Hardy-Littlewood maximal operator MM by

() "
MOS0 =3 (1 ]y ) >

We simply write M = M®.
We will invoke the following vector-valued boundedness of the Hardy—Littlewood
maximal operator.

Lemma 2.11. [29, Theorem 2.1.4] Let 1 < r < co. Assume that ¢ € A (R"). If
q(¢) < p— < py < o0, then there ezists a constant C > 0 such that

K. {ZMfJ } deC/gox{Zm } "

j=—o0 J=me

3=

for all sequences of measurable functions {f;}32_. . In particular,

(Z Mff) <C (Z |fj|r>

Ly Ly

Here a natural modification is made when r = 0o.

We let
d, = max { {n (% - 1)] ,0} . (2.6)

A direct consequence of Lemma 2.11 is that

Ixellze = lIx2ynolize (2.7)

for all cubes @, since xq < xoymo S (Mxg)" for any 7 > 0.

As we have been mentioning, we are interested in ¢ € A, (R") satisfying 0 <
i(p) < I(p) < o0o. Thus, the postulate ¢(p) < i(¢) in Lemma 2.11 is too strong.
To overcome this problem, we transform Lemma 2.11 into the following form:

Corollary 2.12. For ¢ € A (R") satisfying 0 < i(p) < I(p) < oo and for all

sequences of measurable functions {f;}32 .,

/ ( > M Hdwl) / ( S It "”“)dx (2.8)

j=—00 Jj=—00

10



n+d¢+1

Proof. We consider (-, ()~ » ). We calculate

n+dep+1 n+dp+1

n+d,+1.
—F

el () ) =ale), el () ) = —— (0) > a(e)
using Lemma 2.6, since d, +1 > n (% — ) . Thus, we are in the position
ne
of using Lemma 2.11 to control the Hardy-Littlewood maximal operator in the
right-hand side of (2.8). O

Definition 2.13. Let ¢ € A (R").
1. Let o = min{1,i(p)} € (0,1], where i(¢p) is given by (2.1).
2. For sequences of nonnegative numbers {r;}32, and cubes {Q;}32,, define

A({’fj};il’ {Q; ﬁl) = Aso““j]’ﬁla {Q; ;.;1)

ECA
. ) JXQ; -

j=1

If (z,t) = 17, then write Ay ({r;}72,,{Q;}52,) = Ap({s;}721, {Q5}521)-
3. If E; is a measurable subset of (); for each j € N, define
A({"fj}?ilv {Ej};ih 1Q; ;L) = Acp({’fj}?ih {Ej};’ilv 1Q; ;.11)
= in )\>0~/ o x{i(MY}W dx<1%. (2.10)
a ~Jrn = \AMixes e I
If o(x,t) = tP, then write
AezJ({“j}go'ila {Ej};?ip {Q; jil) = Ap({“j}]o'ila {Ej};ih {Q; jil)
By the use of the Hardy—-Littlewood maximal operator, we have the following:

Proposition 2.14. Assume that ¢ € A (R") satisfies 0 < i(p) < I(p) < 0.
For each j € N, suppose that we have Ej; is a measurable subset of Q); satisfying
2|E;| > |Qy]. Then, for all {x;}32, C [0,00),

A({/{j};ih {Q; ?L) S A({,{j};il’ {Ej}?ih {Q; ?il)
Proof. By the normalization, we may assume A({r;}32,, {E;}32,,{Q;}32,) = 1.
Remark that M is given by (2.5). Since xq, < ¢,Mxg, for some ¢, > 1, we
obtain, for a > 1,

0 . )\ 2)
LS ey )

j=1
0o (CnaK/jMXE](x)a><p}l/w
> i

Ixq,llze

i(cm)l/aMxE](x))““’}”(“‘” .

(Ix@,llze) e

11



Thanks to Lemma 2.6, q(¢(-, (1)%)) < i(e(-, (1)) < I(p( (-)*) < oo as long as
a > 1. Thus, we are in the position of using Lemma 2.11 to have:

oo /e

HjXQj(x))(p

o | x, ——= dx

/n {; ( Ixq,lle
o . e) /e

</ R Z (ﬁjXEj(_x)) dx = 1.

Since i(p) > 0, we conclude

> [ kxg, (@) V2]
JXQ; -
x, = dx <1
/ﬂ {;(CHX@\|M)}

for some constant C' > 0. Thus, the proof is complete. O

We will assume that (-, (-)¥/#) is strictly of uniformly lower type 1 and strictly
of uniformly upper type P > 1 thanks to Lemma 2.8.
Proposition 2.15. Assume that ¢ € A (R") satisfies 0 < i(p) < I(p) < 0.
Assume that @(-, (-)/#) is strictly of uniformly lower type 1 and strictly of uniformly

upper type P > 1. For each j € N, suppose that we have E; is a measurable
subset of Q); satisfying 2|E;| < |Q;|. Then there exists § € (0,1) such that for all
{’%j}]o'il - [0700)7 A({"ij};ilv {Ej}]o'ilv {QJ ;il) < 5«4({’€j}§117 {Q] ;.il)
Proof. We may assume that A({x;}52,, {Q;}32,) = 1 by normalization. Since ¢ is
strictly of lower type 1, p(z,a) < ;25¢(x,a +b) for all a,b > 0 and z € R™ and
hence

o(x,a) + p(x,b) < p(r,a+0b) (2.11)
for all a,b > 0 and x € R". Since

et SR St

Ix,llze Ixe; Hm = \llxoyllee
we have
o /e
s ( 2
2 g I-
/e o0 e
H]XE ( ))“’ (fﬁjXQj\Ej (@)“’
[ _|_ SO fL‘, Z —_— S 7
thanks to (2. 11) Thus, integrating this esimate over R", we obtain

o0 xe () \ 2 Ve
12/71@ 9”{2(%)} "

Jj=1

= (rvans ()2
o ()\ 2
+ z, B SAL R dx.
/ﬂ {Z( Iq, - ) }

J=1
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We know that

KiXoE (1) \ 2 =
24D X5, ) dx > 1
/ .7 { Z( Txo, Iz -

for some D > 1 thanks to Proposition 2.14. Since (-, (-)/#) is assumed to be of
lower type 1, we have

> (rxgne @)\
JXQ\E; - —1
L.¢ {Z< ) } B2l
=1 i
Thus, letting 8 = (1 — D™1)#, we obtain
0o /e
K/]XEJ(‘T) £ P
K ””’{Z(Hmwm) } t=0
j=1 i

Since (-, (-)/#) is of uniformly upper type P > 1, we obtain

KiX 0) Ve

JXE;

x, dx <1,
L.v {3 Z(rrxemm)} =

as required. [

Given a cube @, let us denote by L'(Q) the set of all integrable functions
supported on Q).

Lemma 2.16. Let ¢ € A (R") satisfy 0 < i(p) < I(p) < co. Let f be a constant

from Proposition 2.15 and
—log, 8
4] : 2.12
c (0, = ) (2.12)

n

Suppose that we are given a countable collection of nonnegative numbers {r;}52,,
cubes {Q;}52, and non-zero measurable functions {f;}32, such that f; € L'(Q;)
for each j € N. Then we have

= wmlAPRP T i 1o
{Z(Hf]HLI(Q ||XQj||L¢) } ~ ({HJ}]:M{Q] ]:1>.

L

[6 [~

Proof. Fix j € N. Denote by M?%@i the dyadic maximal operator with respect to
Q;. Let us set

2(n+1)(k 1) 40,
Eio=Q;, Ejp,=qr€Q;: T 0 |fi(y)|dy < M®% fi(x) >, keN.
J j

13



Then each Ej can be partitioned into disjoint maximal dyadic cubes {Q;x,i}ier, ,
such that
2(n+1)(k—1)

Eiv= Qi —5— [ Ifiwldy < =—
Q5]

l€L; Qj |QJ k.l

| sl
Qj k1l

Fix j € N. In the course of the proof of [23, Lemma 4.10], we established that

{Qj,k,l}keZ,leLj,k satisfies 2|Qj,k,l M E',k+1| S ’Qj,lc,l‘ for each [ < Lj,k~
We decompose

1 . ey
RJXE”“H)LP}& = Z Z KiXQjkiNE;j kt1

= IXq; [l o =1 \ieL, . Ixq; llze .

1

[e%] ® L

-3 5 (e
jil lELj,k ||XQJ||LLP

Le

by virtue of the fact that {Q;x:}ier,, are disjoint. If we invoke Proposition 2.15,
then we have

1 1
- »
K]XQ]klmE]kﬁ—l)(p}(p <6 Z Z (K]XQ]M)@
pu Ixq, e . =4 \xa e N
1
S (_ﬂjXEj’k ) f
Hence it follows that
1 1
3 ¢

= HjXEj,k+1 £ KJX )%0 2.13
{Z(r\m\|m>} =7 ||><QJHM } (213

Jj=1 Le

for all k € NU{0}. If we repeat to use (2.13), then we have

{i(%y)} <F {i(ﬁ)s} NCAYY

Ly Ly

[6 =

By virtue of the p-triangle inequality, then we obtain

o 1€ oy 112
{Z k5] £51°1Q;1° )}v {ZZ<26k(H+1)/{ijj,k)}¢
= £33, IX@, llze . — Ixq, llze .
12
< i25k(n+l)gﬁ i ( H;jXEj,k )SD =
D = \lIxe;llee

L¥



Let a = 2°*Y 3. Arithemetic shows that a < 1; see (2.12). If we use (2.14), then

we have
5 5 ey ¢ | oo 00 oY 2 ||%
K51 £31°1 Q51 - Z Z( KiXQ; ) -
||fg|| @yllxa;llce — — \lIxq, e
L J L
Thus, we conclude
o0 5110 £ o0 ) =
{Z( rlfil1Q)] ) } < {Z( KiXa, >}
1£i0152 ;) IX@, llze . = \lIxe;llee .
= A({r; 720 {Q5172)-
Therefore, we obtain the desired result. O

2.3 Grand maximal operator and the moment condition
Following [28], we recall the definition of the grand maximal operator M.
Definition 2.17. Fix a large integer V.

1. Topologize S(R™), the set of all Schwartz functions, by the collection of semi-

norms {py} yey given by

pr(@)= > sup(1+ [z)¥|0%p ()|

- x€eR”™

for each N € N.

Define
Fn ={p € S(R") : pn(p) < 1} (2.15)

2. Let f € S'(R™) the set of all Schwartz distributions. Denote by M f the
grand maximal operator given by

Mf(z) =sup{|t "yt ") x f(x)] : t>0, e Fyr (zeR).

We recall how to use the moment condition here. In this paper, based on [26],
we use the following notation.

Definition 2.18 (Moment condition).

1. Denote by P = P(R™) the set of all polynomials. Then we can regard
P(R™) canonically as the subset of S'(R"™). Denote by P;(R") the set of all
polynomial functions with degree less than or equal to d, so that P(R") =
U Pa(R™). Tt is understood that P_;(R") = {0}.

15



2. Let L € Ny. The set Pr(R")* denotes the set of all the measurable functions
f for which (1+ |- |)Xf € LY(R"™) and / 2 f(z)dx = 0 for all @ € R™ with
Rn

la] < L. Such a function f is said to satisfy the moment condition of order
L. In this case, one also writes f L Pr(R"™).

We state a lemma which will be used in Section 4. See [7, p. 598, B2] or [26,
Theorem 1.55] for its proof.

Lemma 2.19. Let N € N be a constant and let A € (n+ N,00). Also assume that
a € CN(R"™) satisfies the differential inequality:

|0%a(z)| < (1 +|z))™ (z € R™) (2.16)
for |a] < N and that n € Py_1(R™)* satisfies the differential inequality:
n() < (1 +z))™ (zeR"). (2.17)

For j,v € Z satisfying j < v we write /@ = 2"a(2’:),n" = 2""n(2"-). Then
la? *n¥(z)| < 27 FUIN(1 4 |273|) 7 for all v € R™.

We also invoke the following lemmas from [26, 28].

Lemma 2.20. [28] Let f € S'(R"), d € {0,1,2,---} and j € Z. Then there exist
collections of cubes {Qjrtrex; and functions {njrtrex; C Coomp(R™), which are
all indexed by a set K; for every j, and a decomposition

f=g;+b;, b= Z bk
kGKj
such that the following four conditions hold:

(i) Define O; = {y € R" : Mf(y) > 27} and consider its Whitney decomposi-
tion. Then the cubes {Qjr}rex, satisfy

Z XQir < Xo, < Z X200Q,, < NXo, (2.18)
keK; kEK;

for some N € N.

(ii) Consider the partition of unity with respect to {Qjr}rek,;. Denote it by
Nk tker.- Then each function n; . is supported in 200Q); . and
J J J J»

D Mk = X0, = X (MF), 0< e < 1.
kEK;
(iii) The distribution g; satisfies
n+d+1

Mg;() S MJ(@)xo,(@) +27 ) Mxg,, ()" (2.19)

kGKj

for all x € R™.

16



(iv) Each distribution b;y, is given by b; . = (f — ¢ k)1, with a certain polynomial
cjk € Pa(R™) satisfying

/ bir(z)g(z)dx =0 for all ¢ € Py(R"),

and
n+d+1

Mbj (7)) S Mf(x)xq,,(T) + 2jMXQM () (2.20)
for all x € R".

In the above, x; ) and {;, denote the center and the side-length of @i, respectively,
and the implicit constants are dependent only on n.

Lemma 2.21. [26, Exercise 3.34] Fiz L € Ny. Let f € H'(R™). Then we can find
{a;}52, € L®(R™") NPL(R™)" and a sequence {Q;}52, of cubes such that

1. supp(a;) C @,
2. f= Zaj in S'(R™),
=1

[e.9]

1/r
3. For all0 <r < oo, {Z(”ajHooXQj)r} < M.

j=1

3 Musielak—Orlicz Hardy space H¥(R")

We are now oriented to Musielak—Orlicz Hardy spaces. We define Musielak—Orlicz
Hardy spaces in Subsection 3.1. In Subsection 3.2, we give the definition of atomic
Musielak—Orlicz Hardy spaces. To fix the language to describe the size of the co-
efficients, we use the quantity A({x;}32,, {Q;}32,) dealt with in Subsection 2.2.
We present the atomic characterization of Musielak—Orlicz Hardy spaces in Subsec-
tion 3.3, namely, atomic Musielak—Orlicz Hardy spaces and Musielak—Orlicz Hardy
spaces defined in Subsection 3.1 are the same as a set.

3.1 Musielak—Orlicz Hardy spaces by way of the grand
maximal operators

Following the spirit of [17], we define Musielak—Orlicz Hardy space H¥¢(R™) by
means of the grand maximal function. The Musielak-Orlicz Hardy space H¥(R"™)
is the set of all f € S'(R") for which the quantity

[ fllze = M £l e
is finite. As in [23, Theorem 3.4],

£z ~ (f € S'(R™)).

sup [e2 f|
t>0 Ly

17



Note that this generalizes the classical Hardy space HP(R™); simply take ¢(z,t) =
tr for (z,t) € RTH.
We state a fundamental density result for Musielak—Orlicz Hardy spaces.

Lemma 3.1. Let ¢ € A (R") satisfy 0 < i(p) < I(¢) < co. Then H'(R") N
LA*(R™) N H?(R™) is dense in H?(R™).

Proof. Use g; and g_; considered in Lemma 2.20 with d > d,,. Since

IMgjlle S oo (MAMS e+ 27 || 3 (Mxg,,) =

kEK; Lo

S Iz MOMFlle +27 1Y xaq,.

kEK;

Ly

thanks to (2.19) and Corollary 2.12. Recall that > xq,, < X(,00(MJf) by

kEK]'
Lemma 2.20 (i). Thus,
IMg;llze S [lmin(Mf, 27)] e (< 00).

Consequenlty, f = lim (f — g;). Likewise, using (2.20), we can show that
j——o0

IMCf = gi)llze < lxp2r 00 (MIMS | e < 00,
Thus, we conclude that g; —g_; € H?(R") and f = lim (g; — g—;) in H?(R"). We
Jj—o0

claim that g; — g_; € H'(R™) N L*(R™) for each j € N. Indeed, if we fix j € N, we
have

M(g;) + M(g_;) <27 (3.1)
Meanwhile,
M(g; — 9-5)
= Mt = b-) (3.2)
s X[Q_j’oo](Mf)Mf +2 Z (MXQj,k) = +277 Z (]wXQ—j,k)Ld+1
keK; keK_;

Thus, since min(a + b+ ¢,d) < min(a + b+ ¢, b+ ¢+ d) = min(a, d) + b+ ¢ for all
a,b,c,d >0, from (3.1) and (3.2), we obtain

M(g; = g-5) S2 | Xpor oM + Y (Mxg,,) 5 + D (Mxq_,,)

k}EKj kGK_]'

n4d+1

Since the right-hand side is integrable and square integrable, it follows that g; —
g—; € HY(R") N L*(R™). O

We remark that H?(R™) and L¥(R") if ¢(¢) < i(p) < I(¢) < oo, which
transforms many results in this paper into the ones for Musielak—Orlicz spaces.
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Theorem 3.2. Suppose that ¢ € A (R™) satisfies q(p) < i(p) < I(p) < co. Then
L?(R™) = H?(R™) with the equivalence of norms.

Proof. Thanks to Lemma 2.11, we have L?(R") is a subset of H?(R"). Let us

prove the opposite inclusion. Let f € H?(R"). Then there exists {f;}52, €

H?(R™)NL*(R™)NH'(R") such that f; — fin H¥(R") thanks to Lemma 3.1. Since

fi — fr € L*(R™) C LL.(R™) we have |f; — fi| < sup|e"®[f; — fi]|. Consequently,
>0

loc

1fi = felle <15 = fellme. Since {f;}52, converges to f in H#(R"™), {f;}32, is a
Cauchy sequence in L?(R™). Meanwhile, since L¥(R"™) is embedded into L;. (R")

owing to Lemma 2.11 again, it follows that f is the limit of {f;}32, in the topology
of L?(R™). Thus, f € L?(R"). O

3.2 Atomic Musielak—Orlicz Hardy spaces

We are now oriented to another definition of Musielak-Orlicz Hardy spaces. We
define Musielak—Orlicz Hardy spaces by using atoms. Here we present the definition
of atoms.

Definition 3.3. Let 1 < u < 00, p € A(R") with 0 < i(¢) < I(p) < oo and let
d € [dy,,00) NZ. An L"-function a is said to be a (¢, u)-atom supported on @ if it
is supported on a cube () with the following properties.

1. supp(a) C Q.

1
Qi
2. laller < pam

3. a¢€ 'Pd(Rn)J‘

The set A(p,u) collects all {(aj, Q;)}52; such that each a; is a (@, u)-atom sup-
ported on @Q;.

A direct consequence from the definition is

n+d+1

Ma S XoymoMa+ ———(Mxq) (3.3)

Ixellze
See the proof of [23, Proposition 5.3].

Definition 3.4 (Hi,..(R™)). Let ¢ € A (R") satisfy 0 < i(p) < I(p) < oo and

atom

1 < u < oo. The atomic Musielak—Orlicz Hardy space HZ7. (R™) is the set of all
functions f € S'(R™) such that it can be written as

f= i kja; in S'(R™), (3.4)

j=1

where {r;}32, is a sequence of nonnegative numbers, {(a;, @Q;)}52, C A(p,u) and
A({r;}521,{Q;}52,) is finite. One defines
HfHH“’t’u = inf‘A({"ij}]o'ila {Q] ;.021)7

atom

where the infimum is taken over all admissible expressions as in (3.4).

19



It should be noted that Hj,. (R") implicitly depends on d € [d,, 00) N Z.

atom
However, as we will see in Theorem 3.6, the definition of H. (R™) does not

atom
depend on d € [d,,00) NZ as a set; the different choices of d will yield equivalent
norms. It is also noteworthy that
Hiom(R") — HIG,(R) (3.5)
thanks to Holder’s inequaltiy.
It is useful to torelate the case where each atom has non-compact support. To
justify this idea, we will use the notion of molecules.

Definition 3.5. Let ¢ € A (R"™) satisfy 0 < i(¢) < I(p) < 00, 1 < u < oo and
let d € [dy,,00) NZ. An L*-function 91 is said to be a (p, u)-molecule supported
on @ if there is a cube ) with the following properties.

1
Q u
L IxaymoIM| L« < m,
2n+2d+3
2. XRH\2\/EQ’5m’ < (Mxq)™ -

3. M e 1{KH§n)L.

The set M(p,u) collects all {(a;,Q;)}52, such that each a; is a (¢, u)-molecule
supported on @);.

As in [23, (5.2)], we have

n4d+1

sup [ M| < XoymoMM + ——— (M xq) (3.6)

>0 Ixallce
We can define H??} . (R™) analogously to Hf.. (R™) by replacing atoms by molecule

molecule atom

in Definition 3.4. It is trivial that Hi. (R") < H>" . (R™). However, it turns

atom molecule
out to be the same space; see Remark 3.10.

3.3 Atomic characterization of Musielak—Orlicz Hardy spaces

Theorem 3.6 below is one of the key results in this paper. In analogy to the results
in [23], we can prove the following result.

Theorem 3.6. Let p € A (R™) satisfy 0 < i(p) < I(p) < 00, 1 € u < o0 and
let d € [dy,,00) NZ. Then Hi, (R") ~ H?(R™) with equivalence of norms. In

atom

particular, the definition of Hiyy,(R™) does not depend on d € [d,, 00)NZ as a set;

atom

the different choices of d will yield equivalent norms.

Proof. Fix an integer d > d,. Let f € HZ: (R™). Then we have a decomposition:

atom

o
f=2_ 0,
j=1
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where {#;}52, is a sequence of nonnegative numbers, {(a;,Q;)}52, C A(p,u) and
A({r;}521,{@;1721) < o0. By (3.3),

Mf < /ﬂ?'(XQ —o.Ma; +
Z VIO T Ixgylles

Let u < 0o. Since M is bounded on L*(R™), we have

M |Q.7’1/u
|| aJHL" (2vnQ;) ~ ||a]||L“(Qg = HX ”Lﬂo

and hence
|Q]| L XQIQJMCL]

MaJ”L“ (2vnQ;) HXQJ- e

XQfQ Ma] ~ H

We take the L#-norm to have

> n+d+1
[(MSlle S ZKJXQ\/HQJ'MG] H Qj)
Jj=1 Le L(P Ly
If we use Lemma 2.11 to have
- Q] L Xz\ﬁQ Ma;
17 23 5o ” (33)
M ajl| L2y ma,) HXQ]HL‘P IIL .

By the embedding ¢! (N) — (2(N), we obtain

M fl| e
[e’s) u @ 1 . 1
[ (oo VY| (5 (s, Y
>N & Tl ey e, T NI
Ly Ly

If we use Lemmas 2.11 and 2.16 as well as (2.7), then we obtain

[Mfllze S {Z <LX2\/EQ]-)} S A{R 2 {Q5152) (3.9)

[6 |~

L
A similar conclusion to (3.9) also holds for u = oo since

1
Xoyn@; Ma; < Xa/mq, |ajl|r~ < XzﬁQjm-
Thus, f € H?(R").
Conversely we will show that H?(R") — HZ. (R™). Thanks to (3.5), we may

atom

assume u = co. We will show that f € HZ) (R™) and that

atom

[z, < IMF e

atom

We may assume f € H?(R") N H'(R") N L*(R") in view of Lemma 3.1.
If we use Lemma 2.21, we can find {A;}52, C L®(R")NPy(R")* and a sequence
{Qj}32, of cubes such that
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1A £0,

2. supp(4;) C Qy,

3. f=) A inS (R,
j=1

oo 1/r
4. For all 0 < r < oo, {Z (HAjHooXQj)T} S M.
j=1

Thus, if we let

1
r=g A= [ Alle=lxellee, e = -4,
j
then we obtain ~
F=3 N, (3.10)
j=1
and
0o 1/¢ fe’e) /e
AiXQ; o B
() S (Ax )| || % 1Sl =
=1 XQj“Lw 7j=1
Le Le
Thus, f € HE (RY). .

We combine Theorems 3.2 and 3.6 to have the atomic characterization of
Musielak—Orlicz spaces.

Theorem 3.7. Let ¢ € A(R") satisfy q(¢) < i(p) < I(p) <00, 1 < u < o0
and let d € [dy,,00) NZ. Then Hi (R™) = L?(R™) with equivalence of norms.

atom

The inclusion L?(R"™) — Hz. (R™) as well as Lemma 2.16 is useful. Here we

atom

explicitly describe one of the important assertions of Theorem 3.7.

Corollary 3.8. Let ¢ € A (R™) satisfy q(p) < i(p) < I(p) < 0, 1 € u < ©
and let d € [d,,00) NZ. Then any f € LY(R™) can be written in the form (3.4),
where {k;}52, is a sequence of nonnegative numbers, {(a;,Q;)}32, C A(p,u) and

({RJ}J_U{QJ %) S I fllee

Before we conclude this section, we make helpful remarks.
Remark 3.9. If f € H?(R™) N L*(R"), then convergence of (3.10) takes place in
H?(R™) N L*(R™). In fact, let

fN:Z)\jaj (NGN)
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Then due to (3.9),

If = Inllae S Ao({r b En Qi 2ns) = 0 (N — o0)

and

1f = Sl ~ 1 = Ixllee S AR5} 52 80 (@5 en ) = 0 (N = 00),

as required.

Remark 3.10. Let ¢ € A (R"™) satisfy 0 < i(p) < I(¢) < 00, 1 < u < .
Remark that H?(R") ~ Hi (R™) = H”' - (R") with equivalence of norms. In
fact, in view of Theorem 3.6, what remains unclear is H7 . (R") < H¥?(R™).
However, this is a consequence of (3.6); see the proof of HZ) (R") — H?(R"),
where (3.3) is employed in (3.7).

Finally, to conclude this section, we will show that our atomic characterization
readily yields the decomposition obtained in [17, Section 5] assuming that ¢ is
a growth function. Following [17], we recall the known results on the atomic
characterization of Musielak—Orlicz Hardy spaces.

Definition 3.11. Let ¢ € A(R™) be a growth function, namely 0 < i(p) <
I(p) < 1.

1. For a measurable set E, we write p(FE,t) = / o(x,t)dx.
B

2. For a cube @ and 1 < u < 0o, we denote by L(Q) the set of all measurable
functions f on R™ supported in @) such that

u

1 u
||f||L;g = Sgg (@(Q,t) . |f(x)] go(x,t)dx) < 0.

3. Let 1 < u < oo. Let {a;}32, be a sequence of (p,u)-atoms. Denote by
{Q;}32, the corresponding sequence of cubes. Let also {;}32, be a non-
negative sequence of real numbers. Then define

Au({a;3520, {R5352) = mf{)\>0 Z/ ( I ]aJ”L“) < 1}.

4. Let {a;}32, be a sequence of (¢, o0)-atoms. Denote by {Q;}52, the corre-
sponding sequence of cubes. Then define

[e'e) oo 1 N i
Aso({aj}52y, {rj}52,) = inf {)‘ >0 Z/ 14 (x’ Al J | ) = 1} '
j=1 7@ X, liee

5. Let 1 <u < oo. For f € H?(R"), define
11l —(%,)nfl Au(fa; 352 {120,

atom

where {a;}32, and {);}32, move over all decomposition of f as in (3.4).
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By Hélder’s inequality, ||f|gem < [[f]lgewe if 1 <up < ug < oo.

atom atom

Theorem 3.12. Let ¢ € A (R") be a growth function satisfying 0 < i(p) <
I(p) <1, and let 1 < u < 0o. Then the norms || f|| gen and || f|me are equivalent
for all f € H?(R™).

Proof. Due to Lemma 2.7, we have A, (-, ") < A(+,) < Ax(+, ). Hence by The-
orem 3.6, we have || f||gex < || fllges S ||f||lme. For the opposite inequality, we

atom atom

use [17, Theorem 5.2]. O

4 Generalized singular integral operators

As an application of Theorem 3.6, we will prove the boundedness of generalized
singular integral operators of order s. An L?-bounded linear operator T is a
(generalized) singular integral operator (with the kernel K € Li (R*xR"\{(z,z) :
x € R"}) of order s), if it satisfies the following conditions:

(1) For all f € L*(R") with compact support, we have

Tf(x) = K(x,y)f(y)dy for almost all = ¢ supp(f). (4.1)

Rn
(2) For all z,y € R™ such that x # y, size condition:
0P K (2, )| S | — y| el (4.2)
holds for all ||, |5] < s.

As we did in [23, p. 3700], we can prove the following:

Lemma 4.1. Let ¢ € A (R") satisfy 0 < i(p) < I(p) < 00, 1 < u < o0 and
let s € [dy,00) NZ. Let also T be a singular integral operator with the kernel
K e Ll (R"xR"\ {(z,x) : x € R"}) of order s. Then for any (¢, u)-atom a with
the cube @),

n+s+1

- (Mxq)

Ta| S |Talxaymg +
Ixollze

Similar to [23, Proposition 5.3|, a direct consequence of this observation and
the density result, Lemma 3.1, is the following conclusion.

Theorem 4.2. Let ¢ € A (R"™) satisfy 0 < i(p) < I(p) < co. Then any singular
integral operator T with the kernel K € LL (R" x R™\ {(z,z) : * € R"}) of order

loc
dy, which is initially defined on L*(R™), extends to a bounded linear operator from

H?(R") to L#(R").

Proof. We have only to prove that 7' is bounded extends to a bounded linear
operator from H7 o (R™) to L¥(R™): we have only to show that | Tf|| e S || f]| e -

atom atom

for all f € Hi oo (R™). Thanks to Lemma 3.1 and Theorem 3.6, we may assume

atom
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f e H> (RY) N L3(R™). Then, owing to Remark 3.9, f can be written as f =
> kja; in L*(R™), where {;}32, C [0,00), {(a;,Q;)}32, C A(p,00) and
=1

A({r;1521,{Q53720) < 2l fllmeee -

atom

Then, Tf = > k;Ta; in L*(R™). Thanks to Lemma 4.1,
j=1

o 1 ntdp+1
|Tf|§§:m<lTa~|x s, + T (M) )
A S P

If we use Lemma 2.16 and (2.7) and argue similarly to Theorem 3.6, we obtain

1/¢
= (Rl T xome, \T)

HTfHL«p 5 (Z( J .] J 2\/>QJ
j=1 Lo

1Tl 2y ma X, ll Hm

< A({x; 3521, {Q51721)
< 2| fllaeee,
as required. [

Remark 4.3. In addition to the assumption in Theorem 4.2, assume that any
(, 00)-atom is transformed into (¢, u)-molecules modulo a multiplicative constant.
Namely, we suppose that there exists a constant D,, > 0 depending only on D such
that D™'Ta is a (p, u)-molecule for any (¢, oc)-atom a. Then T, which is initially
defined on L?*(R"), extends to a bounded linear operator on H¥?(R™). This is a
consequence of Theorem 3.6 and Remark 3.10.

As an application of Remark 4.3, in analogy to [23, Theorem 5.7], we obtain
the following characterization:

Theorem 4.4. Let p € A (R”) satisfy 0 < i(p) < I(p) < co. Let 7 € S(R")

satisfy xpanse) < T < xB)\Ba). Then for f € S'(R™), we have
%
I fllzze ~ ( > IF e ff|2>
j=—o0 e

Proof. One direction is easy to prove: Simply use the fact that

Tf= Y aF '[r@7)Ffl=2m)F Y a;F 27 )]« f

j=—o0 j=—o0

is a generalized singular integral operator T" with the kernel K € L] (R™ x R™\
{(z,z) : € R"}) of order d, with the constant independent of a = {a;}>2__ €

]_700

{—=1,0,1}2N¢Y(Z). More preasely, if we denote by ¢, g(T") the implicit constant in

(4. 2) then there exists a constant C' independent of a = {a;}52 € {—1,0,1}*N
(*(Z) such that
1T 222 + cap(T) < C.
For the opposite inequality, we will use the ¢?-valued extension as in [23]. [
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5 Wavelet characterization

Based on the fundamental wavelet theory (see [4, 18, 20, 26, 32] for example), we
can construct compactly supported functions.

Definition 5.1. Let s € NU {0} be fixed.

1. Choose compactly supported functions ¢! (I = 1,2,...,2" — 1) so that the
following conditions are satisfied:

e The functions ¢! (I =1,2,...,2" — 1) belong to C*T'(R"). In addition,
they are real-valued and compactly supported with
supp(¢') C [0,2N — 1] (5.1)
for some N € N.
o We write ¢!, = 2'5¢!(2/ - —k) for j € Z and k € Z". Then the system
{¢hy,  kez' jez 1=12...,2"-1}
is an orthonormal basis of L*(R").

In the above it should be noted

supp (¢ ) C H 277k, 277 (K + 2N — 1)] CANQ; .
m=1

Recall that @, is a dyadic cube by (1.2). According to [32], ' L Py 1(R) when
n = 1. This fact readily extends to higher dimensions by the tensor product:
Pt L Pyyy(R?) for any n € N.

We also define x;; = Q%XQM for j € Z and k = (ky, ko, ..., k,) € Z", where
Qjx is the dyadic cube given by (1.2). Then using the L?-inner product (-,-), we
define the square function W f by

(anlszm kaak|>

=1 j=—o0 keZn

at least for f € L*(R").
We now move on to the investigation of the wavelet characterization of H#(R").
In a similar way to the proof of Theorem 4.4, we can show the following:

Lemma 5.2. Let ¢ € A (R") satisfy 0 < i(yp) < I(p) < co. Then there ezists a
positive constant C' = C, depending on ' such that

( D[220 « f|2) < Clfllue

j=o0 Lo
for all f € H?(R™) N L*(R").
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We set

Lon o (2@ =)

As is pointed out in [5, Proof of Proposition 2.21] and [9, p. 271], we have

(x € R™).

Y ()(@) S MRS 5 1 @)2] () = MOinf s gl(@0)]() (o € RY)
for all f € H?(R") N L*(R").

Corollary 5.3. Let ¢ € A (R™) satisfy 0 < i(¢) < I(p) < 0o. Suppose that the
parameter v satisfies v € (q()/i(p),00). Then

21 oo 3
(X s wor) | s
=1 j=— Le
for all f € H?(R").
We will use Corollary 5.3 to justify the definition of (f, ék>

Lemma 5.4. Let ¢ € A (R") satisfy 0 < i(p) < I(p) < co. Assume that s > d,,
where d, is given by (2.6). Let f € H?(R™) N L*(R"™). Then W fllre < || flme-
In particular, the mapping f — (f, ¢§k> extends to a bounded linear functional on
H¥?(R™) for each j, k,l.

Proof. Fix © € R*. We write ¢! = (=) for each | = 1,2,...,2" — 1. If f €
H?(R"™) N L*(R™), then Fu and Yang showed

D KA Pravg,(@) S ) [ sup [0} * f (y)\] Xanxg, (@) S 45 (F)(x)?

kezn kezn |YEQik

in the course of the proof of [5, Theorem 1.9]. Hence

2"—-1 o 2

Wf(z) < (Z > ¢§1i*(f)(x)2>

=1 j=—o0

Thus, by Corollary 5.3, we obtain W f € L¥?(R™) together with the estimate
[ 05l STV Fllze S (1f e O

Lemma 5.4 also justifies the definition of W f. We further investigate the prop-
erty of W f.

Lemma 5.5. Let p € A (R") satisfy 0 < i(p) < I(p) < co. Assume that
1
seEZN (nmax (—, q(w) —n— 1,00) N[0, 00).
2" i(yp)

(1) Let f € H?(R™). Then |Wfllre S ||fllae with the implicit constant inde-
pendent of f.
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(2) If f € L*(R") satisfies Wf € L?(R"), then |fllge S ||WfllLe with the

implicit constant independent of f.
Proof.
1. This is included in Lemma 5.4.

2. Let f € L*(R™). Then we expand

||
”M8
i
K,__‘
=
=
B

1
Fix ¢ > 0 and k > max (—, q(go)) so that

kn+2—-—n—s—1<0

later. Write

(5.2)

E(j,7") = nmin(j,j") — 5 — (s + 1)|j — j'| + (kn + ) max(j — 5',0)

2
for j,j' € Z. Arithmetic shows

E(5,5) - 57 +eli—J'l =

We will use M given by (2.5).

We observe

FUr )]« ¢l (2) = 2 FLr(20) 259420 - —k))(x)

(kn+2e—n—s—-1)(G—-7) (G=>7J
(e—s=10" —-1) (3" > 7).

= 27 B Lr(2 )« (279 (20)] (2 — 277R).

Let A > 1. Thanks to Lemma 2.19, since ! 1 P, (R") N C*+1(R"),

9— St +min(jj )n—|j—j'|(s+1)

(1 + 2mnGd) [ — 2-9k])>

\F ) Fet ()] S

Using (5.2) and [26, Lemma 4.2], we obtain

A |(f %k |2”mm(u) Fi—(s+1)lj—J'

Fr@ITIFAIS Y Y D
=1 j=—o00 keZ™
2"-1 oo f¢l >|2E(JJ)

S Z Z Z 1+23 ]k_Q jk‘)nn+€
=1 j=— ookeZ”

2" -1 oo

2

S > MUY w1250 X,

=1 j=—0c0 kezZm
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Thus,
\F 2 F AP

2M—_1 o 2
5 Z Z (M(l/n) [Z |<f7 ¢§7k>|2E(j’],)+€|j_]/Xij])
=1 j=—00 kezZn

by Holder’s inequality. We will take the ¢?-norm of both sides to have

( > |f‘1[T(2‘j'-)ff]|2)

N

L¥

2"—1 oo %) 2\ 2
<) (X3 30w | S rneioig,

I=1 j=—00j/=—00 kezn
Le
2" -1 oo 00 172 21N "
=112 D Do M| (fufRPei iy,
I=1 j=—00j/'=—00 kezn
Le(H()F)
Recall that »
2%>1, B(j) -7 +eli 71 <0,

i(p(, (1)) = wile) > qle(-, (1)%)) = a(@).

By the Fefferman—Stein vector-valued inequality (see Lemma 2.11), we obtain

( > |F‘1[T(2‘j'-)ff]l2>

g
J == Le

N

2"—1 oo [e%S) 2\ 2
[, o[22 g,
2.0 2|

=1 j=—o00 j/=—00 LkEZN

N

2"—1 oo 9

=1 j=—o0 LkeZ™

L¥

= W fllze.

Thus, thanks to Theorem 4.4, we obtain the desired result.

Theorem 5.6. Let p € A (R") satisfy 0 < i(p) < I(p) < co. Assume that

sezZn (nmax(%,%) —n—l,oo) A [0, 00).

Assume either one of the following:
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(¢) f e H?(R").
(i) f e LXR™) and Wf € L#(R").
Then ||W flle ~ || f||me with the implicit constant independent of f.

Proof. Lemma 5.5 yields the desired result under assumption (i7). Let us assume

(4). If f € H?(R™), then we can find a sequence {f;}32, C H?(R") N L*(R") that

converges to f in H?(R"™). In view of Lemma 5.5(1), W f = lim Wf; in L¥(R").
j—oo

Thus, hﬁm W fille = [[W fllLe. Since {f;}32, converges to f in H?(R"), || f||ze =
j—o0

lim || f;||ge. Meanwhile, Lemma 5.5(2) yields lUm || f;]|ge < Hm ||W f;] e
j—vo0 j—o0 j—o0

~Y

]

6 Generalized Marcinkiewicz integral operators
acting on Musielak—Orlicz Hardy spaces

This section is oriented to another application of the atomic characterization. Let
0<p<mnandl<qg<oo. Let also Q € C'(S™!) satisfy

Q(w)do(w) = 0. (6.1)
The generalized Marcinkiewicz operator is defined by

Snfl
“dt\
gt = ([ [ ste =05 )"

where B(r) denotes the open ball centered at the origin for » > 0. According to
[27, Theorem 1], we have

g e < 1150, (62)
if 1 <p < oo.
As in [2, p. 565],

XM\ 30Q (7)o p.00(T) S Myg(z)'*m  (z € R") (6.3)

~ lIxellze

as long as a is a (g, co)-atom supported on 3@Q). Using (6.2) with ¢ = 2, we learn
that 0 is bounded on LP(R™) for all 1 < p < co. A direct consequence of this

fact is that . )
QI Qe

~lxellee  lIx3nellze

HX3nQ MﬂpanL“ (64)

for all 1 < u < o0.

Theorem 6.1. Let 0 < p < n and Q € C*(S™) satisfy (6.1). Let ¢ € A (R™)

satisfy
2n

2n+1

Then g 2, initially defined on L*(R™), extends to a bounded linear operator from
H?(R™) to L¥(R™).

q(p) < i(p) < I(p) < oo.
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Proof. Let f € H?(R") N L?*(R"™). Tt suffices to show that

lap2flle S Ifl|me

with the implicit constant independent of f.
We consider the atomic characterization of f:

o0
=2k,
j=1

where the convergence takes place in L*(R™)NH¥(R"), {;}52, is a sequence of non-

negative numbers, {(a;, Q;)}52, C A(p,00) and A({x;}52,,{Q;}52,) S I fllme <
0o. Then we have

1
pop2f S Z@X%Qjﬂﬂpzag + Z HXQ (Mxq,)"*2
J

7j=1

using (6.3). If we take the L¥-norm and use Lemmas 2.11 and 2.16 together with
(6.4), we obtain

”MQPQfHL“" S A<{"€J}] 1 {Q] go‘il)’

as required. O

In the case of ¢(z,t) = ¥ with 520
[2]. As a special case of Theorem 6.1, we have the followmg.

Corollary 6.2. Let0 < p < n and Q € C*(S" 1) satisfy (6.1). The operator jiq .2,
initially defined on L2(R"), extends to a bounded linear operator from HP(R™) to
LP(R™) <1.
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