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Abstract

The goal of this paper is to obtain atomic and wavelet characteriza-
tions of Musielak–Orlicz Hardy spaces. Recently, in 2018, Fu and Yang ob-
tained wavelet characterizations of Musielak–Orlicz Hardy spaces for growth
functions of uniformly upper type p− and of uniformly lower type p+ with
0 < p− ≤ p+ ≤ 1. What is different from the existing works is that we merely
assume 0 < p− ≤ p+ < ∞. One of the important tools that make it possible
is to refine the convexity of Orlicz functions by obtaining canonical equiva-
lent functions. As applications of the atomic characterization, we investigate
the boundedness property of singular integral operators. Especially, we ob-
tain the boundedness property of Marcinkiewicz integral operators acting on
some Musielak–Orlicz Hardy spaces which are quasi-Banach spaces.
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1 Introduction

The goal of this paper is to obtain atomic and wavelet characterizations of Musielak–
Orlicz Hardy spaces generated by a generalized Musielak–Orlicz function of uni-
formly lower type and uniformly upper type. What is new in this paper is that
we can deal with generalized Musielak–Orlicz functions of uniformly lower type p−
and uniformly upper type p+ for any 0 < p− ≤ p+ <∞, while many earlier works
considered the case where 0 < p− ≤ p+ ≤ 1.

Hardy spaces associated with Musielak–Orlicz spaces seems to go back to [17].
Ky [17] introduced the Musielak–Orlicz Hardy space Hφ(Rn), which extends Orlicz
Hardy spaces and weighted Hardy spaces. Here by a weight we mean a non-negative
measurable function, although we will postulate more conditions on weights later.
Among other function spaces, Musielak–Orlicz Hardy space has attracted much
attention. For example, the Musielak–Orlicz Hardy space Hθ(Rn) generated by

1



the function

θ(x, t) =
t

log(e+ |x|) + log(e+ t)
((x, t) ∈ Rn) (1.1)

turned out to be important in connection with pointwise multipliers on BMO(Rn)
and H1(Rn). This remarkable property of θ is pointed out by Ky [17], who is
motivated by the result of the pointwise multiplier obtained by the second author
and Yabuta [24].

One of the convenient ways to develop the theory of Hardy spaces associated
with Banach lattices is to consider the duality. As in [25], the duality of a Banach
lattice together with the boundedness property of the Hardy–Littlewood maximal
operator allows us to investigate the Hardy space associated to this lattice with
ease. The technique in [25], whose ingredient is the duality, can be applied to
many settings such as Morrey spaces [14], local Morrey spaces [3], Morrey spaces
with variable exponent [10], weak Lebesgue spaces [30], generalized Morrey spaces
[1], local Morrey type spaces [8] and mixed Lebesgue spaces [11]. However, this
does not apply to Musielak–Orlicz spaces because we can not handle the Fenchel–
Legendre transform of the (Musielak–)Orlicz functions, namely, we can not employ
the technique in [25]. To overcome this problem, we will go through a similar
argument to [23]. To this end, we will prove an estimate based on the notions
of strictly uniformly lower type and strictly uniformly upper type. Unfortunately,
as in [31, Remark 1.7(iv)] that the Musielak–Orlicz Hardy space and the variable
exponent Hardy space cannot cover each other. Thus, we need to establish the
theory of Musielak–Orlicz Hardy spaces from scratch.

Here we survey the history of the wavelet characterization of Hardy spaces in-
cluding related characterizations. Meyer [20] established several equivalent wavelet
characterizations of H1(Rn). Liu [19] established some equivalent wavelet charac-
terizations of the weak Hardy space H1,∞(Rn). Wu [33] obtained further a wavelet
area integral characterization of the weighted Hardy spaceHp(Rn) for any p ∈ (0, 1]
and later, Garćıa-Cuerva and Martell [6] established a characterization of Hp(Rn)
for any p ∈ (0, 1] in terms of wavelets without compact supports using the vector-
valued Calderón–Zygmund theory. Kopaliani [16] and Izuki [12] independently
introduced the wavelet inequalities of Lebesgue spaces with variable exponents.
The present authors [13] further obtained the wavelet characterization for weighted
Lebesgue spaces with variable exponents. Fu and Yang obtained the wavelet char-
acterization for Musielak–Orlicz Hardy spaces in [5]. Maeda and Shimomura [21]
investigated Hardy spaces associated with Musielak–Orlicz spaces together with
the third author. See [29] for more.

Here we explain the notation which we employ in this paper.

• Let N0 ≡ {0, 1, . . .}.

• We write Rn+1
+ ≡ Rn × (0,∞).

• A set S is said to be a dyadic cube if

S = Qj,k ≡
n∏

m=1

[
2−jkm, 2

−j(km + 1)
]

(1.2)

2



for some j ∈ Z and k = (k1, k2, . . . , kn) ∈ Zn. A dyadic cube S ′ with respect
to a cube S of the form S = aQ0,0+b, (b, a) ∈ Rn+1

+ , is a subset S ′ = aQj,k+b
for some j ∈ N0 and k ∈ {0, 1, . . . , 2j − 1}n.

• Let A,B ≥ 0. Then A ≲ B and B ≳ A mean that there exists a constant
C > 0 such that A ≤ CB, where C depends only on the parameters of
importance. The symbol A ∼ B means that A ≲ B and B ≲ A happen at
the same time, while A ' B means that there exists a constant C > 0 such
that A = CB.

• The symbols F and F−1 stand for the Fourier transform and its inverse,
respectively. More precisely, for f ∈ L1(Rn), define the Fourier transform
and the inverse Fourier transform by

Ff(ξ) ≡ (2π)−
n
2

∫
Rn

f(x)e−ix·ξdx, F−1f(x) ≡ (2π)−
n
2

∫
Rn

f(ξ)eix·ξdξ.

The remaining part of this paper is organized as follows: Section 2 recalls
some elementary facts on generalized Musielak–Orlicz functions. In addition to
the notion of uniformly lower type and uniformly upper type, we define the ones
of strictly uniformly lower type and strictly uniformly upper type and then give
a lemma on this notion; see Lemma 2.8 to follow. We imitate the idea of [17]
to consider the convex inequality in Lemma 2.7. We use Lemmas 2.7 and 2.8 to
investigate the relation between the atomic decomposion considered in [17] and the
one in this paper; see the latter half of Section 3. Using Lemma 2.7, we obtain
an important estimate which parallels the one in [23]; see Lemma 2.16. We define
Musielak–Orlicz Hardy spaces and give the atomic characterization using Lemma
2.16 in Section 3. We show the boundedness properties of (generalized) singular
integral operators in Section 4 together with the Littlewood–Paley characteriza-
tion. As a further application of the boundedness results in Section 4, we obtain
the wavelet characterization in Section 5. Among others, we justify the coupling
〈f, ψl〉 for the wavelet ψl ∈ Cs+1(Rn) and f ∈ Hφ(Rn) ⊂ S ′(Rn) in Lemma 5.4.
Section 6 is oriented to the application of the atomic characterization to generalized
Marcinkiewicz integral operators. Usually, when we investigate the boundedness
property of generalized Marcinkiewicz integral operators, we use the complex in-
terpolation, which usually forces us to work in Banach spaces. In this paper, by
the use of Lemma 2.16 and the idea of Asami [2], we provide a proof which does
not use the complex interpolation. Our result will cover spaces Hp(Rn) and Lp(Rn)
with 2n

2n+1
< p ≤ 1.

2 Preliminaries

Here we collect preliminary facts. First we give basic properties on generalized
Musielak-Orlicz functions in Subsection 2.1. Next, we consider the boundedness
property of the Hardy–Littlewood maximal operator M in Subsection 2.2, where
we recall the modular inequality. In Subsection 2.3 we recall the properties of the
grand maximal operator including integral estimates based on the books [7, 26].
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2.1 Orlicz functions

An Orlicz function is a convex homeomorphism on [0,∞). We recall the definition
of generalized Musielak–Orlicz functions with two variables x and t following [17,
29].

Definition 2.1 (Generalized Musielak-Orlicz function).

1. A Musielak–Orlicz function is a function ϕ : Rn × [0,∞) → [0,∞) such
that ϕ(x, ·) is an Orlicz function for each x ∈ Rn and ϕ(·, t) is a measurable
function for each t ≥ 0. A generalized Musielak–Orlicz function is a function
ϕ : Rn × [0,∞) → [0,∞) such that ϕ(·, ·1/p) : Rn × [0,∞) → [0,∞) is a
Musielak–Orlicz function for some 0 < p <∞.

2. Let 0 < p < ∞. A generalized Musielak–Orlicz function ϕ is said to be of
uniformly lower- (resp., upper-) type p if for any x ∈ Rn, t ∈ [0,∞) and
s ∈ (0, 1) (resp., s ∈ [1,∞)), ϕ(x, st) ≲ spϕ(x, t) with the implicit constant
independent of s, t and x.

3. If ≲ can replaced by ≤ in the above, then ϕ is said to be strictly of uniformly
lower- (resp., upper-) type p.

4. For a generalized Musielak–Orlicz function ϕ of uniformly lower type p− and
of uniformly upper type p+ with 0 < p− ≤ p+ <∞, let

i(ϕ) ≡ sup{p ∈ (0,∞) : ϕ is of uniformly lower type p} (2.1)

and
I(ϕ) ≡ inf{p ∈ (0,∞) : ϕ is of uniformly upper type p}. (2.2)

Example 2.2.

1. As a prototype case, we consider ϕ(x, t) = tp for (x, t) ∈ Rn+1
+ . Here 0 < p <

∞. In this case, I(ϕ) = i(ϕ) = p

2. The function θ, given by (1.1) and considered by Ky, satisfies

I(θ) = i(θ) = 1.

It is easy to check that I(θ) = 1. To verify that i(θ) = 1, we will use

log(e+ t) ≥ log(e+ st) ≥ log(e+ t1−a) ∼ log(e+ t)

for any a ≥ 1, s ∈ [0, 1] and t ∈ [1,∞) with sta ≥ 1.

It turns out important that we introduce the notion of strictly of uniformly
upper/lower type; see Proposition 2.15.

To define Musielak–Orlicz spaces, we define the class Aq(Rn) following the work
by Ky [17].

Definition 2.3.
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1. [7, 26] A locally integrable weight w is said to be an A1-weight, if 0 < w <
∞ almost everywhere, and [w]A1 ≡ sup

Q∈Q
mQ(w)‖w−1‖L∞(Q) < ∞, where Q

denotes the set of all cubes in Rn.

2. [7, 26] Let 1 < q < ∞. A locally integrable weight w is said to be an
Aq-weight, if 0 < w <∞ almost everywhere, and

[w]Aq ≡ sup
Q∈Q

mQ(w)mQ(w
− 1

q−1 )q−1 <∞.

3. The class A∞ is defined by A∞ =
⋃

1≤q<∞
Aq.

4. [17] Let 1 ≤ q ≤ ∞. A function ϕ : Rn× [0,∞) → [0,∞) is said to belong to
Aq(Rn) if [ϕ]Aq = sup

t>0
[ϕ(·, t)]Aq <∞. A function ϕ : Rn × [0,∞) → [0,∞) is

said to satisfy the uniformly Muckenhoupt condition if ϕ ∈ Aq(Rn) for some
q ∈ [1,∞). Write A∞(Rn) =

⋃
q∈[1,∞)

Aq(Rn).

Example 2.4.

1. Let α ∈ R and 1 < p < ∞. It is well known that | · |α ∈ Ap if and only if
−n < α < n(p− 1) and that | · |α ∈ A1 if and only if −n < α ≤ 0.

2. By a change of variables and the above facts, we can check that min(1, |·|−n) /∈
A∞.

3. Let w ∈ Aq with 1 ≤ q ≤ ∞. If we set ϕ(x, t) ≡ tqw(x), then ϕ ∈ Aq(Rn).
More generally, if w ∈ A∞ and Φ is an Orlicz function, then ϕ, given by
ϕ(x, t) ≡ Φ(t)w(x), (x, t) ∈ Rn × (0,∞), belongs to A∞(Rn).

We define Musielak–Orlicz Hardy spaces vie Musielak–Orlicz spaces. We give
the standard definition of Musielak–Orlicz spaces.

Definition 2.5. Let ϕ ∈ A∞(Rn). Then the Musielak–Orlicz space Lφ(Rn) is the
set of all measurable functions f : Rn → C for which∫

Rn

ϕ (x, ε|f(x)|) dx <∞

for some ε > 0. For f ∈ Lφ(Rn), the quasi-norm ‖f‖Lφ is given by

‖f‖Lφ ≡ inf

{
λ > 0 :

∫
Rn

ϕ

(
x,

|f(x)|
λ

)
dx ≤ 1

}
.

Here is our standing assumption. We suppose that a generalized Musielak–
Orlicz function ϕ : Rn × [0,∞) → [0,∞) satisfies the following conditions:

1. ϕ ∈ A∞(Rn), so that q(ϕ) = inf{q ≥ 1 : ϕ ∈ Aq(Rn)} <∞.

2. ϕ is of uniformly lower type p− and of uniformly upper type p+ for some
0 < p− ≤ p+ <∞.
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Recall that a growth function is a generalized Musielak–Orlicz function ϕ ∈ A∞(Rn)
of uniformly lower type p− and of uniformly upper type p+ = 1, so we tolerate the
case where p+ > 1 in this paper.

In the prototype case of ϕ(x, t) = tp, we have q(ϕ) = 1, i(ϕ) = I(ϕ) = p for
any 0 < p <∞.

It is convenient to note a scaling law:

Lemma 2.6. Let ϕ ∈ A∞(Rn) and a > 0. Then

q(ϕ(·, (·)a)) = q(ϕ), i(ϕ(·, (·)a)) = ai(ϕ), I(ϕ(·, (·)a)) = aI(ϕ).

Proof. We calculate

[ϕ(·, (·)a)]Aq = sup
t>0

[ϕ(·, ta)]Aq = sup
t>0

[ϕ(·, t)]Aq = [ϕ]Aq .

If p < i(ϕ), then ϕ is of uniformly lower type p, so that ϕ(x, st) ≲ spϕ(x, t) for all
0 < s ≤ 1 and t > 0. Thus, ϕ(x, sata) ≲ (sa)pϕ(x, ta) for all 0 < s ≤ 1 and t > 0,
implying that ϕ(·, (·)a) is of uniformly lower type ap. Thus, ai(ϕ) ≤ i(ϕ(·, (·)a)).
If we swap the role of ϕ and ϕ(·, (·)a), then we obtain ai(ϕ) ≥ i(ϕ(·, (·)a)). Thus,
ai(ϕ) = i(ϕ(·, (·)a)). If we replace “0 < s ≤ 1” by “s ≥ 1”, then we see aI(ϕ) =
I(ϕ(·, (·)a)).

What differs crucially from the existing works [5, 17] is that we assume only
0 < p− ≤ p+ <∞ instead of 0 < p− ≤ p+ = 1.

We will prove an estimate related to the convexity motivated by the paper [17].

Lemma 2.7. Suppose that ϕ : Rn × [0,∞) → [0,∞) is a function of uniformly
lower type p. Then

ϕ

x,( ∞∑
j=1

tj

) 1
p

 ≳
∞∑
j=1

ϕ(x, tj
1
p )

for all non-negative `1-sequences {tj}∞j=1. In particular, if p ≥ 1, then

ϕ

(
x,

∞∑
j=1

tj

)
≳

∞∑
j=1

ϕ(x, tj).

for all non-negative `1-sequences {tj}∞j=1. If ϕ : Rn× [0,∞) → [0,∞) is a function
strictly of uniformly lower type p, then ≳ can be replaced by ≥.

Proof. Write T =
∞∑
j=1

tj. Since the mapping (x, t) 7→ ϕ(x, t
1
p ) is of uniformly lower

type 1,
tk
T
ϕ
(
x, T

1
p

)
≳ ϕ(x, tk

1
p )

for all k ∈ N. It remains to add this estimate over k.

The following observation is crucial for later considerations:
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Lemma 2.8. Let 0 < p− ≤ p+ <∞. Let ϕ : Rn× [0,∞) → [0,∞) be a generalized
Musielak–Orlicz function of uniformly lower type p− and of uniformly upper type
p+. Then there exists a generalized Musielak–Orlicz function ϕ̃ : Rn × [0,∞) →
[0,∞) strictly of uniformly lower type p− and strictly of uniformly upper type p+
such that ϕ(x, t) ∼ ϕ̃(x, t) for all x, t.

Proof. First of all, we set ψ(x, t) ≡ sup
s∈(0,1]

s−p−ϕ(x, st) for (x, t) ∈ Rn × [0,∞).

Then since ϕ is of uniformly lower type p−, ϕ(x, t) ∼ ψ(x, t) for all x, t, so that
ψ is of uniformly upper type p+. Furthermore, for 0 < v ≤ 1, x ∈ Rn and t > 0,
arithmetic shows

ψ(x, vt) = sup
s∈(0,1]

s−p−ϕ(x, svt)

= vp− sup
s∈(0,1]

(sv)−p−ϕ(x, svt)

= vp− sup
s∈(0,v]

s−p−ϕ(x, st).

By enlarging the range of v, we obtain

ψ(x, vt) ≤ vp− sup
s∈(0,1]

s−p−ϕ(x, st) = vp−ψ(x, t).

Thus, ψ is strictly of uniformly lower type p−.
Next, we define ϕ̃(x, t) = sup

s≥1
s−p+ψ(x, st) for (x, t) ∈ Rn+1

+ . Then since ψ is

of uniformly upper type p+, ϕ(x, t) ∼ ϕ̃(x, t) ∼ ψ(x, t) for all (x, t) ∈ Rn+1
+ . For

v ∈ (0, 1], we estimate

ϕ̃(x, vt) = sup
s≥1

s−p+ψ(x, vst) ≤ vp− sup
s≥1

s−p+ψ(x, st) ≤ vp−ϕ̃(x, t)

since ψ is strictly of uniformly lower type p−. Thus, ϕ̃ is strictly of uniformly lower
type p− again. Meanwhile, for v ≥ 1, arithmetic shows that

ϕ̃(x, vt) = sup
s≥1

s−p+ψ(x, svt) = vp+ sup
s≥v

s−p+ψ(x, st)

and hence

ϕ̃(x, vt) ≤ vp+ sup
s≥1

s−pψ(x, st) = vp+ϕ̃(x, v).

Consequently, we obtain the desired function ϕ̃.

There are several works dealing with Musielak–Orlicz spaces under various set-
tings. Here we compare ones in this paper and ones in other papers.

Remark 2.9.
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1. As in [15], the class Φ of generalized Young functions is the set of all mea-
surable functions Φ : [0,∞] → [0,∞] such that Φ(0) = lim

x→0
Φ(x) = 0 and

lim
x→∞

Φ(x) = ∞.

2. Let Φ ∈ Φ and ` ∈ (0,∞). One says that Φ is `-convex/concave if Φ((·)1/ℓ)
is convex/concave.

3. The class Φ0 stands for the set of all Φ ∈ Φ which is equivalent to an `−-convex
generalized Young function Φ− and to an `+-concave generalized Young func-
tion Φ+ for some 0 < `− ≤ `+ <∞.

4. Let 0 < `− ≤ `+ <∞. Then the function ϕ : Rn× [0,∞) → [0,∞), given by

ϕ(x, t) = Φ(t) (x, t ∈ Rn × [0,∞)),

belongs to A1(Rn) for any Φ ∈ Φ which is equivalent to an `−-convex gener-
alized Young function Φ− and to an `+-concave generalized Young function
Φ+.

5. In [22], the second and the third authors investigated Orlicz–Hardy spaces. In
view of the above observation, it follows that Musielak–Orlicz Hardy spaces
considered in this paper will cover Orlicz–Hardy spaces in [22]. In [22, Section
8], the weighted setting is considered. If ϕ is given by ϕ(x, t) = Φ(t)w(x) for
some Φ ∈ Φ and w ∈ A∞, then ϕ ∈ A∞(Rn) and Hφ(Rn), whose definition
is given in Subsection 3.1, coincides with the weighted Orlicz–Hardy space
HΦ(w) considered in [22, Section 8].

Remark 2.10.

1. In [21, Example 2.2], Maeda, the third author and Shimomura considered a
function

ϕ(x, t) = tφ(x, t) : Rn × [0,∞) → [0,∞). (2.3)

Consider (ϕ1) – (ϕ3) below, which correspond to (Φ1) – (Φ3) in [21], respec-
tively.

(ϕ1) φ( · , t) is measurable on Rn for each t ≥ 0 and φ(x, · ) is continuous on
[0,∞) for each x ∈ Rn;

(ϕ2) there exists a constant A1 ≥ 1 such that A−1
1 ≤ φ(x, 1) ≤ A1 for all

x ∈ Rn, so that log φ(·, 1) ∈ L∞(Rn);

(ϕ3) φ(x, ·) is uniformly almost increasing on (0,∞), namely there exists a
constant A2 ≥ 1 such that φ(x, t) ≤ A2φ(x, at) for all x ∈ Rn, t > 0 and
a > 1.

Condition (ϕ3) implies that ϕ is of lower type 1.

2. Let φ̄(x, t) = sup
0≤s≤t

φ(x, s) and

ϕ(x, t) =

∫ t

0

φ̄(x, r) dr ((x, t) ∈ Rn × [0,∞))
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for x ∈ Rn and t ≥ 0. Then φ̄(x, ·) is continuous nondecreasing, ϕ(x, ·) is
convex and

ϕ(x, t/2) ≤ ϕ(x, t) ≤ A2ϕ(x, t) (2.4)

for all x ∈ Rn and t ≥ 0.

3. We will also consider the following conditions on φ and ϕ satisfying (2.3):
Let ε ≥ 0, ν > 0 and ω > 0.

(ϕ3; ε) t 7→ t−εφ(x, t) is uniformly almost increasing on (0,∞), namely there
exists a constant A2,ε ≥ 1 such that

φ(x, t) ≤ A2,εa
−εφ(x, at) for all x ∈ Rn whenever t > 0 and a > 1;

(ϕ4) φ(x, ·) satisfies the uniform doubling condition, namely there exists a
constant A3 ≥ 1 such that

φ(x, 2t) ≤ A3φ(x, t) for all x ∈ Rn and t > 0;

(ϕ5; ν) For every γ > 0, there exists a constant Bγ,ν ≥ 1 such that

ϕ(x, t) ≤ Bγ,νϕ(y, t)

whenever |x− y| ≤ γt−ν and t ≥ 1;

(ϕ6;ω) there exist a function g on Rn and a constant B∞ ≥ 1 such that
0 ≤ g(x) < 1 for all x ∈ Rn, gω ∈ L1(Rn) and

B−1
∞ ϕ(x, t) ≤ ϕ(x′, t) ≤ B∞ϕ(x, t)

whenever |x′| ≥ |x| and g(x) ≤ t ≤ 1.

Under condition (ϕ4), ϕ is of upper type p+ for some p+ ∈ [1,∞).

4. Remark that there exists a function ϕ ∈ A∞(Rn) such that condition (ϕ2)
fails.

5. For p ≥ 1, q > 0 and r > 0, set

ϕ(x, t) =

{
tpmax

(
1, tqmin(1, |x|)

)
if t ≥ 1,

tpmax
(
t, min(1/2, |x|−N/r)

)
if t < 1.

We collect some known facts from [21]. First, ϕ(x, t) satisfies (ϕj), j =
1, 2, 3, 4; it satisfies (ϕ3; p− 1).

(a) ϕ(x, t) satisfies (ϕ5; ν) if and only if ν ≥ q;

(b) ϕ(x, t) satisfies (ϕ6;ω) if ω > r but does not satisfy (ϕ6;ω) if ω < r.

Let r = 1 here and below. Then since min(1, | · |−N) /∈ A∞(Rn) according to
Example 2.4, it follows that ϕ /∈ A∞(Rn).

It is noteworthy that Musielak–Orlicz spaces considered in [21] are designed to
extend Lebesgue spaces with variable exponents.
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2.2 Boundedness of the Hardy–Littlewood maximal oper-
ator

The goal of Subsection 2.2 is to investigate the boundedness property of the Hardy–
Littlewood maximal operator, whose definition we recall now. We write Q(x, r)
for a cube which has center x and radius r, that is,

Q(x, r) ≡
{
y = (y1, y2, . . . , yn) ∈ Rn : max

1≤j≤n
|xj − yj| ≤ r

}
when x = (x1, x2, . . . , xn) ∈ Rn and r > 0. Let 0 < η <∞. We define the powered
Hardy–Littlewood maximal operator M (η) by

M (η)f(x) ≡ sup
R>0

(
1

|Q(x,R)|

∫
Q(x,R)

|f(y)|ηdy
) 1

η

. (2.5)

We simply write M =M (1).
We will invoke the following vector-valued boundedness of the Hardy–Littlewood

maximal operator.

Lemma 2.11. [29, Theorem 2.1.4] Let 1 < r ≤ ∞. Assume that ϕ ∈ A∞(Rn). If
q(ϕ) < p− ≤ p+ <∞, then there exists a constant C > 0 such that∫

Rn

ϕ

x,{ ∞∑
j=−∞

Mfj(x)
r

} 1
r

 dx ≤ C

∫
Rn

ϕ

x,{ ∞∑
j=−∞

|fj(x)|r
} 1

r

 dx

for all sequences of measurable functions {fj}∞j=−∞. In particular,∥∥∥∥∥∥
(

∞∑
j=−∞

Mfj
r

) 1
r

∥∥∥∥∥∥
Lφ

≤ C

∥∥∥∥∥∥
(

∞∑
j=−∞

|fj|r
) 1

r

∥∥∥∥∥∥
Lφ

.

Here a natural modification is made when r = ∞.

We let

dφ ≡ max

{[
n

(
q(ϕ)

i(ϕ)
− 1

)]
, 0

}
. (2.6)

A direct consequence of Lemma 2.11 is that

‖χQ‖Lφ ' ‖χ2
√
nQ‖Lφ (2.7)

for all cubes Q, since χQ ≤ χ2
√
nQ ≲ (MχQ)

r for any r > 0.
As we have been mentioning, we are interested in ϕ ∈ A∞(Rn) satisfying 0 <

i(ϕ) ≤ I(ϕ) < ∞. Thus, the postulate q(ϕ) < i(ϕ) in Lemma 2.11 is too strong.
To overcome this problem, we transform Lemma 2.11 into the following form:

Corollary 2.12. For ϕ ∈ A∞(Rn) satisfying 0 < i(ϕ) ≤ I(ϕ) < ∞ and for all
sequences of measurable functions {fj}∞j=−∞,∫

Rn

ϕ

(
x,

∞∑
j=−∞

Mfj(x)
n+dφ+1

n

)
dx ≲

∫
Rn

ϕ

(
x,

∞∑
j=−∞

|fj(x)|
n+dφ+1

n

)
dx. (2.8)
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Proof. We consider ϕ(·, (·)
n+dφ+1

n ). We calculate

q(ϕ(·, (·)
n+dφ+1

n )) = q(ϕ), i(ϕ(·, (·)
n+dφ+1

n )) =
n+ dφ + 1

n
i(ϕ) > q(ϕ)

using Lemma 2.6, since dφ + 1 > n

(
q(ϕ)

i(ϕ)
− 1

)
. Thus, we are in the position

of using Lemma 2.11 to control the Hardy–Littlewood maximal operator in the
right-hand side of (2.8).

Definition 2.13. Let ϕ ∈ A∞(Rn).

1. Let ϕ ≡ min{1, i(ϕ)} ∈ (0, 1], where i(ϕ) is given by (2.1).

2. For sequences of nonnegative numbers {κj}∞j=1 and cubes {Qj}∞j=1, define

A({κj}∞j=1, {Qj}∞j=1) = Aφ({κj}∞j=1, {Qj}∞j=1)

≡ inf

λ > 0 :

∫
Rn

ϕ

x,{ ∞∑
j=1

(
κjχQj

(x)

λ‖χQj
‖Lφ

)φ}1/φ
 dx ≤ 1

 . (2.9)

If ϕ(x, t) = tp, then write Aφ({κj}∞j=1, {Qj}∞j=1) = Ap({κj}∞j=1, {Qj}∞j=1).

3. If Ej is a measurable subset of Qj for each j ∈ N, define
A({κj}∞j=1, {Ej}∞j=1, {Qj}∞j=1) = Aφ({κj}∞j=1, {Ej}∞j=1, {Qj}∞j=1)

≡ inf

λ > 0 :

∫
Rn

ϕ

x,{ ∞∑
j=1

(
κjχEj

(x)

λ‖χQj
‖Lφ

)φ}1/φ
 dx ≤ 1

 . (2.10)

If ϕ(x, t) = tp, then write

Aφ({κj}∞j=1, {Ej}∞j=1, {Qj}∞j=1) = Ap({κj}∞j=1, {Ej}∞j=1, {Qj}∞j=1).

By the use of the Hardy–Littlewood maximal operator, we have the following:

Proposition 2.14. Assume that ϕ ∈ A∞(Rn) satisfies 0 < i(ϕ) ≤ I(ϕ) < ∞.
For each j ∈ N, suppose that we have Ej is a measurable subset of Qj satisfying
2|Ej| ≥ |Qj|. Then, for all {κj}∞j=1 ⊂ [0,∞),

A({κj}∞j=1, {Qj}∞j=1) ≲ A({κj}∞j=1, {Ej}∞j=1, {Qj}∞j=1).

Proof. By the normalization, we may assume A({κj}∞j=1, {Ej}∞j=1, {Qj}∞j=1) = 1.
Remark that M is given by (2.5). Since χQj

≤ cnMχEj
for some cn ≥ 1, we

obtain, for a� 1,∫
Rn

ϕ

x,{ ∞∑
j=1

(
κjχQj

(x)

‖χQj
‖Lφ

)φ}1/φ
 dx

≤
∫
Rn

ϕ

x,{ ∞∑
j=1

(
cn
aκjMχEj

(x)a

‖χQj
‖Lφ

)φ}1/φ
 dx

=

∫
Rn

ϕ

x,{ ∞∑
j=1

(
cn(κj)

1/aMχEj
(x)

(‖χQj
‖Lφ)1/a

)aφ}1/(aφ)
 dx.
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Thanks to Lemma 2.6, q(ϕ(·, (·)a)) < i(ϕ(·, (·)a)) ≤ I(ϕ(·, (·)a)) < ∞ as long as
a� 1. Thus, we are in the position of using Lemma 2.11 to have:∫

Rn

ϕ

x,{ ∞∑
j=1

(
κjχQj

(x)

‖χQj
‖Lφ

)φ}1/φ
 dx

≲
∫
Rn

ϕ

x,{ ∞∑
j=1

(
κjχEj

(x)

‖χQj
‖Lφ

)φ}1/φ
 dx = 1.

Since i(ϕ) > 0, we conclude∫
Rn

ϕ

x,{ ∞∑
j=1

(
κjχQj

(x)

C‖χQj
‖Lφ

)φ}1/φ
 dx ≤ 1

for some constant C > 0. Thus, the proof is complete.

We will assume that ϕ(·, (·)1/φ) is strictly of uniformly lower type 1 and strictly
of uniformly upper type P ≥ 1 thanks to Lemma 2.8.

Proposition 2.15. Assume that ϕ ∈ A∞(Rn) satisfies 0 < i(ϕ) ≤ I(ϕ) < ∞.
Assume that ϕ(·, (·)1/φ) is strictly of uniformly lower type 1 and strictly of uniformly
upper type P ≥ 1. For each j ∈ N, suppose that we have Ej is a measurable
subset of Qj satisfying 2|Ej| ≤ |Qj|. Then there exists β ∈ (0, 1) such that for all
{κj}∞j=1 ⊂ [0,∞), A({κj}∞j=1, {Ej}∞j=1, {Qj}∞j=1) ≤ βA({κj}∞j=1, {Qj}∞j=1).

Proof. We may assume that A({κj}∞j=1, {Qj}∞j=1) = 1 by normalization. Since ϕ is
strictly of lower type 1, ϕ(x, a) ≤ a

a+b
ϕ(x, a + b) for all a, b > 0 and x ∈ Rn and

hence
ϕ(x, a) + ϕ(x, b) ≤ ϕ(x, a+ b) (2.11)

for all a, b > 0 and x ∈ Rn. Since
∞∑
j=1

(
κjχQj

‖χQj
‖Lφ

)φ
=

∞∑
j=1

(
κjχEj

‖χQj
‖Lφ

)φ
+

∞∑
j=1

(
κjχQj\Ej

‖χQj
‖Lφ

)φ
,

we have

ϕ

x,{ ∞∑
j=1

(
κjχQj

(x)

‖χQj
‖Lφ

)φ}1/φ


≥ ϕ

x,{ ∞∑
j=1

(
κjχEj

(x)

‖χQj
‖Lφ

)φ}1/φ
+ ϕ

x,{ ∞∑
j=1

(
κjχQj\Ej

(x)

‖χQj
‖Lφ

)φ}1/φ


thanks to (2.11). Thus, integrating this esimate over Rn, we obtain

1 ≥
∫
Rn

ϕ

x,{ ∞∑
j=1

(
κjχEj

(x)

‖χQj
‖Lφ

)φ}1/φ
 dx

+

∫
Rn

ϕ

x,{ ∞∑
j=1

(
κjχQj\Ej

(x)

‖χQj
‖Lφ

)φ}1/φ
 dx.
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We know that ∫
Rn

ϕ

x,{D ∞∑
j=1

(
κjχQj\Ej

(x)

‖χQj
‖Lφ

)φ}1/φ
 dx ≥ 1

for some D > 1 thanks to Proposition 2.14. Since ϕ(·, (·)1/φ) is assumed to be of
lower type 1, we have

∫
Rn

ϕ

x,{ ∞∑
j=1

(
κjχQj\Ej

(x)

‖χQj
‖Lφ

)φ}1/φ
 dx ≥ D−1.

Thus, letting β = (1−D−1)
1
P , we obtain

∫
Rn

ϕ

x,{ ∞∑
j=1

(
κjχEj

(x)

‖χQj
‖Lφ

)φ}1/φ
 dx ≤ βP .

Since ϕ(·, (·)1/φ) is of uniformly upper type P ≥ 1, we obtain

∫
Rn

ϕ

x,{β−1

∞∑
j=1

(
κjχEj

(x)

‖χQj
‖Lφ

)φ}1/φ
 dx ≤ 1,

as required.

Given a cube Q, let us denote by L1(Q) the set of all integrable functions
supported on Q.

Lemma 2.16. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) <∞. Let β be a constant
from Proposition 2.15 and

δ ∈
(
0,

− log2 β

n+ 1

)
. (2.12)

Suppose that we are given a countable collection of nonnegative numbers {κj}∞j=1,
cubes {Qj}∞j=1 and non-zero measurable functions {fj}∞j=1 such that fj ∈ L1(Qj)
for each j ∈ N. Then we have∥∥∥∥∥∥

{
∞∑
j=1

(
κj|fj|δ|Qj|δ

‖fj‖δL1(Qj)
‖χQj

‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
Lφ

≲ A({κj}∞j=1, {Qj}∞j=1).

Proof. Fix j ∈ N. Denote by Md,Qj the dyadic maximal operator with respect to
Qj. Let us set

Ej,0 ≡ Qj, Ej,k ≡

{
x ∈ Qj :

2(n+1)(k−1)

|Qj|

∫
Qj

|fj(y)| dy < Md,Qjfj(x)

}
, k ∈ N.
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Then each Ej,k can be partitioned into disjoint maximal dyadic cubes {Qj,k,l}l∈Lj,k

such that

Ej,k =
⋃
l∈Lj,k

Qj,k,l,
2(n+1)(k−1)

|Qj|

∫
Qj

|fj(y)| dy <
1

|Qj,k,l|

∫
Qj,k,l

|fj(y)| dy.

Fix j ∈ N. In the course of the proof of [23, Lemma 4.10], we established that
{Qj,k,l}k∈Z,l∈Lj,k

satisfies 2|Qj,k,l ∩ Ej,k+1| ≤ |Qj,k,l| for each l ∈ Lj,k.
We decompose∥∥∥∥∥∥

{
∞∑
j=1

(
κjχEj,k+1

‖χQj
‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
Lφ

=

∥∥∥∥∥∥∥


∞∑
j=1

∑
l∈Lj,k

κjχQj,k,l∩Ej,k+1

‖χQj
‖Lφ

φ
1
φ

∥∥∥∥∥∥∥
Lφ

=

∥∥∥∥∥∥∥


∞∑
j=1

∑
l∈Lj,k

(
κjχQj,k,l∩Ej,k+1

‖χQj
‖Lφ

)φ
1
φ

∥∥∥∥∥∥∥
Lφ

by virtue of the fact that {Qj,k,l}l∈Lj,k
are disjoint. If we invoke Proposition 2.15,

then we have∥∥∥∥∥∥
{

∞∑
j=1

(
κjχQj,k,l∩Ej,k+1

‖χQj
‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
Lφ

≤ β

∥∥∥∥∥∥∥


∞∑
j=1

∑
l∈Lj,k

(
κjχQj,k,l

‖χQj
‖Lφ

)φ
1
φ

∥∥∥∥∥∥∥
Lφ

= β

∥∥∥∥∥∥
{

∞∑
j=1

(
κjχEj,k

‖χQj
‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
Lφ

.

Hence it follows that∥∥∥∥∥∥
{

∞∑
j=1

(
κjχEj,k+1

‖χQj
‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
Lφ

≤ β

∥∥∥∥∥∥
{

∞∑
j=1

(
κjχEj,k

‖χQj
‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
Lφ

(2.13)

for all k ∈ N ∪ {0}. If we repeat to use (2.13), then we have∥∥∥∥∥∥
{

∞∑
j=1

(
κjχEj,k

‖χQj
‖Lφ

)φ
)

} 1
φ

∥∥∥∥∥∥
Lφ

≤ βk

∥∥∥∥∥∥
{

∞∑
j=1

(
κjχQj

‖χQj
‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
Lφ

. (2.14)

By virtue of the ϕ-triangle inequality, then we obtain∥∥∥∥∥∥
{

∞∑
j=1

(
κj|fj|δ|Qj|δ

‖fj‖δL1(Qj)
‖χQj

‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
φ

Lφ

≤

∥∥∥∥∥∥
{

∞∑
j=1

∞∑
k=0

(
2δk(n+1)κjχEj,k

‖χQj
‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
φ

Lφ

≤
∞∑
k=0

2δk(n+1)φ

∥∥∥∥∥∥
{

∞∑
j=1

(
κjχEj,k

‖χQj
‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
φ

Lφ

.
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Let a = 2δ(n+1)β. Arithemetic shows that a < 1; see (2.12). If we use (2.14), then
we have∥∥∥∥∥∥

{
∞∑
j=1

(
κj|fj|δ|Qj|δ

‖fj‖δL1(Qj)
‖χQj

‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
φ

Lφ

≤
∞∑
k=0

akφ

∥∥∥∥∥∥
{

∞∑
j=1

(
κjχQj

‖χQj
‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
φ

Lφ

.

Thus, we conclude∥∥∥∥∥∥
{

∞∑
j=1

(
κj|fj|δ|Qj|δ

‖fj‖δL1(Qj)
‖χQj

‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
Lφ

≲

∥∥∥∥∥∥
{

∞∑
j=1

(
κjχQj

‖χQj
‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
Lφ

= A({κj}∞j=1, {Qj}∞j=1).

Therefore, we obtain the desired result.

2.3 Grand maximal operator and the moment condition

Following [28], we recall the definition of the grand maximal operator M.

Definition 2.17. Fix a large integer N .

1. Topologize S(Rn), the set of all Schwartz functions, by the collection of semi-
norms {pÑ}Ñ∈N given by

pÑ(ϕ) ≡
∑
|α|≤Ñ

sup
x∈Rn

(1 + |x|)Ñ |∂αϕ(x)|

for each Ñ ∈ N.
Define

FN ≡ {ϕ ∈ S(Rn) : pN(ϕ) ≤ 1}. (2.15)

2. Let f ∈ S ′(Rn) the set of all Schwartz distributions. Denote by Mf the
grand maximal operator given by

Mf(x) ≡ sup{|t−nψ(t−1·) ∗ f(x)| : t > 0, ψ ∈ FN} (x ∈ Rn).

We recall how to use the moment condition here. In this paper, based on [26],
we use the following notation.

Definition 2.18 (Moment condition).

1. Denote by P = P(Rn) the set of all polynomials. Then we can regard
P(Rn) canonically as the subset of S ′(Rn). Denote by Pd(Rn) the set of all
polynomial functions with degree less than or equal to d, so that P(Rn) ≡⋃∞
d=0Pd(Rn). It is understood that P−1(Rn) = {0}.
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2. Let L ∈ N0. The set PL(Rn)⊥ denotes the set of all the measurable functions

f for which (1 + | · |)Lf ∈ L1(Rn) and

∫
Rn

xαf(x)dx = 0 for all α ∈ Rn with

|α| ≤ L. Such a function f is said to satisfy the moment condition of order
L. In this case, one also writes f ⊥ PL(Rn).

We state a lemma which will be used in Section 4. See [7, p. 598, B2] or [26,
Theorem 1.55] for its proof.

Lemma 2.19. Let N ∈ N be a constant and let λ ∈ (n+N,∞). Also assume that
a ∈ CN(Rn) satisfies the differential inequality:

|∂αa(x)| ≤ (1 + |x|)−λ (x ∈ Rn) (2.16)

for |α| ≤ N and that η ∈ PN−1(Rn)⊥ satisfies the differential inequality:

|η(x)| ≤ (1 + |x|)−λ (x ∈ Rn). (2.17)

For j, ν ∈ Z satisfying j ≤ ν we write aj ≡ 2jna(2j·), ην ≡ 2νnη(2ν ·). Then
|aj ∗ ην(x)| ≲ 2jn+(j−ν)N(1 + |2jx|)−λ for all x ∈ Rn.

We also invoke the following lemmas from [26, 28].

Lemma 2.20. [28] Let f ∈ S ′(Rn), d ∈ {0, 1, 2, · · · } and j ∈ Z. Then there exist
collections of cubes {Qj,k}k∈Kj

and functions {ηj,k}k∈Kj
⊂ C∞

comp(Rn), which are
all indexed by a set Kj for every j, and a decomposition

f = gj + bj, bj =
∑
k∈Kj

bj,k,

such that the following four conditions hold:

(i) Define Oj ≡ {y ∈ Rn : Mf(y) > 2j} and consider its Whitney decomposi-
tion. Then the cubes {Qj,k}k∈Kj

satisfy∑
k∈Kj

χQj,k
≤ χOj

≤
∑
k∈Kj

χ200Qj,k
≤ NχOj

(2.18)

for some N ∈ N.

(ii) Consider the partition of unity with respect to {Qj,k}k∈Kj
. Denote it by

{ηj,k}k∈Kj
. Then each function ηj,k is supported in 200Qj,k and∑

k∈Kj

ηj,k = χOj
= χ(2j ,∞](Mf), 0 ≤ ηj,k ≤ 1.

(iii) The distribution gj satisfies

Mgj(x) ≲ Mf(x)χOj
c(x) + 2j

∑
k∈Kj

MχQj,k
(x)

n+d+1
n (2.19)

for all x ∈ Rn.
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(iv) Each distribution bj,k is given by bj,k = (f−cj,k)ηj,k with a certain polynomial
cj,k ∈ Pd(Rn) satisfying∫

Rn

bj,k(x)q(x) dx = 0 for all q ∈ Pd(Rn),

and
Mbj,k(x) ≲ Mf(x)χQj,k

(x) + 2jMχQj,k
(x)

n+d+1
n (2.20)

for all x ∈ Rn.

In the above, xj,k and `j,k denote the center and the side-length of Qj,k, respectively,
and the implicit constants are dependent only on n.

Lemma 2.21. [26, Exercise 3.34] Fix L ∈ N0. Let f ∈ H1(Rn). Then we can find
{aj}∞j=1 ⊂ L∞(Rn) ∩ PL(Rn)⊥ and a sequence {Qj}∞j=1 of cubes such that

1. supp(aj) ⊂ Qj,

2. f =
∞∑
j=1

aj in S ′(Rn),

3. For all 0 < r <∞,

{
∞∑
j=1

(
‖aj‖∞χQj

)r}1/r

≲ Mf.

3 Musielak–Orlicz Hardy space Hϕ(Rn)

We are now oriented to Musielak–Orlicz Hardy spaces. We define Musielak–Orlicz
Hardy spaces in Subsection 3.1. In Subsection 3.2, we give the definition of atomic
Musielak–Orlicz Hardy spaces. To fix the language to describe the size of the co-
efficients, we use the quantity A({κj}∞j=1, {Qj}∞j=1) dealt with in Subsection 2.2.
We present the atomic characterization of Musielak–Orlicz Hardy spaces in Subsec-
tion 3.3, namely, atomic Musielak–Orlicz Hardy spaces and Musielak–Orlicz Hardy
spaces defined in Subsection 3.1 are the same as a set.

3.1 Musielak–Orlicz Hardy spaces by way of the grand
maximal operators

Following the spirit of [17], we define Musielak–Orlicz Hardy space Hφ(Rn) by
means of the grand maximal function. The Musielak–Orlicz Hardy space Hφ(Rn)
is the set of all f ∈ S ′(Rn) for which the quantity

‖f‖Hφ ≡ ‖Mf‖Lφ

is finite. As in [23, Theorem 3.4],

‖f‖Hφ ∼
∥∥∥∥sup
t>0

|et∆f |
∥∥∥∥
Lφ

(f ∈ S ′(Rn)).
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Note that this generalizes the classical Hardy space Hp(Rn); simply take ϕ(x, t) =
tp for (x, t) ∈ Rn+1

+ .
We state a fundamental density result for Musielak–Orlicz Hardy spaces.

Lemma 3.1. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) < ∞. Then H1(Rn) ∩
L2(Rn) ∩Hφ(Rn) is dense in Hφ(Rn).

Proof. Use gj and g−j considered in Lemma 2.20 with d ≥ dφ. Since

‖Mgj‖Lφ ≲ ‖χ[0,2j ](Mf)Mf‖Lφ + 2j

∥∥∥∥∥∥
∑
k∈Kj

(MχQj,k
)
n+d+1

n

∥∥∥∥∥∥
Lφ

≲ ‖χ[0,2j ](Mf)Mf‖Lφ + 2j

∥∥∥∥∥∥
∑
k∈Kj

χQj,k

∥∥∥∥∥∥
Lφ

thanks to (2.19) and Corollary 2.12. Recall that
∑
k∈Kj

χQj,k
≤ χ(2j ,∞](Mf) by

Lemma 2.20 (i). Thus,

‖Mgj‖Lφ ≲ ‖min(Mf, 2j)‖Lφ(<∞).

Consequenlty, f = lim
j→−∞

(f − gj). Likewise, using (2.20), we can show that

‖M(f − gj)‖Lφ ≲ ‖χ[2j ,∞](Mf)Mf‖Lφ <∞.

Thus, we conclude that gj − g−j ∈ Hφ(Rn) and f = lim
j→∞

(gj − g−j) in H
φ(Rn). We

claim that gj − g−j ∈ H1(Rn)∩L2(Rn) for each j ∈ N. Indeed, if we fix j ∈ N, we
have

M(gj) +M(g−j) ≲ 2j. (3.1)

Meanwhile,

M(gj − g−j)

= M(bj − b−j) (3.2)

≲ χ[2−j ,∞](Mf)Mf + 2j
∑
k∈Kj

(MχQj,k
)
n+d+1

n + 2−j
∑
k∈K−j

(MχQ−j,k
)
n+d+1

n .

Thus, since min(a+ b+ c, d) ≤ min(a+ b+ c, b+ c+ d) = min(a, d) + b+ c for all
a, b, c, d ≥ 0, from (3.1) and (3.2), we obtain

M(gj − g−j) ≲ 2j

χ[2−j ,∞](Mf) +
∑
k∈Kj

(MχQj,k
)
n+d+1

n +
∑
k∈K−j

(MχQ−j,k
)
n+d+1

n

 .

Since the right-hand side is integrable and square integrable, it follows that gj −
g−j ∈ H1(Rn) ∩ L2(Rn).

We remark that Hφ(Rn) and Lφ(Rn) if q(ϕ) < i(ϕ) ≤ I(ϕ) < ∞, which
transforms many results in this paper into the ones for Musielak–Orlicz spaces.
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Theorem 3.2. Suppose that ϕ ∈ A∞(Rn) satisfies q(ϕ) < i(ϕ) ≤ I(ϕ) <∞. Then
Lφ(Rn) ≈ Hφ(Rn) with the equivalence of norms.

Proof. Thanks to Lemma 2.11, we have Lφ(Rn) is a subset of Hφ(Rn). Let us
prove the opposite inclusion. Let f ∈ Hφ(Rn). Then there exists {fj}∞j=1 ∈
Hφ(Rn)∩L2(Rn)∩H1(Rn) such that fj → f inHφ(Rn) thanks to Lemma 3.1. Since
fj − fk ∈ L2(Rn) ⊂ L1

loc(Rn) we have |fj − fk| ≤ sup
t>0

|et∆[fj − fk]|. Consequently,

‖fj − fk‖Lφ ≤ ‖fj − fk‖Hφ . Since {fj}∞j=1 converges to f in Hφ(Rn), {fj}∞j=1 is a
Cauchy sequence in Lφ(Rn). Meanwhile, since Lφ(Rn) is embedded into L1

loc(Rn)
owing to Lemma 2.11 again, it follows that f is the limit of {fj}∞j=1 in the topology
of Lφ(Rn). Thus, f ∈ Lφ(Rn).

3.2 Atomic Musielak–Orlicz Hardy spaces

We are now oriented to another definition of Musielak–Orlicz Hardy spaces. We
define Musielak–Orlicz Hardy spaces by using atoms. Here we present the definition
of atoms.

Definition 3.3. Let 1 < u ≤ ∞, ϕ ∈ A∞(Rn) with 0 < i(ϕ) ≤ I(ϕ) < ∞ and let
d ∈ [dφ,∞)∩Z. An Lu-function a is said to be a (ϕ, u)-atom supported on Q if it
is supported on a cube Q with the following properties.

1. supp(a) ⊂ Q.

2. ‖a‖Lu ≤ |Q|
1
u

∥χQ∥Lφ
.

3. a ∈ Pd(Rn)⊥.

The set A(ϕ, u) collects all {(aj, Qj)}∞j=1 such that each aj is a (ϕ, u)-atom sup-
ported on Qj.

A direct consequence from the definition is

Ma ≲ χ2
√
nQMa+

1

‖χQ‖Lφ

(MχQ)
n+d+1

n . (3.3)

See the proof of [23, Proposition 5.3].

Definition 3.4 (Hφ,u
atom(Rn)). Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) < ∞ and

1 < u ≤ ∞. The atomic Musielak–Orlicz Hardy space Hφ,u
atom(Rn) is the set of all

functions f ∈ S ′(Rn) such that it can be written as

f =
∞∑
j=1

κjaj in S ′(Rn), (3.4)

where {κj}∞j=1 is a sequence of nonnegative numbers, {(aj, Qj)}∞j=1 ⊂ A(ϕ, u) and
A({κj}∞j=1, {Qj}∞j=1) is finite. One defines

‖f‖Hφ,u
atom

≡ infA({κj}∞j=1, {Qj}∞j=1),

where the infimum is taken over all admissible expressions as in (3.4).
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It should be noted that Hφ,u
atom(Rn) implicitly depends on d ∈ [dφ,∞) ∩ Z.

However, as we will see in Theorem 3.6, the definition of Hφ,u
atom(Rn) does not

depend on d ∈ [dφ,∞) ∩ Z as a set; the different choices of d will yield equivalent
norms. It is also noteworthy that

Hφ,∞
atom(Rn) ↪→ Hφ,u

atom(Rn) (3.5)

thanks to Hölder’s inequaltiy.
It is useful to torelate the case where each atom has non-compact support. To

justify this idea, we will use the notion of molecules.

Definition 3.5. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) < ∞, 1 < u ≤ ∞ and
let d ∈ [dφ,∞) ∩ Z. An Lu-function M is said to be a (ϕ, u)-molecule supported
on Q if there is a cube Q with the following properties.

1. ‖χ2
√
nQM‖Lu ≤ |Q|

1
u

∥χQ∥Lφ
,

2. χRn\2
√
nQ|M| ≤ (MχQ)

2n+2d+3
n .

3. M ∈ Pd(Rn)⊥.

The set M(ϕ, u) collects all {(aj, Qj)}∞j=1 such that each aj is a (ϕ, u)-molecule
supported on Qj.

As in [23, (5.2)], we have

sup
t>0

|et∆M| ≲ χ2
√
nQMM+

1

‖χQ‖Lφ

(MχQ)
n+d+1

n . (3.6)

We can defineHφ,u
molecule(Rn) analogously toHφ,u

atom(Rn) by replacing atoms by molecule
in Definition 3.4. It is trivial that Hφ,u

atom(Rn) ↪→ Hφ,u
molecule(Rn). However, it turns

out to be the same space; see Remark 3.10.

3.3 Atomic characterization of Musielak–Orlicz Hardy spaces

Theorem 3.6 below is one of the key results in this paper. In analogy to the results
in [23], we can prove the following result.

Theorem 3.6. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) < ∞, 1 � u ≤ ∞ and
let d ∈ [dφ,∞) ∩ Z. Then Hφ,u

atom(Rn) ≈ Hφ(Rn) with equivalence of norms. In
particular, the definition of Hφ,u

atom(Rn) does not depend on d ∈ [dφ,∞)∩Z as a set;
the different choices of d will yield equivalent norms.

Proof. Fix an integer d ≥ dφ. Let f ∈ Hφ,u
atom(Rn). Then we have a decomposition:

f =
∞∑
j=1

κjaj,
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where {κj}∞j=1 is a sequence of nonnegative numbers, {(aj, Qj)}∞j=1 ⊂ A(ϕ, u) and
A({κj}∞j=1, {Qj}∞j=1) <∞. By (3.3),

Mf ≲
∞∑
j=1

κj

(
χ2

√
nQj

Maj +
1

‖χQj
‖Lφ

(MχQj
)
n+d+1

n

)
. (3.7)

Let u <∞. Since M is bounded on Lu(Rn), we have

‖Maj‖Lu(2
√
nQj) ≲ ‖aj‖Lu(Qj) ≤

|Qj|1/u

‖χQj
‖Lφ

and hence

χ2
√
nQj

Maj ≲
|Qj|1/uχ2

√
nQj

Maj

‖Maj‖Lu(2
√
nQj)‖χQj

‖Lφ

.

We take the Lφ-norm to have

‖Mf‖Lφ ≲
∥∥∥∥∥

∞∑
j=1

κjχ2
√
nQj

Maj

∥∥∥∥∥
Lφ

+

∥∥∥∥∥
∞∑
j=1

κj
‖χQj

‖Lφ

(MχQj
)
n+d+1

n

∥∥∥∥∥
Lφ

.

If we use Lemma 2.11 to have

‖Mf‖Lφ ≲
∥∥∥∥∥

∞∑
j=1

κj
|Qj|1/uχ2

√
nQj

Maj

‖Maj‖Lu(2
√
nQj)‖χQj

‖Lφ

∥∥∥∥∥
Lφ

+

∥∥∥∥∥
∞∑
j=1

κj
‖χQj

‖Lφ

χQj

∥∥∥∥∥
Lφ

. (3.8)

By the embedding `1(N) ↪→ `φ(N), we obtain

‖Mf‖Lφ

≲

∥∥∥∥∥∥
{

∞∑
j=1

(
κj

|Qj|1/uχ2
√
nQj

Maj

‖Maj‖Lu(2
√
nQj)‖χQj

‖Lφ

)φ} 1
φ

∥∥∥∥∥∥
Lφ

+

∥∥∥∥∥∥
{

∞∑
j=1

(
κj

‖χQj
‖Lφ

χQj

)φ} 1
φ

∥∥∥∥∥∥
Lφ

.

If we use Lemmas 2.11 and 2.16 as well as (2.7), then we obtain

‖Mf‖Lφ ≲

∥∥∥∥∥∥
{

∞∑
j=1

(
κj

‖χQj
‖Lφ

χ2
√
nQj

)φ} 1
φ

∥∥∥∥∥∥
Lφ

≲ A({κj}∞j=1, {Qj}∞j=1). (3.9)

A similar conclusion to (3.9) also holds for u = ∞ since

χ2
√
nQj

Maj ≤ χ2
√
nQj

‖aj‖L∞ ≤ χ2
√
nQj

1

‖χQj
‖Lφ

.

Thus, f ∈ Hφ(Rn).
Conversely we will show that Hφ(Rn) ↪→ Hφ,u

atom(Rn). Thanks to (3.5), we may
assume u = ∞. We will show that f ∈ Hφ,u

atom(Rn) and that

‖f‖Hφ,u
atom

≲ ‖Mf‖Lφ .

We may assume f ∈ Hφ(Rn) ∩H1(Rn) ∩ L2(Rn) in view of Lemma 3.1.
If we use Lemma 2.21, we can find {Aj}∞j=1 ⊂ L∞(Rn)∩Pd(Rn)⊥ and a sequence

{Qj}∞j=1 of cubes such that
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1. Aj 6= 0,

2. supp(Aj) ⊂ Qj,

3. f =
∞∑
j=1

Aj in S ′(Rn),

4. For all 0 < r <∞,

{
∞∑
j=1

(
‖Aj‖∞χQj

)r}1/r

≲ Mf.

Thus, if we let

r = ϕ, λj = ‖Aj‖L∞‖χQj
‖Lφ , aj =

1

λj
Aj,

then we obtain

f =
∞∑
j=1

λjaj (3.10)

and∥∥∥∥∥∥
{

∞∑
j=1

(
λjχQj

‖χQj
‖Lφ

)φ}1/φ
∥∥∥∥∥∥
Lφ

=

∥∥∥∥∥∥
{

∞∑
j=1

(
‖Aj‖∞χQj

)φ}1/φ
∥∥∥∥∥∥
Lφ

≲ ‖Mf‖Lφ = ‖f‖Hφ .

Thus, f ∈ Hφ,∞
atom(Rn).

We combine Theorems 3.2 and 3.6 to have the atomic characterization of
Musielak–Orlicz spaces.

Theorem 3.7. Let ϕ ∈ A∞(Rn) satisfy q(ϕ) < i(ϕ) ≤ I(ϕ) < ∞, 1 � u ≤ ∞
and let d ∈ [dφ,∞) ∩ Z. Then Hφ,u

atom(Rn) ≈ Lφ(Rn) with equivalence of norms.

The inclusion Lφ(Rn) ↪→ Hφ,u
atom(Rn) as well as Lemma 2.16 is useful. Here we

explicitly describe one of the important assertions of Theorem 3.7.

Corollary 3.8. Let ϕ ∈ A∞(Rn) satisfy q(ϕ) < i(ϕ) ≤ I(ϕ) < ∞, 1 � u ≤ ∞
and let d ∈ [dφ,∞) ∩ Z. Then any f ∈ Lφ(Rn) can be written in the form (3.4),
where {κj}∞j=1 is a sequence of nonnegative numbers, {(aj, Qj)}∞j=1 ⊂ A(ϕ, u) and
A({κj}∞j=1, {Qj}∞j=1) ≲ ‖f‖Lφ.

Before we conclude this section, we make helpful remarks.

Remark 3.9. If f ∈ Hφ(Rn) ∩ L2(Rn), then convergence of (3.10) takes place in
Hφ(Rn) ∩ L2(Rn). In fact, let

fN =
N∑
j=1

λjaj (N ∈ N).
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Then due to (3.9),

‖f − fN‖Hφ ≲ Aφ({κj}∞j=N+1, {Qj}∞j=N+1) → 0 (N → ∞)

and

‖f − fN‖L2 ∼ ‖f − fN‖H2 ≲ A2({κj}∞j=N+1, {Qj}∞j=N+1) → 0 (N → ∞),

as required.

Remark 3.10. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) < ∞, 1 < u ≤ ∞.
Remark that Hφ(Rn) ≈ Hφ,u

atom(Rn) ≈ Hφ,u
molecule(Rn) with equivalence of norms. In

fact, in view of Theorem 3.6, what remains unclear is Hφ,u
molecule(Rn) ↪→ Hφ(Rn).

However, this is a consequence of (3.6); see the proof of Hφ,u
atom(Rn) ↪→ Hφ(Rn),

where (3.3) is employed in (3.7).

Finally, to conclude this section, we will show that our atomic characterization
readily yields the decomposition obtained in [17, Section 5] assuming that ϕ is
a growth function. Following [17], we recall the known results on the atomic
characterization of Musielak–Orlicz Hardy spaces.

Definition 3.11. Let ϕ ∈ A∞(Rn) be a growth function, namely 0 < i(ϕ) ≤
I(ϕ) ≤ 1.

1. For a measurable set E, we write ϕ(E, t) =

∫
E

ϕ(x, t)dx.

2. For a cube Q and 1 ≤ u <∞, we denote by Luφ(Q) the set of all measurable
functions f on Rn supported in Q such that

‖f‖Lu
φ
= sup

t>0

(
1

ϕ(Q, t)

∫
Rn

|f(x)|uϕ(x, t)dx
) 1

u

<∞.

3. Let 1 ≤ u < ∞. Let {aj}∞j=1 be a sequence of (ϕ, u)-atoms. Denote by
{Qj}∞j=1 the corresponding sequence of cubes. Let also {κj}∞j=1 be a non-
negative sequence of real numbers. Then define

Λu({aj}∞j=1, {κj}∞j=1) = inf

{
λ > 0 :

∞∑
j=1

∫
Qj

ϕ

(
x,

‖κjaj‖Lu
φ

λ

)
≤ 1

}
.

4. Let {aj}∞j=1 be a sequence of (ϕ,∞)-atoms. Denote by {Qj}∞j=1 the corre-
sponding sequence of cubes. Then define

Λ∞({aj}∞j=1, {κj}∞j=1) = inf

{
λ > 0 :

∞∑
j=1

∫
Qj

ϕ

(
x,

κj
λ‖χQj

‖Lφ

)
≤ 1

}
.

5. Let 1 ≤ u <∞. For f ∈ Hφ(Rn), define

‖f‖H̃φ,u
atom

= inf
(3.4)

Λu({aj}∞j=1, {λj}∞j=1),

where {aj}∞j=1 and {λj}∞j=1 move over all decomposition of f as in (3.4).
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By Hölder’s inequality, ‖f‖H̃φ,u1
atom

≤ ‖f‖H̃φ,u2
atom

if 1 < u1 < u2 ≤ ∞.

Theorem 3.12. Let ϕ ∈ A∞(Rn) be a growth function satisfying 0 < i(ϕ) ≤
I(ϕ) ≤ 1, and let 1 � u ≤ ∞. Then the norms ‖f‖H̃φ,u

atom
and ‖f‖Hφ are equivalent

for all f ∈ Hφ(Rn).

Proof. Due to Lemma 2.7, we have Λu(·, ·) ≤ Λ∞(·, ·) ≤ A∞(·, ·). Hence by The-
orem 3.6, we have ‖f‖H̃φ,u

atom
≲ ‖f‖Hφ,u

atom
≲ ‖f‖Hφ . For the opposite inequality, we

use [17, Theorem 5.2].

4 Generalized singular integral operators

As an application of Theorem 3.6, we will prove the boundedness of generalized
singular integral operators of order s. An L2-bounded linear operator T is a
(generalized) singular integral operator (with the kernelK ∈ L1

loc(Rn×Rn\{(x, x) :
x ∈ Rn}) of order s), if it satisfies the following conditions:

(1) For all f ∈ L2(Rn) with compact support, we have

Tf(x) =

∫
Rn

K(x, y)f(y)dy for almost all x /∈ supp(f). (4.1)

(2) For all x, y ∈ Rn such that x 6= y, size condition:

|∂αx∂βyK(x, y)| ≲ |x− y|−n−|α|−|β| (4.2)

holds for all |α|, |β| ≤ s.

As we did in [23, p. 3700], we can prove the following:

Lemma 4.1. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) < ∞, 1 < u ≤ ∞ and
let s ∈ [dφ,∞) ∩ Z. Let also T be a singular integral operator with the kernel
K ∈ L1

loc(Rn×Rn \{(x, x) : x ∈ Rn}) of order s. Then for any (ϕ, u)-atom a with
the cube Q,

|Ta| ≲ |Ta|χ2
√
nQ +

1

‖χQ‖Lφ

(MχQ)
n+s+1

n .

Similar to [23, Proposition 5.3], a direct consequence of this observation and
the density result, Lemma 3.1, is the following conclusion.

Theorem 4.2. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) <∞. Then any singular
integral operator T with the kernel K ∈ L1

loc(Rn×Rn \ {(x, x) : x ∈ Rn}) of order
dφ, which is initially defined on L2(Rn), extends to a bounded linear operator from
Hφ(Rn) to Lφ(Rn).

Proof. We have only to prove that T is bounded extends to a bounded linear
operator fromHφ,∞

atom(Rn) to Lφ(Rn): we have only to show that ‖Tf‖Lφ ≲ ‖f‖Hφ,∞
atom

.
for all f ∈ Hφ,∞

atom(Rn). Thanks to Lemma 3.1 and Theorem 3.6, we may assume
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f ∈ Hφ,∞
atom(Rn) ∩ L2(Rn). Then, owing to Remark 3.9, f can be written as f =

∞∑
j=1

κjaj in L
2(Rn), where {κj}∞j=1 ⊂ [0,∞), {(aj, Qj)}∞j=1 ⊂ A(ϕ,∞) and

A({κj}∞j=1, {Qj}∞j=1) ≤ 2‖f‖Hφ,∞
atom

.

Then, Tf =
∞∑
j=1

κjTaj in L
2(Rn). Thanks to Lemma 4.1,

|Tf | ≤
∞∑
j=1

κj

(
|Taj|χ2

√
nQj

+
1

‖χQ‖Lφ

(MχQ)
n+dφ+1

n

)
.

If we use Lemma 2.16 and (2.7) and argue similarly to Theorem 3.6, we obtain

‖Tf‖Lφ ≲

∥∥∥∥∥∥
(

∞∑
j=1

(
κj|Qj|1/u|Taj|χ2

√
nQj

‖Taj‖Lu(2
√
nQj)‖χQj

‖Lu

)φ)1/φ
∥∥∥∥∥∥
Lφ

+

∥∥∥∥∥
∞∑
j=1

κj
‖χQj

‖Lφ

χQj

∥∥∥∥∥
Lφ

≤ A({κj}∞j=1, {Qj}∞j=1)

≤ 2‖f‖Hφ,∞
atom

,

as required.

Remark 4.3. In addition to the assumption in Theorem 4.2, assume that any
(ϕ,∞)-atom is transformed into (ϕ, u)-molecules modulo a multiplicative constant.
Namely, we suppose that there exists a constant Du > 0 depending only on D such
that D−1Ta is a (ϕ, u)-molecule for any (ϕ,∞)-atom a. Then T , which is initially
defined on L2(Rn), extends to a bounded linear operator on Hφ(Rn). This is a
consequence of Theorem 3.6 and Remark 3.10.

As an application of Remark 4.3, in analogy to [23, Theorem 5.7], we obtain
the following characterization:

Theorem 4.4. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) < ∞. Let τ ∈ S(Rn)
satisfy χB(4)\B(2) ≤ τ ≤ χB(8)\B(1). Then for f ∈ S ′(Rn), we have

‖f‖Hφ ∼

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[τ(2−j·)Ff |2
) 1

2

∥∥∥∥∥∥
Lφ

.

Proof. One direction is easy to prove: Simply use the fact that

Tf =
∞∑

j=−∞

ajF−1[τ(2−j·)Ff ] = (2π)
n
2

∞∑
j=−∞

ajF−1[τ(2−j·)] ∗ f

is a generalized singular integral operator T with the kernel K ∈ L1
loc(Rn × Rn \

{(x, x) : x ∈ Rn}) of order dφ with the constant independent of a = {aj}∞j=−∞ ∈
{−1, 0, 1}Z∩ `1(Z). More precisely, if we denote by cα,β(T ) the implicit constant in
(4.2), then there exists a constant C independent of a = {aj}∞j=−∞ ∈ {−1, 0, 1}Z ∩
`1(Z) such that

‖T‖L2→L2 + cα,β(T ) ≤ C.

For the opposite inequality, we will use the `2-valued extension as in [23].
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5 Wavelet characterization

Based on the fundamental wavelet theory (see [4, 18, 20, 26, 32] for example), we
can construct compactly supported functions.

Definition 5.1. Let s ∈ N ∪ {0} be fixed.

1. Choose compactly supported functions ψl (l = 1, 2, . . . , 2n − 1) so that the
following conditions are satisfied:

• The functions ψl (l = 1, 2, . . . , 2n − 1) belong to Cs+1(Rn). In addition,
they are real-valued and compactly supported with

supp(ψl) ⊂ [0, 2N − 1]n (5.1)

for some N ∈ N.
• We write ψlj,k ≡ 2

jn
2 ψl(2j · −k) for j ∈ Z and k ∈ Zn. Then the system{

ψlj,k : k ∈ Zn, j ∈ Z, l = 1, 2, . . . , 2n − 1
}

is an orthonormal basis of L2(Rn).

In the above it should be noted

supp(ψlj,k) ⊂
n∏

m=1

[2−jkm, 2
−j(km + 2N − 1)] ⊂ 4NQj,k.

Recall that Qj,k is a dyadic cube by (1.2). According to [32], ψl ⊥ Ps+1(R) when
n = 1. This fact readily extends to higher dimensions by the tensor product:
ψl ⊥ Ps+1(Rn) for any n ∈ N.

We also define χj,k ≡ 2
jn
2 χQj,k

for j ∈ Z and k = (k1, k2, . . . , kn) ∈ Zn, where
Qj,k is the dyadic cube given by (1.2). Then using the L2-inner product 〈·, ·〉, we
define the square function Wf by

Wf ≡

(
2n−1∑
l=1

∞∑
j=−∞

∑
k∈Zn

∣∣〈f, ψlj,k〉χj,k∣∣2
) 1

2

at least for f ∈ L2(Rn).
We now move on to the investigation of the wavelet characterization of Hφ(Rn).

In a similar way to the proof of Theorem 4.4, we can show the following:

Lemma 5.2. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) < ∞. Then there exists a
positive constant C = Cψ depending on ψl such that∥∥∥∥∥∥

(
∞∑

j=−∞

∣∣2jnψl(2j·) ∗ f ∣∣2) 1
2

∥∥∥∥∥∥
Lφ

≤ C‖f‖Hφ

for all f ∈ Hφ(Rn) ∩ L2(Rn).
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We set

ψl,∗∗j,ν (f)(x) = sup
y∈Rn

|f ∗ ψl(2j(x− y))|
(1 + 2j|y|)nν

(x ∈ Rn).

As is pointed out in [5, Proof of Proposition 2.21] and [9, p. 271], we have

ψl,∗∗j,ν (f)(x) ≲M [|2jnf ∗ ψl(2j·)|
1
ν ](x)ν =M (ν)[2jnf ∗ ψl(2j·)](x) (x ∈ Rn)

for all f ∈ Hφ(Rn) ∩ L2(Rn).

Corollary 5.3. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) < ∞. Suppose that the
parameter ν satisfies ν ∈ (q(ϕ)/i(ϕ),∞). Then∥∥∥∥∥∥

(
2n−1∑
l=1

∞∑
j=−∞

ψl,∗∗j,ν (f)
2

) 1
2

∥∥∥∥∥∥
Lφ

≲ ‖f‖Hφ

for all f ∈ Hφ(Rn).

We will use Corollary 5.3 to justify the definition of 〈f, ψlj,k〉.

Lemma 5.4. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) <∞. Assume that s > dφ,
where dφ is given by (2.6). Let f ∈ Hφ(Rn) ∩ L2(Rn). Then ‖Wf‖Lφ ≲ ‖f‖Hφ .
In particular, the mapping f 7→ 〈f, ψlj,k〉 extends to a bounded linear functional on
Hφ(Rn) for each j, k, l.

Proof. Fix x ∈ Rn. We write ψ̃l ≡ ψl(−·) for each l = 1, 2, . . . , 2n − 1. If f ∈
Hφ(Rn) ∩ L2(Rn), then Fu and Yang showed

∑
k∈Zn

|〈f, ψlj,k〉|2χ4NQj,k
(x) ≲

∑
k∈Zn

[
sup
y∈Qj,k

|ψ̃lj ∗ f(y)|

]
χ4NχQj,k

(x) ≲ ψl,∗∗j,ν (f)(x)
2

in the course of the proof of [5, Theorem 1.9]. Hence

Wf(x) ≲
(

2n−1∑
l=1

∞∑
j=−∞

ψl,∗∗j,ν (f)(x)
2

) 1
2

.

Thus, by Corollary 5.3, we obtain Wf ∈ Lφ(Rn) together with the estimate
|〈f, ψlj,k〉| ≲ ‖Wf‖Lφ ≲ ‖f‖Hφ .

Lemma 5.4 also justifies the definition of Wf . We further investigate the prop-
erty of Wf .

Lemma 5.5. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) <∞. Assume that

s ∈ Z ∩
(
nmax

(
1

2
,
q(ϕ)

i(ϕ)

)
− n− 1,∞

)
∩ [0,∞).

(1) Let f ∈ Hφ(Rn). Then ‖Wf‖Lφ ≲ ‖f‖Hφ with the implicit constant inde-
pendent of f .
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(2) If f ∈ L2(Rn) satisfies Wf ∈ Lφ(Rn), then ‖f‖Hφ ≲ ‖Wf‖Lφ with the
implicit constant independent of f .

Proof.

1. This is included in Lemma 5.4.

2. Let f ∈ L2(Rn). Then we expand

f =
2n−1∑
l=1

∞∑
j=−∞

∑
k∈Zn

〈f, ψlj,k〉ψlj,k.

Fix ε > 0 and κ > max

(
1

2
,
q(ϕ)

i(ϕ)

)
so that

κn+ 2ε− n− s− 1 < 0 (5.2)

later. Write

E(j, j′) = nmin(j, j′)− n

2
j − (s+ 1)|j − j′|+ (κn+ ε)max(j − j′, 0)

for j, j′ ∈ Z. Arithmetic shows

E(j, j′)− n

2
j + ε|j − j′| =

{
(κn+ 2ε− n− s− 1)(j − j′) (j ≥ j′)

(ε− s− 1)(j′ − 1) (j′ > j).

We will use M (η) given by (2.5).

We observe

F−1[τ(2−j
′ ·)] ∗ ψlj,k(x) = 2j

′nF−1τ(2j
′ ·) ∗ [2

jn
2 ψl(2j · −k)](x)

= 2−
jn
2 2j

′nF−1τ(2j
′ ·) ∗ [2jnψl(2j·)](x− 2−jk).

Let λ� 1. Thanks to Lemma 2.19, since ψl ⊥ Ps(Rn) ∩ Cs+1(Rn),

|F−1[τ(2−j
′·)Fψlj,k](x)| ≲

2−
jn
2
+min(j,j′)n−|j−j′|(s+1)

(1 + 2min(j,j′)|x− 2−jk|)λ
.

Using (5.2) and [26, Lemma 4.2], we obtain

|F−1[τ(2−j
′ ·)Ff ]| ≲

2n−1∑
l=1

∞∑
j=−∞

∑
k∈Zn

|〈f, ψlj,k〉|2nmin(j,j′)−n
2
j−(s+1)|j−j′|

(1 + 2min(j,j′)| · −2−jk|)κn+ε

≲
2n−1∑
l=1

∞∑
j=−∞

∑
k∈Zn

|〈f, ψlj,k〉|2E(j,j′)

(1 + 2j| · −2−jk|)κn+ε

≲
2n−1∑
l=1

∞∑
j=−∞

M (1/κ)

[∑
k∈Zn

|〈f, ψlj,k〉|2E(j,j′)χQjk

]
.
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Thus,

|F−1[τ(2−j
′·)Ff ]|2

≲
2n−1∑
l=1

∞∑
j=−∞

(
M (1/κ)

[∑
k∈Zn

|〈f, ψlj,k〉|2E(j,j′)+ε|j−j′|χQjk

])2

by Hölder’s inequality. We will take the `2-norm of both sides to have∥∥∥∥∥∥
(

∞∑
j′=−∞

|F−1[τ(2−j
′·)Ff ]|2

) 1
2

∥∥∥∥∥∥
Lφ

≲

∥∥∥∥∥∥∥
2n−1∑

l=1

∞∑
j=−∞

∞∑
j′=−∞

M (1/κ)

[∑
k∈Zn

|〈f, ψlj,k〉|2E(j,j′)+ε|j−j′|χQjk

]2 1
2

∥∥∥∥∥∥∥
Lφ

=

∥∥∥∥∥∥∥∥
2n−1∑

l=1

∞∑
j=−∞

∞∑
j′=−∞

M

∣∣∣∣∣∑
k∈Zn

|〈f, ψlj,k〉|2E(j,j′)+ε|j−j′|χQjk

∣∣∣∣∣
1
κ

2κ
1
2κ

∥∥∥∥∥∥∥∥
κ

Lφ(·,(·)κ)

Recall that

2κ > 1, E(j, j′)− jn

2
+ ε|j − j′| < 0,

i(ϕ(·, (·)κ)) = κi(ϕ) > q(ϕ(·, (·)κ)) = q(ϕ).

By the Fefferman–Stein vector-valued inequality (see Lemma 2.11), we obtain∥∥∥∥∥∥
(

∞∑
j′=−∞

|F−1[τ(2−j
′·)Ff ]|2

) 1
2

∥∥∥∥∥∥
Lφ

≲

∥∥∥∥∥∥∥
2n−1∑

l=1

∞∑
j=−∞

∞∑
j′=−∞

[∑
k∈Zn

|〈f, ψlj,k〉|2E(j,j′)+ε|j−j′|χQjk

]2 1
2

∥∥∥∥∥∥∥
Lφ

∼

∥∥∥∥∥∥∥
2n−1∑

l=1

∞∑
j=−∞

[∑
k∈Zn

|〈f, ψlj,k〉|2
n
2
jχQjk

]2 1
2

∥∥∥∥∥∥∥
Lφ

= ‖Wf‖Lφ .

Thus, thanks to Theorem 4.4, we obtain the desired result.

Theorem 5.6. Let ϕ ∈ A∞(Rn) satisfy 0 < i(ϕ) ≤ I(ϕ) <∞. Assume that

s ∈ Z ∩
(
nmax

(
1

2
,
q(ϕ)

i(ϕ)

)
− n− 1,∞

)
∩ [0,∞).

Assume either one of the following:
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(i) f ∈ Hφ(Rn).

(ii) f ∈ L2(Rn) and Wf ∈ Lφ(Rn).

Then ‖Wf‖Lφ ∼ ‖f‖Hφ with the implicit constant independent of f .

Proof. Lemma 5.5 yields the desired result under assumption (ii). Let us assume
(i). If f ∈ Hφ(Rn), then we can find a sequence {fj}∞j=1 ⊂ Hφ(Rn) ∩ L2(Rn) that
converges to f in Hφ(Rn). In view of Lemma 5.5(1), Wf = lim

j→∞
Wfj in L

φ(Rn).

Thus, lim
j→∞

‖Wfj‖Lφ = ‖Wf‖Lφ . Since {fj}∞j=1 converges to f in Hφ(Rn), ‖f‖Hφ =

lim
j→∞

‖fj‖Hφ . Meanwhile, Lemma 5.5(2) yields lim
j→∞

‖fj‖Hφ ≲ lim
j→∞

‖Wfj‖Lφ .

6 Generalized Marcinkiewicz integral operators

acting on Musielak–Orlicz Hardy spaces

This section is oriented to another application of the atomic characterization. Let
0 < ρ < n and 1 < q <∞. Let also Ω ∈ C1(Sn−1) satisfy∫

Sn−1

Ω(ω)dσ(ω) = 0. (6.1)

The generalized Marcinkiewicz operator is defined by

µΩ,ρ,qf(x) =

(∫ ∞

0

∣∣∣∣ 1tρ
∫
B(t)

f(x− y)
Ω(y/|y|)
|y|n−ρ

dy

∣∣∣∣q dtt
) 1

q

,

where B(r) denotes the open ball centered at the origin for r > 0. According to
[27, Theorem 1], we have

‖µΩ,ρ,qf‖Lp ≲ ‖f‖Ḟ 0
p,q

(6.2)

if 1 < p <∞.
As in [2, p. 565],

χRn\3nQ(x)µΩ,ρ,qa(x) ≲
1

‖χQ‖Lφ

MχQ(x)
1+ 1

nq (x ∈ Rn) (6.3)

as long as a is a (ϕ,∞)-atom supported on 3Q. Using (6.2) with q = 2, we learn
that µΩ,ρ,2 is bounded on Lp(Rn) for all 1 < p < ∞. A direct consequence of this
fact is that

‖χ3nQ · µΩ,ρ,qa‖Lu ≲ |Q|1/u

‖χQ‖Lφ

∼ |Q|1/u

‖χ3nQ‖Lφ

(6.4)

for all 1 < u <∞.

Theorem 6.1. Let 0 < ρ < n and Ω ∈ C1(Sn−1) satisfy (6.1). Let ϕ ∈ A∞(Rn)
satisfy

2n

2n+ 1
q(ϕ) < i(ϕ) ≤ I(ϕ) <∞.

Then µΩ,ρ,2, initially defined on L2(Rn), extends to a bounded linear operator from
Hφ(Rn) to Lφ(Rn).
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Proof. Let f ∈ Hφ(Rn) ∩ L2(Rn). It suffices to show that

‖µΩ,ρ,2f‖Lφ ≲ ‖f‖Hφ

with the implicit constant independent of f .
We consider the atomic characterization of f :

f =
∞∑
j=1

κjaj,

where the convergence takes place in L2(Rn)∩Hφ(Rn), {κj}∞j=1 is a sequence of non-
negative numbers, {(aj, Qj)}∞j=1 ⊂ A(ϕ,∞) and A({κj}∞j=1, {Qj}∞j=1) ≲ ‖f‖Hφ <
∞. Then we have

µΩ,ρ,2f ≲
∞∑
j=1

κjχ3nQj
µΩ,ρ,2aj +

∞∑
j=1

κj
‖χQj

‖Lφ

(MχQj
)1+

1
2n

using (6.3). If we take the Lφ-norm and use Lemmas 2.11 and 2.16 together with
(6.4), we obtain

‖µΩ,ρ,2f‖Lφ ≲ A({κj}∞j=1, {Qj}∞j=1),

as required.

In the case of ϕ(x, t) = tp with 2n
2n+1

< p ≤ 1, Theorem 6.1 overlaps a result in
[2]. As a special case of Theorem 6.1, we have the following:

Corollary 6.2. Let 0 < ρ < n and Ω ∈ C1(Sn−1) satisfy (6.1). The operator µΩ,ρ,2,
initially defined on L2(Rn), extends to a bounded linear operator from Hp(Rn) to
Lp(Rn) whenever 2n

2n+1
< p ≤ 1.
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[6] J. Garćıa-Cuerva and J. M. Martell, Wavelet characterization of weighted
spaces, J. Geom. Anal. 11 (2001), no. 2, 241–264. [2]

[7] L. Grafakos, Modern Fourier Analysis. Graduate texts in mathematics; 250,
New York, Springer, 2014. [3, 5, 16]

[8] V.S. Guliyev, S.G. Hasanov and Y. Sawano, Decompositions of local Morrey-
type spaces, Positivity, 21, no. 3, 1223–1252 (2017) [2]

[9] E. Hernández and G. Weiss, A First Course on Wavelets, CRC Press, Boca
Raton, FL, 1996. [27]

[10] K.-P. Ho, Atomic decomposition of Hardy-Morrey spaces with variable expo-
nents, Annales Academiae Scientiarum Fennicae. Mathematica Volume 40,
Issue 1, 31–62. [2]

[11] L. Huang, J. Liu, D. Yang and W. Yuan, Atomic and Littlewood–Paley char-
acterizations of anisotropic mixed-norm Hardy spaces and their applications,
J. Geom. Anal. 29 (2019), 1991–2067. [2]

[12] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable
exponent and application to wavelet characterization, Anal. Math. 36 (2010),
no. 2, 33–50. [2]

[13] M. Izuki, E. Nakai and Y. Sawano, Wavelet characterization and modular
inequalities for weighted Lebesgue spaces with variable exponent, Ann. Acad.
Sci. Fenn. Math. 40 (2015), no. 2, 551–571. [2]

[14] T. Iida, Y. Sawano and H. Tanaka, Atomic Decomposition for Morrey Spaces,
Z. Anal. Anwend. 33 (2014), no. 2, 149–170. [2]

[15] V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz
Spaces, River Edge, NJ: World Scientific Publishing, 1991. [8]

[16] T.S. Kopaliani, Greediness of the wavelet system in Lp(t)(R) spaces, East J.
Approx. 14 (2008), no. 1, 59–67. [2]

[17] L.D. Ky, New Hardy spaces of Musielak–Orlicz type and boundedness of sub-
linear operators. Integral Equations Operator Theory 78, no. 1 (2014), 115–
150. [1, 2, 3, 4, 5, 6, 17, 23, 24]

32
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